
 

www.kips.or.kr                                                                                           Copyright© 2024 KIPS 

       

 

         

 

 

 

An Enhanced Patch Optimization Technique for  

Multi-Chunk Bugs in Automated Program Repair  
 

Abdinabiev Aslan Safarovich, Jisung Kim, and Byungjeong Lee* 

 

 
Abstract 

Automated program repair techniques leveraging deep learning have shown remarkable performances in bug 

repair. These techniques commonly employ pre-trained neural machine translation (NMT) models to generate 

patches for a buggy part of the source code. However, when dealing with multiple buggy code chunks in various 

locations, current methods face challenges in effectively selecting and combining these patches for optimal 

repair. This paper identifies limitations within one of the existing methods used for optimizing patches related 

to multiple buggy code chunks and proposes an enhanced patch optimization technique to address these 

shortcomings. The primary aim of this study is to improve the process of selecting and combining patches 

generated for groups of buggy chunks. Through experiments conducted on a dataset, this paper demonstrates 

the efficacy of the proposed patch optimization technique, showcasing its potential to enhance the overall bug 

repair process. This study highlights the importance of patch optimization in bug repair by addressing 

limitations and enhancing the repair process. 

 

Keywords 

Automated Program Repair, Machine Learning, Multi-Chunk Bugs, Patch Optimization 
 

 
 

1. Introduction 

Automated program repair (APR) has emerged as a pivotal area in software engineering, leveraging 

advanced techniques to identify and fix bugs in source code automatically. Learning-based approaches, 

particularly those utilizing neural machine translation (NMT) models, have demonstrated significant 

promise in this domain. These approaches often use deep-learning models to generate patches that amend 

one or several buggy sections of code. 

However, despite these advancements, current APR techniques face significant challenges when 

dealing with multiple buggy chunks spread across different parts of the code. Researchers have proposed 

different methods to address such types of bugs. For example, one of the first multi-chunk repair 

techniques, HERCULES [1], identifies similar buggy location siblings first and then applies a repair 

scheme to the identified siblings. However, it tried to fix the multi-chunk bugs where the buggy chunks 

require the same fix pattern. Next, Recoder [2] trained the NMT model using the abstract syntax tree 

(AST) of the buggy code to generate edit sequences in a specified form. CURE [3] applied ensemble 

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which 

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Manuscript received February 15, 2024; first revision July 7, 2024; accepted September 9, 2024. 
*Corresponding Author: Byungjeong Lee (bjlee@uos.ac.kr) 

Dept. of Computer Science, University of Seoul, Seoul, Korea (aslan@uos.ac.kr, kimjisung78@uos.ac.kr, bjlee@uos.ac.kr) 
Current affiliation for author, Jisung Kim, is Team of Alternative Service, Department of General Affairs, Daejeon Correctional Institution, Daejeon, Korea 
 

J Inf Process Syst, Vol.20, No.5, pp.627~639, October 2024    

https://doi.org/10.3745/JIPS.04.0320 ISSN 2092-805X (Electronic) 



An Enhanced Patch Optimization Technique for Multi-Chunk Bugs in Automated Program Repair 

 

628 | J Inf Process Syst, Vol.20, No.5, pp.627~639, October 2024 

learning with several models and a code-aware strategy that contains valid-identifier-check and length-

control check tasks. Recently, some hybrid APR approaches have also been proposed, such as GAMMA 

[4] and RAP-Gen [5], which combine template-based and learning-based methods. SelfAPR [6] used 

self-supervised learning by generating the training samples from historical commits from the same buggy 

project. These techniques mainly focus on single-chunk or single-method bugs or do not provide 

information about the whole process of how they combine the subpatches in the case of multi-chunk bug 

fixing. However, to fix the multi-chunk bugs that spread throughout the program, APR techniques can 

fix the bugs by generating subpatches (the term “subpatch” in this paper indicates a candidate patch for 

some part of the buggy source code) per buggy chunk or group of buggy chunks. 

Therefore, after generating the subpatches per buggy chunk or group of buggy chunks, effectively 

constructing the final patches using these subpatches is important. 

One of the multi-chunk APR approaches was proposed by Kim and Lee [7], which is based on 

generating numerous candidate subpatches for a method-level group of buggy chunks using their buggy 

block preprocessing method and a fine-tuned CodeBERT [8], and combining them to make a set of final 

patches. However, the exponential increase in the patch space with the number of combinations makes it 

impractical to combine all the generated subpatches. Therefore, in [7], a patch optimization step was used 

to filter out some patches, rank, and combine a certain number of the most correct candidate subpatches. 

However, our observation shows that this optimization approach has some limitations, especially in the 

patch ranking and combination phases. These limitations notably decrease the overall program repair 

performance of the approach. 

In this paper, we propose our enhanced patch optimization method by briefly explaining the detected 

limitations and proposing our solutions for them. We conducted an experiment on Defects4j [9], one of 

the popular benchmark datasets among APR researchers, and the results demonstrated the effectiveness 

of our proposed improvements. 

The rest of the paper is organized as follows. Section 2 introduces background information on our 

study. In Section 3, we present our methodology, discussing the identified limitations and our proposed 

solutions. Section 4 outlines the experiments conducted and presents the results. Finally, we conclude the 

paper in Section 5. 

 

 

2. Background 

2.1 Bug Types 

 
 

(a) (b) 

Fig. 1. Examples of (a) a single-chunk bug and (b) a multi-chunk bug (“–“ and “+” indicate deleted and 

added lines). 



Abdinabiev Aslan Safarovich, Jisung Kim, and Byungjeong Lee 

 

J Inf Process Syst, Vol.20, No.5, pp.627~639, October 2024 | 629 

Software bugs can be classified into single-chunk and multi-chunk bugs according to their complexity. 

A single-chunk bug refers to one or more consecutive buggy lines in a single place of the source code. In 

contrast, a multi-chunk bug contains two or more single-chunk bugs. Here a "buggy line" denotes a source 

code line that requires updating (changing some parts of the line), deletion (fully removing from the code) 

or insertion (adding some new lines before the line). Fig. 1 shows examples of both single-chunk and 

multi-chunk bugs. In Fig. 1(a), we can see a buggy method findMax, where the buggy lines “if 

(num<max) {” and “max=max” are located in a single place making a single buggy chunk. While, in Fig. 

1(b) shows two buggy chunks separated with a correct line “for (int num: arr) {”. 

 

2.2 Related Work 

Multi-chunk bugs are complicated because of several problems, such as interdependency, large patch 

space, etc. Different APR techniques use different approaches to fix multi-chunk bugs. For example, 

HERCULES [1] identifies similar buggy location siblings first and then applies a repair scheme for the 

identified sibling. However, it applies the same repair pattern for each location of the siblings, therefore 

it will have trouble when it encounters a multi-chunk bug that requires different repair patterns. CURE 

[3] applied ensemble learning with several models and code-aware strategy that contains valid-identifier-

check and length-control check tasks. It provides fixed multi-chunk bug results but does not provide its 

detailed patch optimization process. Recoder [2] applied AST to NMT to generate edit sequences in a 

specified form. And it used three encoders for three different purposes, such as learning AST of the buggy 

method, learning the edit sequences and an AST path. Recoder does not have a patch combination step 

and fixed a small number of multi-chunk bugs. Hybrid approaches GAMMA [12] and RAPGen [5] 

combined template-based and learning-based approaches. However, they are mainly focus on the single 

chunk repair and did not provide details when the multi-function repair where the generated patches 

should be combined. SelfAPR [6] trained the deep-learning model with the training data generated by 

perturbing the historical version of the same project that is under fix. However, it fixed only single-chunk 

bugs and could not fix the multi-location bugs. 

 

 

3. Methodology 

3.1 Overall Multi-Chunk Program Repair architecture 

Fig. 2 shows an overall multi-chunk program repair architecture of this study. The input is a buggy 

program that can have several buggy methods (BMs) and fields. First, BMs are determined and extracted 

with their related information. Then, buggy blocks are made using the buggy block preprocessing method 

[7] (�� is the number of buggy blocks). Each buggy block is a concatenation of the BM, its related 

context, and the bug marking tags (<bug></bug> is used to indicate buggy line, <context></context> is 

used to indicate context information, etc.). Then, in the fine-tuning stage, a model (i.e., CodeBERT [8]) 

is fine-tuned with a large dataset of buggy & fixed project pairs, where the made buggy block is a source 

and the fixed method (FM) is a label. In generation stage, the fine-tuned CodeBERT takes these the buggy 

blocks, which are made from the buggy program that is under test, and generates SP candidate subpatches 

for each of them (��(�, �) denotes the j-th candidate subpatch for i-th buggy block). Then, a patch 

optimization is applied to the generated subpatches through three steps: patch filtering, patch ranking, 



An Enhanced Patch Optimization Technique for Multi-Chunk Bugs in Automated Program Repair 

 

630 | J Inf Process Syst, Vol.20, No.5, pp.627~639, October 2024 

and patch combination. After patch combination phase is finished, the created patches are evaluated. 

First, they are checked for compilability, then the compilable patches are checked for plausibleness using 

their test cases (a patch is called plausible if it passes all of the test cases), and for correctness by 

developers individually. 

 

3.2 An Enhanced Patch Optimization 

After generating a massive number of subpatches for each buggy block using the fine-tuned Code-

BERT, there is a need for a phase that selects the most likely correct ones and combines them. Patch 

optimization strategy used in [7] does this job in three steps: patch filtering to filter out clearly incorrect 

subpatches, patch ranking to rank the subpatches according to their suspiciousness of being correct, and 

patch combination to combine the certain number of them from the top (Fig. 2). 

 

 

Fig. 2. Overall architecture of multi-chunk program repair. 

 

3.2.1 Patch filtering 

This step is used to filter out unnecessary patches that are clearly not a correct patch. The work [7] 

filters out the patches that are duplicated (DP), have syntax errors (SE), or include termination code (i.e., 

System.exit), which are determined using a code parser library. 

However, after analyzing the patches generated by the fine-tuned model, we realized a significant 

number of patches that are created just by adding java standard stream codes (i.e., System.out, System.in 

and System.err). And these patches are often syntactically closer to the buggy code compared to a correct 

patch, which raises the probability of not using the correct patch in combination. In addition, these stream 

codes are mostly not used to fix the software bugs. Therefore, in this paper we add a new patch filtering 

rule to determine such patches and remove them to reduce patch space. First, we will count the numbers 

of standard inputs, outputs, and errors in a buggy code that we denote as Nin, Nout, and Nerr, respectively. 

Then we count the corresponding numbers in a patch. If any number in the patch is bigger than that of 

the buggy code, we remove the patch as it includes additional input, output, or error streams. 

Our model was fine-tuned with Java dataset since the target language of our study is Java. So, our 

heuristic was developed based on empirical observations from our specific context and Java language. 

However, it is expected that the proposed method is able to handle program bugs written in other 



Abdinabiev Aslan Safarovich, Jisung Kim, and Byungjeong Lee 

 

J Inf Process Syst, Vol.20, No.5, pp.627~639, October 2024 | 631 

languages if we add filtering heuristic specific to the languages and fine-tune the model with datasets of 

the languages. 

 

3.2.2 Patch ranking 

After filtering out unnecessary patches, this step is used to rank remaining patches according to their 

probability of being correct. Since checking the correctness of subpatches using testcases is impossible, 

they are ranked according to their syntactic and semantic similarity with the buggy code. The work [1] 

applied weighted sum of two ranking measures: Action similarity and N-gram similarity (Eq. 1): 

 

���(��(�, �)) = 	 ∗ ����(��(�, �)) + 
 ∗ ������ (��(�, �)) (1) 

 

where ����  is an action similarity of ��(�, �); ������  is an n-gram similarity of ��(�, �); 	  and 
  are 

relative correction factors. 

Action similarity: Fig. 3(a) presents a buggy method, a developer provided patch and one of the 

correct candidate patches. The similarity considers the difference between the expected and performed 

number of actions, as a correct patch tends to minimally change its buggy code [10]. To determine the 

number of the expected actions, the work [7] takes “Repaired locations” from the developer-provided 

patch. At “Repaired locations,” it calculates the numbers of expected insertions that a location indicates 

"FAULT_OF_OMISSION" (���	
�� ) and the other update or deletion actions (���	
�) . Then, it 

calculates the numbers of performed insertions (����	�� ) and other actions (����	�) using an AST 

difference library. Finally, it calculates the overall similarity score by obtaining the minimum value 

between expected and performed actions, and penalizing the distance between them: 

 

���� = (������� + � × �������) / (������� + �������) (2) 
 

where, �������	 = ���
���	
�� ,����	�� + ���
���	
�,����	� ; �������	 = ����	
�� − ����	��� +

����	
� − ����	��; � is a penalty (0 < � < 1). 

However, our observations showed that the work has some issues with determining the repaired 

locations.  The first problem is related to divided locations. When the buggy location is divided into two 

parts and both parts were updated in the developer provided patch as locations 4 and 5 in Fig. 3, the work 

[7] considers this as two expected updates. However, even if a candidate patch fixes these buggy 

locations, the AST difference library returns a single performed update, and this difference causes the 

similarity score to drop. Moreover, according to Yang et al. [11], the developer patches in the benchmark 

datasets have many irrelevant changes. In Fig. 3(a), the return statement added before line 8 can be 

considered as irrelevant, because the second return statement added before line 9 is enough for the bug 

to be fixed and there is no need for another return statement. And these irrelevant changes cause a fake 

increase in the number of expected actions. 

The work [7] does not account for such cases. To solve the problems, we first determine the divided 

locations using a code formatter tool and consider them as a single location. Then, we determine irrelevant 

buggy locations using a dataset purification technique proposed in [11] and remove them from the 

"Repaired locations." The tables on the right side of Fig. 3(b) and Fig. 3(c) show values related to 

Repaired Locations#1 and Revised Repaired Locations#1 of our example, respectively. Due to the 

differentiation, ���	
��  and ���	
�  are not 2 and 2 as in Fig. 3(b), but 1 and 1 as in Fig. 3(c), 



An Enhanced Patch Optimization Technique for Multi-Chunk Bugs in Automated Program Repair 

 

632 | J Inf Process Syst, Vol.20, No.5, pp.627~639, October 2024 

respectively. And ���1,1� has a higher action similarity using Revised Repaired Locations#1 instead of 

Repaired Locations#1. 

 

 
Fig. 3. The details of patch ranking improvements. (a) An example of buggy method, its developer-

provided patch and a correct candidate patch, (b) calculation of the similarity score before the revisions, 

(c) calculation of the similarity score after the revisions, RL = repaired location. 

 

N-gram similarity. The similarity considers the structure and syntax changes between a candidate 

patch and its buggy code because a correct patch has a similar structure and syntax compared to its buggy 

code [10]. The work [7] applied the Jaccard formula to the similarity. However, after analyzing some 

correct candidate patches, we observed that these patches are getting relatively low similarities because 

the formula uses the union denominator. Therefore, to solve the problem, we replaced the denominator 

of the equation to max to increase the score (Eq. 3): 
 

������ 	 |� ∩ | / ����|�|, ||�, (3) 
 

where, B and P are the sets of n-gram tokens from a buggy chunk and its candidate patch, respectively. 

By changing the n-gram similarity, we focus more on the modification bugs with smaller changes. In 

our example, ���1,1� has a higher n-gram similarity using the new denominator instead of the previous 

one (Fig. 3). 

 

3.2.3 Patch combination 

The final step is to select the top certain number of patches from each ranked set of candidate patches 

and combine them to build final patches. The work takes � candidate patches from each set and combines 

them, where � is calculated based on the number of buggy blocks and maximum number of combined 

patches using Eq. (4): 

 

� 	 ��� ��� | ��� � �, � � ��� (4) 



Abdinabiev Aslan Safarovich, Jisung Kim, and Byungjeong Lee 

 

J Inf Process Syst, Vol.20, No.5, pp.627~639, October 2024 | 633 

where, �� is the number of buggy blocks; � is the maximum number of combined patches; �� is the 

number of generated patches for a buggy block. 

However, this combination approach has two problems. Firstly,  � is the same for all the candidate sets 

regardless of the complexity of their buggy blocks, which causes to take a relatively small number of 

subpatches for buggy blocks that have many buggy locations for combination. Secondly, if the number 

of buggy blocks increases, the number of the combined patches and � values decrease exponentially. For 

example, if the number of buggy blocks �� = 5 and the maximum number of combined patches � =

10000, then � = 6 and using it we can have 6� = 7776 combined patches which is 2224 less than 

desired number of combined patches. If the number of buggy blocks is increased by 1 and �� = 6, then 

� = 4 and we have 4� = 4096, which is not even half of the desired number of combined patches. 

To solve the first problem, we calculate separate � value for each candidate set according to the number 

of buggy locations in its buggy block using Eq. (5): 

 

�� = ��� �{� | ��� ≤
� × ������

����

∏ ������, � ≠ ���
���

, � ≤ ��}), (5) 

 

where, ������ is the number of buggy locations in �-th buggy block. 

Using this equation, we generate ������������ = ���, ��, … , ����, a list of � values for each candidate 

set and these � values change proportionally to the number of buggy locations in their buggy blocks. 

We can solve the second problem by incrementing some � values in ������������. However, as we 

have too many increment options, we use Algorithm 1 to find the most optimal one. 

 

Algorithm 1. Get optimal ����� 

 INPUT: 

�, ��	���	���, ������	�����, ��  

1 function getOptimalTopKs(�, ��, ������	�����, ��	���	���):  

2       �������� ← [] 

3       for each � from ������	����� do: 

4 

5 

6 

          ������� ← (∏ ������	�����(�))��
��� / �   // calculate a product of the other  � values 

           ��������������� ← []  

           �������� ← � 

7 

8 

          while ���� do: 

              add �������� to ��������������� 
9               if �������� ∗ ������� ≤ � then 

10 

11 

12 

13 

                   if �������� + 1 ≤ �� (� ∗ �����	���, !"�#(�� ∗ �/$%�(������	�����))) 

                        increment �������� 

                   else 

                        break 

14 

15 

              else 

                   break    

16           add ��������������� to �������� 
17      ���&�������� = makeCombinations(��������)  
18      '�	��������&�������� = filterCombinations(�, ���&��������) 

19      ���������&�������� = sortCombinations('�	��������&��������) 

20 return the first item of ���������&�������� 



An Enhanced Patch Optimization Technique for Multi-Chunk Bugs in Automated Program Repair 

 

634 | J Inf Process Syst, Vol.20, No.5, pp.627~639, October 2024 

Algorithm 1 receives ������������  with some additional parameters and returns ����� , the most 

optimal � values. First, the algorithm generates a list of all applicable incremented values for each � 

value in ������������ using lines from 3 to 16. Next, we make combinations from the taken increments 

to consider all options. Here, applicability of each increment is determined using the line 9, which checks 

whether the number of combined patches does not exceed �, and line 10, which checks for an upper 

limit to prevent a memory related error. The memory error occurs when the number of buggy blocks is 

too large, and each block has a small number of buggy locations. For example, if the number of buggy 

blocks �� = 20 and each block has a single location, then the calculated � value is 1 for all the candidate 

sets  (i. e., ������������ = �1,1, … ,1�) and we can increment each � up to 10000 without the upper 

limit. So, the system will have to create 10000�� combinations which causes to raise the memory error. 

After obtaining the combinations, we exclude the combinations whose product of items (number of 

combined patches) exceed � using line 18. Next, we sort the left combinations according to the product 

and standard deviations (std) of items to return the combination with the maximum product and the 

minimum std values. We are taking the combination with minimum std value to avoid too small and too 

large values. The returned combination, which is �����, defines the number of subpatches that is taken 

from each candidate set. Using the obtained �����, we combine the subpatches and generate a list of 

final combined patches. Finally, the combined patches are checked for correctness. 

In this algorithm, we assess the complexity of the buggy method in a naive way according to the number 

of buggy locations. However, sometimes a bug with a single buggy location can be more difficult to fix 

than a bug with several buggy locations. In this scenario, the algorithm can take a smaller number of 

subpatches for a single location bug. If we had a better way to assess the complexity of bugs, the algorithm 

would perform better. 

 

 

4. Experiments 

4.1 Experiment Preparation 

We conducted an experiment using two datasets: Bugs2Fix [12] dataset was used for training and 

validation purposes when fine-tuning the CodeBERT and we evaluated the proposed improvements using 

Defects4J [9], which is a well-known benchmark dataset among researchers. The Bugs2Fix dataset is a 

large collection of Java buggy and fixed code pairs. It provides approximately 787k raw buggy and fixed 

source code pairs that were mined from GitHub bug-fix commits. Additionally, some of this source code 

was converted into buggy-fixed method pairs, which come in two versions: small, containing around 58k 

pairs, and large, containing 65k pairs. We used the raw buggy and fixed code pairs in our training data. 

There are two older and newer versions of Defects4J, and we used the first version, which has 6 

modules (Table 1). 

Program repair was performed under perfect fault localization using actual buggy lines provided by 

developers. Training and evaluation are performed on a 16-core server with Ubuntu 18.04 LTS, Docker 

environment, 512 GB RAM, one NVIDIA RTX A6000 GPU and two Intel Zeon Gold 6226R 2.9 GHz 

CPUs. JavaParser [13] and Spoon [14] libraries were used for extraction of buggy method and fields. 

Fault localization information was obtained using Gumtree [15] difference library from the training 

dataset. The CodeBERT was implemented using HuggingFace [16] and PyTorch [17]. The time-out per 



Abdinabiev Aslan Safarovich, Jisung Kim, and Byungjeong Lee 

 

J Inf Process Syst, Vol.20, No.5, pp.627~639, October 2024 | 635 

bug was set to 5.5 hours. We implemented our work using Java 8 and 11, and Python 3.x programming 

languages. 
 

Table 1. Bugs in Defects4J 

Modules  Chart Closure Lang Math Mockito Time Total 

Number of bugs 26 131 65 106 38 27 393 

 

The most complex phases of our technique are the patch generation and patch optimization phases. The 

complexity of the patch generation is directly related to the CodeBERT and its parameters, and you can 

refer to [7] for more information. The complexity of our enhanced patch optimization can be calculated 

based on the complexity of the new patch combination step, which is: 
 

O( cn2  *  max(cn, max({k | ki  = 
M

∏ ��������� !"(#)��
��� ,   #$�

− ��� �!" #$%&(�)})) ). 
 

where ��� �!" #$%& is calculated using Eq. (5), and '� is the number of buggy blocks. 

('  %&' and ('  %&( in Eq. (2) were also detected using the Gumtree. 	, 
 in Eq. (1) and � in Eq. (2) 

were set to 0.5. �� was 500, � in Eq. (4) and Eq. (5) was set to 10,000 and )*" �$"�+, in Algorithm 1 

was set to 2. N-gram similarity was measured using tri-gram (3-gram). 

We compare our study with the work [7] and two other learning-based techniques: CURE [3] and 

Recoder [2]. We did not choose HERCULES [1] as our baseline, because it does not provide data for 

perfect fault localization. 

We released the enhanced patch optimization related source code and the generated patches publicly 

available in the following link: https://github.com/Aslan7197/enhancedPatchOptimization.git. To find 

the overall process, you can refer to [7]. 

 

4.2 Research Questions 

RQ1: How does the proposed approach perform against its baselines? 

RQ2: How do the proposed improvements contribute to performance? 

 

4.3 Experiment Results 

RQ1: How does the proposed approach perform against its baselines? 

 

Table 2 demonstrates the number of bugs fixed by our study and the other baselines in each module of 

Defects4J under perfect fault localization. As we can see in the table, the program repair technique 

including our enhanced patch optimization was able to fix a total of 79 bugs which is 14 more than the 

work [7] that uses simple patch optimization, 22 more than CURE, and 15 more than Recoder. Here, 18th 

bug of Math module was excluded from the fixed bugs of the work [7]. Because it did not check its 

encoding boundaries and was incorrect. 

Overall, our study outperformed the baselines on all the modules besides Chart and Closure, where the 

results were the same in Closure. We showed the highest improvement in Math module by repairing 7, 

11, and 12 more bugs than the work [7], CURE, and Recoder, respectively. Fig. 4 demonstrates a Venn 

diagram for Table 2, which shows the fixed bug ids by each baseline. Here, 7 unique bugs were fixed by 

only our study, where 5 bugs are multi-chunk including CL_6, L_20, M_43, M_62, and M_86. 



An Enhanced Patch Optimization Technique for Multi-Chunk Bugs in Automated Program Repair 

 

636 | J Inf Process Syst, Vol.20, No.5, pp.627~639, October 2024 

Table 2. Comparison of the works  

Technique Chart Closure Lang Math Mockito Time Total 

Kim and Lee [7] 5 21 9 23 4 3 65 

CURE [3] 10 14 9 19 4 1 57 

Recoder [2] 10 21 10 18 2 3 64 

This work 6 21 12 30 6 4 79 

Numbers in bold indicate the largest number in the column. 

 

 
Fig. 4. Venn diagram for Table 2. C = Chart, CL = Closure, L = Lang, M = Math, MC = Mockito, T = Time. 

 

RQ2: How do the proposed improvements contribute to performance? 
 

To answer the question, we analyze the comparison results of our study with the work [7]. Overall, the 

program repair technique using our enhanced patch optimization phase was able to fix 14 more bugs than 

the work [7] that uses simple patch optimization (a relative improvement of 21.5%). Furthermore, we 

fixed 15 unique bugs, where 1, 3, 7, 2, and 1 additional bug in Chart, Lang, Math, Mockito, and Time 

modules, respectively. Among the uniquely fixed bugs, 8 bugs are multi-chunk bugs. 

By applying the new patch filtering rule, we removed another type of unnecessary subpatch that was 

causing issues in selecting the correct one. We also improved the patch ranking process, making it better 

at giving higher scores to the most accurate subpatches. Additionally, our updated patch combination 

method now considers the difficulty of each subpatch, leading to more accurate combinations. These 

improvements helped us fix more multi-chunk bugs. 

However, in the process of repairing additional multi-chunks, the program repair technique failed to 

fix some single-chunk bugs, including CL_70. The reason for this is related to the patch generation 

process, and specifically it can be related to the insufficient data in the training dataset for single-chunk 

bugs.  If we train the model with additional dataset for single-chunk bugs, we can expect better repair 

performance. 



Abdinabiev Aslan Safarovich, Jisung Kim, and Byungjeong Lee 

 

J Inf Process Syst, Vol.20, No.5, pp.627~639, October 2024 | 637 

5. Conclusion 

In this paper, we propose an enhanced patch optimization technique to optimize the patches generated 

by a deep learning-based bug repair technique for buggy code with multi-chunk bugs. This approach 

makes several improvements to the work in [7], aiming to increase its performance and applicability. 

First, we added a new patch filtering rule to remove more unnecessary subpatches from the subpatch 

space. Then, we made improvements in the patch ranking phase to enhance its ranking quality. Finally, 

we proposed a new patch combination method to combine patches more effectively by considering the 

bug difficulty. We conducted an experiment on the Defects4J dataset and fixed a total of 79 bugs, 

showcasing a 21.5% relative improvement in overall program repair performance. Furthermore, we 

compared our study with two other related APR techniques and demonstrated its superiority. 

However, our study failed to fix certain types of single-chunk bugs that were fixed by the other baseline 

techniques. One of the main reasons for this was the insufficient fix patterns in the training dataset. If we 

train the model with additional datasets for more varied bugs, including single-chunk bugs, we can expect 

better performance. Furthermore, another main problem of our study is the token limitation of 

CodeBERT. If the number of tokens in a buggy block or a generated candidate subpatch exceeds the 

token limit of the model, CodeBERT generates incomplete subpatches, even if it converts the buggy 

chunks into fixed ones. If we find an effective way to resolve the token limit problem of the model, we 

can expect a significant increase in the number of fixed bugs. Finally, we used a heuristic approach by 

counting the buggy lines to determine the complexity of the bug in the patch combination phase. 

Therefore, in the future, we plan to focus on expanding the training dataset to encompass a broader range 

of bug types, developing a solution for the model's token limit problem, and finding a more effective 

measure to determine the complexity of the buggy method, as well as improving other aspects of the 

program repair architecture. 

 

 

Conflict of Interest 

The authors declare that they have no competing interests. 

 

 

Funding 

This work was supported by the 2023 Research Fund of the University of Seoul. 

 

 

References 

[1] S. Saha, R. K. Saha, and M. R. Prasad, “Harnessing evolution for multi-hunk program repair,” in Proceedings 

of 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), Montreal, Canada, 2019, 

pp. 13-24. https://doi.org/10.1109/ICSE.2019.00020 

[2] Q. Zhu, Z. Sun, Y. A. Xiao, W. Zhang, K. Yuan, Y. Xiong, and L. Zhang, “A syntax-guided edit decoder for 

neural program repair,” 2022 [Online]. https://arxiv.org/abs/2106.08253v6. 



An Enhanced Patch Optimization Technique for Multi-Chunk Bugs in Automated Program Repair 

 

638 | J Inf Process Syst, Vol.20, No.5, pp.627~639, October 2024 

[3] N. Jiang, T. Lutellier, and L. Tan, “CURE: code-aware neural machine translation for automatic program 

repair,” in Proceedings of the 43rd IEEE/ACM International Conference on Software Engineering (ICSE), 

Madrid, Spain, 2021, pp. 1161-1173. https://doi.org/10.1109/ICSE43902.2021.00107 

[4] Q. Zhang, C. Fang, T. Zhang, B. Yu, W. Sun, and Z. Chen, “Gamma: revisiting template-based automated 

program repair via mask prediction,” in Proceedings of 2023 38th IEEE/ACM International Conference on 

Automated Software Engineering (ASE), Luxembourg, 2023, pp. 535-547. https://doi.org/10.1109/ASE562 

29.2023.00063 

[5] W. Wang, Y. Wang, S. Joty, and S. C. H. Hoi, “Rap-Gen: retrieval-augmented patch generation with CodeT5 

for automatic program repair,” in Proceedings of the 31st ACM Joint European Software Engineering 

Conference and Symposium on the Foundations of Software Engineering, San Francisco, CA, USA , 2023, 

pp. 146-158. https://doi.org/10.1145/3611643.3616256 

[6] H. Ye, M. Martinez, X. Luo, T. Zhang, and M. Monperrus, “SelfAPR: self-supervised program repair with 

test execution diagnostics,” in Proceedings of the 37th IEEE/ACM International Conference on Automated 

Software Engineering, Rochester, MI, USA, 2022, pp. 1-13. https://doi.org/10.1145/3551349.3556926 

[7] J. Kim and B. Lee, “MCRepair: multi-chunk program repair via patch optimization with buggy block,” in 

Proceedings of the 38th Annual ACM/SIGAPP Symposium on Applied Computing (SAC), Tallinn, Estonia, 

2023, pp. 1508-1515. https://doi.org/10.1145/3555776.3577762 

[8] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, et al., “CodeBERT: a pre-trained model for 

programming and natural languages,” in Proceedings of Findings of the Association for Computational 

Linguistics EMNLP, Virtual Event, 2020, pp. 1536-1547. 

[9] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: a database of existing faults to enable controlled testing studies 

for Java programs,” in Proceedings of the 2014 International Symposium on Software Testing and Analysis, 

San Jose, CA, USA, 2014, pp. 437-440. https://doi.org/10.1145/2610384.2628055 

[10] S. Wang, M. Wen, B. Lin, H. Wu, Y. Qin, D. Zou, X. Mao, and H. Jin, “Automated patch correctness 

assessment: how far are we?,” in Proceedings of the 35th IEEE/ACM International Conference on Automated 

Software Engineering, Virtual Event, Australia, 2020, pp. 968-980. https://doi.org/10.1145/3324884.3416590 

[11] D. Yang, Y. Lei, X. Mao, D. Lo, H. Xie, and M. Yan, “Is the ground truth really accurate? Dataset purification 

for automated program repair,” in Proceedings of 2021 IEEE International Conference on Software Analysis, 

Evolution and Reengineering (SANER), Honolulu, HI, USA, 2021, pp. 96-107. https://doi.org/10.1109/SAN 

ER50967.2021.00018 

[12] M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and D. Poshyvanyk, “An empirical investigation 

into learning bug-fixing patches in the wild via neural machine translation,” in Proceedings of the 33rd 

ACM/IEEE International Conference on Automated Software Engineering, Montpellier, France, 2018, pp. 

832-837. https://doi.org/10.1145/3238147.3240732 

[13] Github, “Javaparser,” 2017 [Online]. Available: https://github.com/javaparser/javaparser. 

[14] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Seinturier, “SPOON: a library for implementing 

analyses and transformations of java source code,” Software: Practice and Experience, vol. 46, no. 9, pp. 

1155-1179, 2016. https://doi.org/10.1002/spe.2346 

[15] J. R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus, “Fine-grained and accurate source code 

differencing,” in Proceedings of the 29th ACM/IEEE International Conference on Automated Software 

Engineering, Vasteras, Sweden, 2014, pp. 313-324. https://doi.org/10.1145/2642937.2642982 

[16] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, et al., “Transformers: state-of-the-art natural 

language processing,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language 

Processing: System Demonstrations, Virtual Event, 2020, pp. 38-45. https://doi.org/10.18653/v1/2020.emnl 

p-demos.6 



Abdinabiev Aslan Safarovich, Jisung Kim, and Byungjeong Lee 

 

J Inf Process Syst, Vol.20, No.5, pp.627~639, October 2024 | 639 

[17] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, et al., “PyTorch: an imperative style, high-

performance deep learning library,” Advances in neural Information Processing Systems, vol. 32, pp. 8024-

8035, 2019. 

 

 

Abdinabiev Aslan Safarovich  https://orcid.org/0000-0001-8380-2399    
He received B.S. degree in Computer Science from National University of Uzbekistan 

in 2020. He also received the M.S. degree in Computer Science and Engineering from 

University of Seoul, Korea, in 2024. Since March 2024, he has been a Ph.D. student 

of the Department of Computer Science and Engineering at the University of Seoul, 

Korea. His current research interests mainly focus on improving the software quality. 

 

 

Jisung Kim  https://orcid.org/0000-0002-2158-0994    
He received B.S. degree in Information Media Engineering from Shingu College, 

Korea, in 2018. He also received M.S. degree in Computer Science from University of 

Seoul, Korea, in 2023. Since October 2023, he has been an alternative service 

personnel of Daejeon Correctional Institution to perform his military duty. His current 

research interests mainly focus on software engineering, software testing, and natural 

language processing. 

 

 

Sangjin Lee  https://orcid.org/0000-0002-2750-7608    
He received the B.S., M.S., and Ph.D. degrees in Computer Science from Seoul 

National University in 1990, 1998, and 2002, respectively. He was a researcher of 

Hyundai Electronics, Corp. from 1990 to 1998. Currently, he is a professor of the 

Department of Computer Science and Engineering at the University of Seoul, Korea. 

His research areas include software engineering and machine learning. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


