Digital Library
Vol. 11, No. 4, Dec. 2015
-
Meryem Benyoussef, Samira Mabtoul, Mohamed El Marraki, Driss Aboutajdine
Vol. 11, No. 4, pp. 495-508, Dec. 2015
https://doi.org/10.3745/JIPS.02.0032
Keywords: copyright protection, Mammograms, Medical Image, Robust Watermarking, Visual Cryptography
Show / Hide AbstractIn this paper, a novel robust medical images watermarking scheme is proposed. In traditional methods, the added watermark may alter the host medical image in an irreversible manner and may mask subtle details. Consequently, we propose a method for medical image copyright protection that may remedy this problem by embedding the watermark without modifying the original host image. The proposed method is based on the visual cryptography concept and the dominant blocks of wavelet coefficients. The logic in using the blocks dominants map is that local features, such as contours or edges, are unique to each image. The experimental results show that the proposed method can withstand several image processing attacks such as cropping, filtering, compression, etc. -
Nawel Bendimerad, Bouabdellah Kechar
Vol. 11, No. 4, pp. 509-527, Dec. 2015
https://doi.org/10.3745/JIPS.03.0034
Keywords: coverage, Fault Tolerance, Field of View, Obstacles Avoidance, Scheduling, Simulation, Wireless Video Sensor Networks
Show / Hide AbstractWireless Video Sensor Networks (WVSNs) have become a leading solution in many important applications, such as disaster recovery. By using WVSNs in disaster scenarios, the main goal is achieving a successful immediate response including search, location, and rescue operations. The achievement of such an objective in the presence of obstacles and the risk of sensor damage being caused by disasters is a challenging task. In this paper, we propose a fault tolerance model of WVSN for efficient post-disaster management in order to assist rescue and preparedness operations. To get an overview of the monitored area, we used video sensors with a rotation capability that enables them to switch to the best direction for getting better multimedia coverage of the disaster area, while minimizing the effect of occlusions. By constructing different cover sets based on the field of view redundancy, we can provide a robust fault tolerance to the network. We demonstrate by simulating the benefits of our proposal in terms of reliability and high coverage. -
Minh Hieu Nguyen, Gueesang Lee
Vol. 11, No. 4, pp. 528-537, Dec. 2015
https://doi.org/10.3745/JIPS.02.0026
Keywords: Connected Component, Interest Point, Tensor Voting, Text Detection
Show / Hide AbstractText in images is one of the most important cues for understanding a scene. In this paper, we propose a novel approach based on interest points to localize text in natural scene images. The main ideas of this approach are as follows: first we used interest point detection techniques, which extract the corner points of characters and center points of edge connected components, to select candidate regions. Second, these candidate regions were verified by using tensor voting, which is capable of extracting perceptual structures from noisy data. Finally, area, orientation, and aspect ratio were used to filter out non-text regions. The proposed method was tested on the ICDAR 2003 dataset and images of wine labels. The experiment results show the validity of this approach. -
Jitdumrong Preechasuk, Punpiti Piamsa-nga
Vol. 11, No. 4, pp. 538-555, Dec. 2015
https://doi.org/10.3745/JIPS.02.0035
Keywords: Dynamic Grid Feature, Event Detection, Event Patterns, Pedestrian Activities
Show / Hide AbstractEvent detection based on using features from a static grid can give poor results from the viewpoint of two main aspects: the position of the camera and the position of the event that is occurring in the scene. The former causes problems when training and test events are at different distances from the camera to the actual position of the event. The latter can be a source of problems when training events take place in any position in the scene, and the test events take place in a position different from the training events. Both issues degrade the accuracy of the static grid method. Therefore, this work proposes a method called a dynamic grid for event detection, which can tackle both aspects of the problem. In our experiment, we used the dynamic grid method to detect four types of event patterns: implosion, explosion, two-way, and one-way using a Multimedia Analysis and Discovery (MAD) pedestrian dataset. The experimental results show that the proposed method can detect the four types of event patterns with high accuracy. Additionally, the performance of the proposed method is better than the static grid method and the proposed method achieves higher accuracy than the previous method regarding the aforementioned aspects. -
Khac Phong Do, Ba Tung Nguyen, Xuan Thanh Nguyen, Quang Hung Bui, Nguyen Le Tran, Thi Nhat Thanh Nguyen, Van Quynh Vuong, Huy Lai Nguyen, Thanh Ha Le
Vol. 11, No. 4, pp. 556-572, Dec. 2015
https://doi.org/10.3745/JIPS.02.0030
Keywords: Assimilation, Interpolation, Meteorological Variables, Kriging, Vietnam
Show / Hide AbstractThis paper presents the applications of spatial interpolation and assimilation methods for satellite and ground meteorological data, including temperature, relative humidity, and precipitation in regions of Vietnam. In this work, Universal Kriging is used for spatially interpolating ground data and its interpolated results are assimilated with corresponding satellite data to anticipate better gridded data. The input meteorological data was collected from 98 ground weather stations located all over Vietnam; whereas, the satellite data consists of the MODIS Atmospheric Profiles product (MOD07), the ASTER Global Digital Elevation Map (ASTER DEM), and the Tropical Rainfall Measuring Mission (TRMM) in six years. The outputs are gridded fields of temperature, relative humidity, and precipitation. The empirical results were evaluated by using the Root mean square error (RMSE) and the mean percent error (MPE), which illustrate that Universal Kriging interpolation obtains higher accuracy than other forms of Kriging; whereas, the assimilation for precipitation gradually reduces RMSE and significantly MPE. It also reveals that the accuracy of temperature and humidity when employing assimilation that is not significantly improved because of low MODIS retrieval due to cloud contamination. -
Seung-Shik Kang
Vol. 11, No. 4, pp. 573-582, Dec. 2015
https://doi.org/10.3745/JIPS.04.0018
Keywords: Consonant Normalization, Edit Distance, Korean Character, Normalization Factor
Show / Hide AbstractEdit distance metrics are widely used for many applications such as string comparison and spelling error corrections. Hamming distance is a metric for two equal length strings and Damerau-Levenshtein distance is a well-known metrics for making spelling corrections through string-to-string comparison. Previous distance metrics seems to be appropriate for alphabetic languages like English and European languages. However, the conventional edit distance criterion is not the best method for agglutinative languages like Korean. The reason is that two or more letter units make a Korean character, which is called as a syllable. This mechanism of syllable-based word construction in the Korean language causes an edit distance calculation to be inefficient. As such, we have explored a new edit distance method by using consonant normalization and the normalization factor. -
Md. Asadur Rahman, Mostafa Zaman Chowdhury, Yeong Min Jang
Vol. 11, No. 4, pp. 583-600, Dec. 2015
https://doi.org/10.3745/JIPS.03.0043
Keywords: Acceptance Factor, Call Admission Control (CAC), Call Blocking Probability (CBP), Call Dropping Probability (CDP), Channel Utilization, Uniform Fractional Band (UFB), Quality of Service (QoS)
Show / Hide AbstractGenerally, the wireless network provides priority to handover calls instead of new calls to maintain its quality of service (QoS). Because of this QoS provisioning, a call admission control (CAC) scheme is essential for the suitable management of limited radio resources of wireless networks to uphold different factors, such as new call blocking probability, handover call dropping probability, channel utilization, etc. Designing an optimal CAC scheme is still a challenging task due to having a number of considerable factors, such as new call blocking probability, handover call dropping probability, channel utilization, traffic rate, etc. Among existing CAC schemes such as, fixed guard band (FGB), fractional guard channel (FGC), limited fractional channel (LFC), and Uniform Fractional Channel (UFC), the LFC scheme is optimal considering the new call blocking and handover call dropping probability. However, this scheme does not consider channel utilization. In this paper, a CAC scheme, which is termed by a uniform fractional band (UFB) to overcome the limitations of existing schemes, is proposed. This scheme is oriented by priority and non-priority guard channels with a set of fractional channels instead of fractionizing the total channels like FGC and UFC schemes. These fractional channels in the UFB scheme accept new calls with a predefined uniform acceptance factor and assist the network in utilizing more channels. The mathematical models, operational benefits, and the limitations of existing CAC schemes are also discussed. Subsequently, we prepared a comparative study between the existing and proposed scheme in terms of the aforementioned QoS related factors. The numerical results we have obtained so far show that the proposed UFB scheme is an optimal CAC scheme in terms of QoS and resource utilization as compared to the existing schemes. -
Gran Badshah, Siau-Chuin Liew, Jasni Mohamad Zain, Mushtaq Ali
Vol. 11, No. 4, pp. 601-615, Dec. 2015
https://doi.org/10.3745/JIPS.03.0044
Keywords: Lossless Recovery, Tamper Localization, Telemedicine, watermarking, Whole Image, WITALLOR
Show / Hide AbstractRegion of interest (ROI) is the most informative part of a medical image and mostly has been used as a major part of watermark. Various shapes ROIs selection have been reported in region-based watermarking techniques. In region-based watermarking schemes an image region of non-interest (RONI) is the second important part of the image and is used mostly for watermark encapsulation. In online healthcare systems the ROI wrong selection by missing some important portions of the image to be part of ROI can create problem at the destination. This paper discusses the complete medical image availability in original at destination using the whole image as a watermark for authentication, tamper localization and lossless recovery (WITALLOR). The WITALLOR watermarking scheme ensures the complete image security without of ROI selection at the source point as compared to the other region-based watermarking techniques. The complete image is compressed using the Lempel-Ziv-Welch (LZW) lossless compression technique to get the watermark in reduced number of bits. Bits reduction occurs to a number that can be completely encapsulated into image. The watermark is randomly encapsulated at the least significant bits (LSBs) of the image without caring of the ROI and RONI to keep the image perceptual degradation negligible. After communication, the watermark is retrieved, decompressed and used for authentication of the whole image, tamper detection, localization and lossless recovery. WITALLOR scheme is capable of any number of tampers detection and recovery at any part of the image. The complete authentic image gives the opportunity to conduct an image based analysis of medical problem without restriction to a fixed ROI. -
G. A. Preethi, C. Ch, rasekar
Vol. 11, No. 4, pp. 616-629, Dec. 2015
https://doi.org/10.3745/JIPS.03.0015
Keywords: Action, Heterogeneous Handoff, MDP, Policy Iteration, State
Show / Hide AbstractA mobile terminal will expect a number of handoffs within its call duration. In the event of a mobile call, when a mobile node moves from one cell to another, it should connect to another access point within its range. In case there is a lack of support of its own network, it must changeover to another base station. In the event of moving on to another network, quality of service parameters need to be considered. In our study we have used the Markov decision process approach for a seamless handoff as it gives the optimum results for selecting a network when compared to other multiple attribute decision making processes. We have used the network cost function for selecting the network for handoff and the connection reward function, which is based on the values of the quality of service parameters. We have also examined the constant bit rate and transmission control protocol packet delivery ratio. We used the policy iteration algorithm for determining the optimal policy. Our enhanced handoff algorithm outperforms other previous multiple attribute decision making methods. -
Jiao-Hong Qiang, Wang-Xin Xin, Tian-Jun Feng
Vol. 11, No. 4, pp. 630-642, Dec. 2015
https://doi.org/10.3745/JIPS.03.0030
Keywords: Dynamic Weight, Evidence Driven, Subjective Logic
Show / Hide AbstractIn Jøsang’s subjective logic, the fusion operator is not able to fuse three or more opinions at a time and it cannot consider the effect of time factors on fusion. Also, the base rate (a) and non-informative prior weight (C) could not change dynamically. In this paper, we propose an Improved Subjective Logic Model with Evidence Driven (ISLM-ED) that expands and enriches the subjective logic theory. It includes the multi-agent unified fusion operator and the dynamic function for the base rate (a) and the non-informative prior weight (C) through the changes in evidence. The multi-agent unified fusion operator not only meets the commutative and associative law but is also consistent with the researchers’s cognitive rules. A strict mathematical proof was given by this paper. Finally, through the simulation experiments, the results show that the ISLM-ED is more reasonable and effective and that it can be better adapted to the changing environment. -
Yongbin Gao, Hyo Jong Lee
Vol. 11, No. 4, pp. 643-654, Dec. 2015
https://doi.org/10.3745/JIPS.02.0027
Keywords: Affine Scale Invariant Feature Transform, Face recognition, Probabilistic Similarity
Show / Hide AbstractFace recognition under controlled settings, such as limited viewpoint and illumination change, can achieve good performance nowadays. However, real world application for face recognition is still challenging. In this paper, we propose using the combination of Affine Scale Invariant Feature Transform (SIFT) and Probabilistic Similarity for face recognition under a large viewpoint change. Affine SIFT is an extension of SIFT algorithm to detect affine invariant local descriptors. Affine SIFT generates a series of different viewpoints using affine transformation. In this way, it allows for a viewpoint difference between the gallery face and probe face. However, the human face is not planar as it contains significant 3D depth. Affine SIFT does not work well for significant change in pose. To complement this, we combined it with probabilistic similarity, which gets the log likelihood between the probe and gallery face based on sum of squared difference (SSD) distribution in an offline learning process. Our experiment results show that our framework achieves impressive better recognition accuracy than other algorithms compared on the FERET database.