K-Equidistant Partitioning: Enhancing Sensor Data Analysis Using Innovative Data Augmentation Techniques
JeongHyeon Park, Nammee Moon, Journal of Information Processing Systems Vol. 21, No. 4, pp. 371-379, Aug. 2025

Keywords: Behavior Classification, CNN, data augmentation, Sensor data
Fulltext:
Abstract
Statistics
Show / Hide Statistics
Statistics (Cumulative Counts from November 1st, 2017)
Multiple requests among the same browser session are counted as one view.
If you mouse over a chart, the values of data points will be shown.
Statistics (Cumulative Counts from November 1st, 2017)
Multiple requests among the same browser session are counted as one view.
If you mouse over a chart, the values of data points will be shown.
|
Cite this article
[APA Style]
Park, J. & Moon, N. (2025). K-Equidistant Partitioning: Enhancing Sensor Data Analysis Using Innovative Data Augmentation Techniques. Journal of Information Processing Systems, 21(4), 371-379. DOI: 10.3745/JIPS.02.0225.
[IEEE Style]
J. Park and N. Moon, "K-Equidistant Partitioning: Enhancing Sensor Data Analysis Using Innovative Data Augmentation Techniques," Journal of Information Processing Systems, vol. 21, no. 4, pp. 371-379, 2025. DOI: 10.3745/JIPS.02.0225.
[ACM Style]
JeongHyeon Park and Nammee Moon. 2025. K-Equidistant Partitioning: Enhancing Sensor Data Analysis Using Innovative Data Augmentation Techniques. Journal of Information Processing Systems, 21, 4, (2025), 371-379. DOI: 10.3745/JIPS.02.0225.