J Inf Process Syst, Vol.13, No.4, pp.778~804, August 2017 ISSN 1976-913X (Print)
https://doi.org/10.3745/JIPS.04.0013 ISSN 2092-805X (Electronic)

kS

JOURNAL OF INFORMATION PROCESSING SYSTEMS J

Prediction & Assessment of Change Prone Classes Using
Statistical & Machine Learning Techniques

Ruchika Malhotra* and Ravi Jangra*

Abstract

Software today has become an inseparable part of our life. In order to achieve the ever demanding needs of
customers, it has to rapidly evolve and include a number of changes. In this paper, our aim is to study the
relationship of object oriented metrics with change proneness attribute of a class. Prediction models based on
this study can help us in identifying change prone classes of a software. We can then focus our efforts on these
change prone classes during testing to yield a better quality software. Previously, researchers have used statis-
tical methods for predicting change prone classes. But machine learning methods are rarely used for identifi-
cation of change prone classes. In our study, we evaluate and compare the performances of ten machine learn-
ing methods with the statistical method. This evaluation is based on two open source software systems devel-
oped in Java language. We also validated the developed prediction models using other software data set in the
same domain (3D modelling). The performance of the predicted models was evaluated using receiver operat-
ing characteristic analysis. The results indicate that the machine learning methods are at par with the statisti-
cal method for prediction of change prone classes. Another analysis showed that the models constructed for a
software can also be used to predict change prone nature of classes of another software in the same domain.
This study would help developers in performing effective regression testing at low cost and effort. It will also
help the developers to design an effective model that results in less change prone classes, hence better mainte-
nance.

Keywords
Change Proneness, Empirical Validation, Machine Learning Techniques, Software Quality

1. Introduction

The software industry has grown considerably faster than any other industry. Software is evolving
with time to incorporate newer demands or to amend any present defects. The cycle of change is be-
coming shorter as technology progresses. The effort required from development to testing has increased
manifold with this time crunch. Resources, such as time, cost, and effort, are limited in the software
industry while working to develop and maintain a software. A lot of research has been done to study the
relationship between object-oriented (OO) metrics and various quality attributes of a software like fault
proneness and maintainability [1-7]. The prediction of these software attributes helps in identifying the

weak classes of software. Thus, we can effectively plan a project’s constraint resources by assigning ap-

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Manuscript received November 21, 2013; first revision May 29, 2014; second revision September 11, 2014; accepted October 28, 2014; onlinefirst January 28, 2015.

Corresponding Author: Ruchika Malhotra (ruchikamalhotra2004@yahoo.com)

* Dept. of Software Engineering, Delhi Technological University, New Delhi, India (ruchikamalhotra2004@yahoo.com, ravi_jangra25
@yahoo.co.in)

www.kips.or.kr Copyright© 2017 KIPS

Ruchika Malhotra and Ravi Jangra

propriate resources to the weak classes of software, so that these classes are better maintained and tested.

Maintenance accounts for about 40%-70% of the total cost of the software. Thus, it is critical to eval-
uate the probability of change in a particular part of the software (change proneness). The prediction of
change prone classes can help in optimizing the maintenance and testing phases of a software project.
Change prone classes must be thoroughly tested and tracked as the software evolves. This would lead to
better quality software with less defects and changes. It would also lead to the effective and economic
utilization of resources by focusing resources on these classes. The identification of change prone clas-
ses in the early phases of the software development life cycle also aids in the drastic reduction of
maintenance costs. This is because the sooner an error is detected in a product, the fewer amount of
resources there are that are consumed to correct that error. Otherwise, the cost to correct an error in-
creases exponentially in each undetected phase of the software’s life cycle. Thus, the development of
models that predict change prone classes aids software developers in delivering a better quality product
at optimum costs, as minimum changes and errors are propagated to the later stages of software devel-
opment.

In order to develop change prediction models, researchers need to assess the effectiveness of a num-
ber of methods. These methods could be traditional statistical methods or machine learning methods. It
is important to explore a number of methods as different methods may give varied results on different
data sets. Thus, the search for a method that develops an effective model on a number of data sets con-
tinues. Apart from using different methods, it is crucial to evaluate whether a model that has been de-
veloped using the training data from a specific data set can provide good prediction results for another
data set. This type of procedure is known as inter project validation. In order to develop inter-project
models, we need to train the model on a specific data set and provide a different data set for validating
the model. The development of an inter project model is useful, due to the fact that it saves a lot of ef-
fort. The training data for each specific data set may not be available and may be scarce in nature. As
such, reusing the training data for another software data set saves a lot of time, as well as effort.

The aim of this study is to develop effective change prediction models that would help in ascertaining
the change prone classes in a software. The various objectives of the study are as follows:

1) To perform a comprehensive study to investigate the relationship between OO metrics and the

change proneness of classes.

2) To analyze and assess the capability of various machine learning and statistical methods for de-
veloping change prediction models.

3) To evaluate the effectiveness of inter-project models and to determine if they are practical and use-
ful. The study determines whether a model trained on a specific software data set can be used for
predicting the change prone classes of another data set.

In order to explore the relationship between various OO metrics and change prone classes, we devel-
oped change prediction models using the two open source software data sets of Art-of-Illusion (AOI)
and Sweet-Home-3D, which were developed in the Java language. Two versions of each software system
was taken and analyzed for changes. The changes were analyzed in binary form. If any line was added,
deleted, or modified from among the two versions it was then marked as a change. The OO metrics
were calculated for classes that are common to both versions of the software and were combined with
change statistics that were calculated beforehand, to serve as data points for further analysis. Various
machine learning methods and the logistic regression method (a statistical method) were analyzed for

their performance in predicting the change prone classes of a software. The results show that the ma-

J Inf Process Syst, Vol.13, No.4, pp.778~804, August 2017 | 779

Prediction & Assessment of Change Prone Classes Using Statistical & Machine Learning Techniques

chine learning methods perform well in predicting change prone classes and that they are on par with
the statistical methods. We also performed a statistical test (t-test) to test the hypothesis of whether
various methods are statistically different from each other for developing change prediction models.

It is very intuitive for researchers to validate the results from the same data set from which it was de-
rived from. Hence, for validation purposes we took two versions of open source software (AOI and
Sweet-Home-3D), which were written in the Java language. However, we also used the Sweet-Home-3D
software system data set as a test set for the inter-project validation of the change proneness prediction
model, which was developed using training data from AOI software. The performance of various models
was assessed using receiver operating characteristic (ROC) analysis. The results of this study are phe-
nomenal and are helpful for allowing testers and developers to effectively utilize their resources during
the maintenance and testing phases.

This paper is organized as follows: Section 2 summarizes the related work in this field. Section 3
summarizes the research methodology used in the study; along with the different variables of the study,
research hypothesis, and data collection procedure. Section 4 describes the experimental framework
with a description of all the methods used in the study, along with the performance measures and mod-
el building techniques. Section 5 gives the results of the study and Section 6 presents the threats to va-
lidity in this work. Section 7 provides how the work presented in this study can be applied and the con-

clusion is given in Section 8.

2. Related Work

Software keeps on evolving with time, which leads to changes in the functionality of the system or to
the removal of defects that were previously present in it. Prediction models for identifying change prone
classes in the software can help to resolve these issues with ease. Various models have been proposed in
this field using machine learning techniques and statistical techniques. Han et al. [8] used the behavioral
dependency measurement (BDM), which is a method used for rating classes according to the probabil-
ity of change, in order to predict change proneness in UML 2.0 models. BDM was found to be an effec-
tive indicator of change proneness.

Ajrnal Chaumum et al. [9] carried out a study on the telecommunication system to analyze the impact
of a change. They defined a change impact model and mapped it to C++ language to study the conse-
quences of changes made to the classes of a system. Their result showed that the design of a system de-
fines the system’s reaction to incoming changes, and that well-chosen OO metrics can function as indi-
cators of changeability.

When we add or modify a class it changes the OO design of the system. Tsantalis et al. [10] analyzed
this effect on change proneness in their work. Their work categorizes three axes, namely change inher-
itance, reference, and dependency. Probabilities were extracted from two open source multi-version
software projects (JFlex and JMol) for studying the stability of design over successive versions of the
software project and to identify a level beyond which the remodeling of a design cannot be pursued.
They performed statistical analysis on the projects. The results of their analysis revealed an improved
correlation between extracted probabilities and actual changes in each class, in comparison to the pre-
diction model that relies upon past data.

Sharafat and Tavildari [11] used a reverse engineering technique to collect code metrics for various

780 | J Inf Process Syst, Vol.13, No.4, pp.778~804, August 2017

Ruchika Malhotra and Ravi Jangra

versions of a software project (JFlex). They proposed a probabilistic model that predicts the probability
of a change in each class. This approach is based upon the change history and source code of the class.

Zhou et al. [12] found the effect of size on the associations between OO metrics and change prone-
ness of a class. They considered the following three size metrics: SLOC, which is available only after the
implementation stage has been completed; NMIMP (the number of methods implemented in a class);
and NumPara (the sum of the parameters of these methods), which is available earlier during the high
level design stage. They concluded that the confounding effect of size on the relationship between the
metrics and change proneness exists and thus, should be removed to avoid misleading results. Another
study by Lu et al. [1] has investigated the relationship between OO metrics and change proneness. The
study considered a large number of OO metrics (62 metrics) and the empirical validation was conduct-
ed using a large number of systems (102 systems) so that they could generalize their results. However,
both the studies by Zhou et al. [12] and Lu et al. [1] used statistical methods for developing change pre-
diction models.

Our previous work [13] also established a relationship between OO metrics and change proneness.
The study developed change prediction models using various machine learning (AdaBoost, LogitBoost,
Naive Bayes, Bayes Net, and J48) and statistical (logistic regression) methods. However, the dataset used
is in the previous study is different than in this study. Frinika, which is a complete music workstation,
was the type of dataset used in the previous study. Moreover, we only used a single dataset in our previ-
ous work. Whereas, in our present work, we have collected the changes of two completely different,
open source software data sets (AOI and Sweet-Home-3D). In this work, we also performed inter-
project validation. In other words, we have used one project for training the model and the other pro-
ject for testing the model. This type of cross validation was also not done in our previous work.

The study is different from existent previous work as it analyzes and evaluates ten different machine
learning and statistical methods for developing change prediction models. Even though certain re-

searchers have developed change prediction models, these models only assess the capability of the widely

Research Problem Selecting appropriate Hypothesis Development

ity variables
Definition L[* Null Hypothesis

* Objectives of the Study * Dependent + Alternate Hypothesis

¢ Independent

|

Empirical Data Collection Sub selection of Attributes Data Analysis Methods

+ Collection Procedure l—| * Univariate LR l—| * Multivariate LR

¢ Descriptive Statistics * CFS * Machine Learning
Methods

|

Model Development Hypothesis Testing & Threats to Validity
« Same Train and Test N Model Evaluation ¢ Construct

data * T-Test * Internal
¢ Inter-project * Performance Measures * External

Fig. 1. Basic steps followed.

J Inf Process Syst, Vol.13, No.4, pp.778~804, August 2017 | 781

Prediction & Assessment of Change Prone Classes Using Statistical & Machine Learning Techniques

used statistical method (logistic regression) and very few machine learning methods. Moreover, we per-
formed a statistical test (t-test) in our study to evaluate whether or not the pairwise comparison between
the capabilities of different methods is statistically significant. This is important for providing definite
conclusions about the capabilities of different methods. This study also explores the applicability of
inter-project validation using machine learning methods. Inter-project validation saves a lot of effort
and time as the training data of a project can be reused to predict the change prone classes of a different
software project. Such models could be effectively used when the project has constraint resources and
when the training data of a project is too expensive to collect and may not be easily available for devel-
oping effective models. Thus, this study has a significant impact on both academia and the software
industry as it explores a variety of methods for change prediction and guides academia and the software
industry in choosing an effective method. Moreover, the study also advocates the use of inter-project
validation for change prediction, which is a novel technique for developing models in the field of

change prediction.

3. Research Methodology

We will briefly explain the basic methodology and describe each step in detail in the subsequent sec-
tions. The methodology is explained via a diagram in Fig. 1. The various research steps involved in the
study are as listed below.

* We first selected the dependent and the independent variables for this study. Section 3.1 states the
variables of this study in detail. These variables were selected in order to explore the relationship
between various OO metrics and change prone classes. In the next step, we state the hypothesis
that we evaluated (Section 3.2). The hypothesis was developed in order to explore the second ob-
jective statistically.

* The data from both of the software data sets was collected from an open source repository named
sourceforge.net. A detailed description of the data collection procedure and the details of the data
sources are explained in Section 3.3. The descriptive statistics of both of the data sets used in this
study are also provided in this section.

* All of the change prediction models were developed using the 13 metrics explained in Table 1.
However, in order to develop an effective prediction model, we needed to reduce the dimensions
of our input set. We did so by finding a subset of independent variables that were significant in
predicting the dependent variable and change prone classes. We used univariate logistic regression
(Section 4.1) for reducing the number of input variables, while developing a model using the statis-
tical method and the correlation-based feature selection (CFS) technique for input variables reduc-
tion when using the machine learning methods. The CFS technique is explained in Section 4.2.1.
The metrics that were selected after these methods were applied are presented in Section 5.1.

* We analyzed the change prediction models that were developed by using both the statistical and
the machine learning methods. Brief descriptions of all of the methods that we used in this study
are presented in Sections 4.1 and 4.2.

* Next, we constructed of various machine learning and statistical models to predict change prone-
ness for both of the projects. The various models were developed with the aid of a WEKA tool.

These models have been developed using ten-fold cross validation technique where the same soft-

782 | J Inf Process Syst, Vol.13, No.4, pp.778~804, August 2017

Ruchika Malhotra and Ravi Jangra

ware is used for training and validation. We also evaluated inter-project models. A brief descrip-
tion of the model development techniques that we used is given in Section 4.3.

* All of the prediction models developed in this study were evaluated on three performance
measures: sensitivity, specificity, and area under the ROC curve (AUC). All of which are briefly
explained in Section 4.4. In order to validate the hypothesis, we used the t-test; the results of which
are presented in Section 5.4.

* We performed inter-project validation using Sweet-Home-3D software as the test set and AOI
software as the training set. These results are stated in Section 5.5.

* The various threats to the validity of this study were also evaluated. The three threats to validity of
this study are as follows: construct validity, internal validity, and external validity. The threats are

presented in Section 6.

3.1 Independent and Dependent Variables

The independent and dependent variables that were used in this study are described below.

3.1.1 Independent variables

Object-oriented metrics are used to quantify the various aspects of a software process. A single metric
is not sufficient for studying all of the aspects related to a software. As such, a combination of a number
of metrics needs to be used. The independent variables (i.e., various OO metrics) in this study are
summarized in Table 1. The metrics that we included in our study account for various characteristics of
a software like its coupling, size, cohesion, inheritance, etc. These metrics were evaluated for all of the

classes of a software using the scientific tool of Understand [14,15].

3.1.2 Dependent variables

Rapid changes in the utility of a software require modifications and upgrades in the code of the soft-
ware. Change proneness prediction would be a great help for low cost enhancements. This study aims at
studying the relationship between OO metrics and the change prone attributes of classes in software. In
this context, change is anything that is added, deleted, or modified in terms of SLOC. Thus, the depend-

ent variable in our study is change proneness.

3.2 Research Hypothesis

We aimed to perform a statistical test to evaluate whether or not the differences amongst various
methods is statistically significant with the help of t-test. In our hypothesis, we used the LogitBoost
method as the baseline method. The hypothesis that we tested is as explained below.

* Null Hypothesis: The change prediction model developed using the LogitBoost technique is similar
to the change prediction models that were developed using the other nine methods (Bagging,
AdaBoost, LR, MLP, Bayes Net, Naive Bayes, Random Forest, J48, and NNge).

* Alternate Hypothesis: The change prediction model developed using the LogitBoost technique is
better than the change prediction models that were developed using other nine methods (Bagging,
AdaBoost, LR, MLP, Bayes Net, Naive Bayes, Random Forest, J48, and NNge).

J Inf Process Syst, Vol.13, No.4, pp.778~804, August 2017 | 783

Prediction & Assessment of Change Prone Classes Using Statistical & Machine Learning Techniques

Table 1. Independent variables

S. No. Metric Definition Source Dimension
1 ?II\lIlIr]IBl;) er of base classes Number of immediate base classes [16] Inheritance
Coupling between objects Number of classes to which a class is coupled .
2 (CBO) and vice versa] Caupplitoy
3 Number of children (NOC) Number of immediate subclasses of a class [17,18] Inheritance
4 Number of attribute Total number of attributes/variables defined [18,19] Size
(NOA) in a class >
Number of methods in the class including the
5 Response for a class (RFC) methods accessible to an object class due to [17,18] Coupling
inheritance
6 Number of private meth- Number of local (not inherited) private [16] Size
ods (NPRM) methods
Number of protected .
7 methods (NPROM) Number of local protected methods [16] Size
8 e Number of local public methods [20] Size
(NPM)
9 Source lines of code The number of lines that contain source code [21] Size
(SLOC)
Depth of inheritance tree Maximum number of steps from the class .
10 (DIT) node to the root node of the inheritance tree [22,23] Ll eriacng
11 Maximum nesting level Maximum nesting of control constructs [16] Inheritance
(MNL)
For each data field in a class, the percentage
Lack of cohesion amongst of the methods in the class using that data .
12 methods (LCOM) field; the percentages are averaged and then URGEZEL] (oo
subtracted from 100%
Weighted methods per Sum of complexities of all the methods in a .
13 class (WMC) class (17.18] Size

3.3 Empirical Data Collection

This section presents a detailed description of our data sources and the data collection method that
we used. We examined two open source software, which were written in Java, from the open source
repository of sourceforge.net (http://sourceforge.net). The changes in each software were characterized
by the changes in the classes of different versions of the corresponding software. Two stable versions of
each software were analyzed by extracting the common classes that were present in both versions of the
software. We then analyzed the changes in these common classes.

We investigated the AOI software, which is a full-featured 3D modeling, rendering, and animation
studio that is available for all operating systems. The two stable versions evaluated for AOI in this study
were v2.9.2 and v2.7. Version 2.7 was released on January 27, 2009 and consists of 439 classes and v2.9.2
was released on October 21, 2012 and consists of 458 classes. The test data set for inter-project valida-
tion was collected from another open source software named Sweet-Home-3D, which is an interior

design application that helps you quickly draw the floor plan of your house, arrange furniture in it, and

784 | J Inf Process Syst, Vol.13, No.4, pp.778~804, August 2017

Ruchika Malhotra and Ravi Jangra

view the results in 3D. We analyzed two versions of Sweet-Home-3D, which were v3.6 (349 classes) and
v3.7 (350 classes). The details of the software used in the study are shown in Table 2. The analyzed ver-
sions of each software, its programming language (P/L used), the total LOC of each software, the total
number of common classes extracted in the software (total classes), the number of common classes
exhibiting changes (classes exhibiting change), and the number of classes that did not undergo changes

(classes without change) of each software are all given in Table 2.

Table 2. Summary of data set used

X i Total Total Classes exhibit- Classes without
Name Versionl Version2 P/L used .
LOC classes ing change change
Art-of-
. 2.7 2.9.2 Java 88,444 434 131 303
Tlusion
Sweet-
3.6 3.7 Java 74,762 348 15 333
Home-3D

3.3.1 Data collection procedure

In this work, we followed the steps given below to collect OO metrics and the changes between mul-
tiple versions of a software.

Step I (Metrics collection): The source code of both versions of the software was taken from
http://sourceforge.net. The metrics listed in Table 1 were collected with the help of Understand software
for the previous version of the software (i.e., AOI v2.7 and Sweet-Home-3D v3.6). The Understand
software can provide the metric results for files, methods, etc. However, because we were assessing and
predicting changes in only the OO classes, only the metrics for these classes were collected.

Step II (Preprocess versions): In this step, we extracted the common classes in both versions of the
software. Changes in the common classes of both of the versions (current and previous) were taken into
account. Zhou et al. [12] followed a similar approach in their work.

Step III (Compare classes): The common classes that were received after the preprocessing step were
then compared line by line with the help of WinMerge software. Each common class of software was
designated a binary status of ‘change’ or ‘no change.” All of the classes were initially given a ‘no change’
status.

The standards that we followed for determining the status of the class are as follows:

¢ If there was any added, deleted, or modified line of source code in the current (newer) version of
the class with respect to the previous version, it was marked as ‘change.’

* The presence of any added, deleted, or modified comment in the class did not affect the status of
the class. The status remained as ‘no change.’

* The presence of any added or deleted blank line of source code in a class did not affect the status
of the class. The status remained as ‘no change.’

¢ If there was any change in the scope of class or class definition, it was marked as “change.”

* If two lines were present in both versions of the class but were reordered then this did not affect
the status of the class. The status remained as ‘no change.’

¢ If there was any deletion or addition of unnecessary blank spaces or lines in a class, it did not af-

fect the status of the class. The status remained as ‘no change.’

J Inf Process Syst, Vol.13, No.4, pp.778~804, August 2017 | 785

Prediction & Assessment of Change Prone Classes Using Statistical & Machine Learning Techniques

Thus, all classes with a change in the lines of source code, class scope, or class definition were given a
‘change’ status and all other classes were given a ‘no change’ status. The status given to each class was
the dependent variable of our study.

Step IV (Collection of data points): The change status from Step III and the metrics from Step I were
combined to generate data points. Metric values and the change proneness (status) that corresponded
to a class defined a data point. The number of data points in each software was the number of common
classes found in both versions of the software. According to Table 2, the number of data points in AOI
software is 434. In AOI software, 434 classes are present in both versions and 5 classes are absent in
v2.9.2. A total of 131 classes exhibited a change in AOI (i.e., almost 30% of the total classes present in
both versions). The data points collected from Sweet-Home-3D had 348 classes common in both the
versions and only 1 class was absent in v3.7. Out of these 348 classes, only 15 classes were found changed.

These details are summarized in Table 2.

3.3.2 Descriptive statistics

We analyzed the characteristics of the data sets that were used in this study on the basis of the de-
scriptive statistics of various OO metrics given in Tables 3 and 4 for AOI and Sweet-Home-3D software,
respectively. The table shows the minimum, maximum, mean, median, and standard deviation for each
of the metrics analyzed in the study. The following observations were derived from these statistics:

1. The size of the class is measured in terms of lines of source code. It ranges from 4 to 3,053 LOC
and 4 to 7,959 LOC for the AOI software and Sweet-Home-3D, respectively.

2. The mean value of the NOC metric (AOI, 0.463; Sweet-Home-3D, 0.433) and the DIT metric
(AOQI, 1.772; Sweet-Home-3D, 1.693) are low in the software systems that shows that number of
children are very few and inheritance is least used in the systems under study. Similar results
have been shown by others [4,5,24].

3. The LCOM measure (AOI, 100; Sweet-Home-3D, 100) is high for the software systems, which

counts the number of classes with no common attribute usage.

Table 3. Descriptive statistics for AOI software

Metric Min Max Mean Median SD
NIB 1 3 1.196 1 0.42
CBO 0 98 8.763 55 10.114
NOC 0 55 0.463 0 3.082
NOA 0 33 1.523 0 3.931
RFC 0 149 26.394 17.5 27.819

NPRM 0 23 1.581 0 3.05

NPROM 0 10 0.355 0 1.175
NPM 0 90 10.475 7 11.306

SLOC 4 3053 203.788 107 295.249
DIT 1 6 1.772 2 0.79
MNL 0 8 2.06 2 1.581

LCOM 0 100 50.696 59 31.243

WMC 0 554 35.267 19 54.295

786 | J Inf Process Syst, Vol.13, No.4, pp.778~804, August 2017

Ruchika Malhotra and Ravi Jangra

Table 4. Descriptive statistics for Sweet-Home-3D software

Metric Min Max Mean Median SD
NIB 1 5 1.473 1 0.667
CBO 0 70 5.994 4 8.319
NOC 0 37 0.433 0 2.547
NOA 0 45 0.908 0 3.542
RFC 1 279 17.662 10 25.119

NPRM 0 111 3.009 0 9.106

NPROM 0 52 0.616 0 3.126
NPM 0 84 7.891 4 11.524

SLOC 4 7959 214.573 65 557.09
DIT 1 4 1.693 2 0.678
MNL 0 9 1.854 1 1.765

LCOM 0 100 49.576 60 34.897

WMC 1 636 27.235 10 56.042

All abbreviations are listed in Table 1.

4. Experimental Framework

This section briefly describes all of the methods that we used in the study. It also gives a brief descrip-
tion of the model development techniques and the performance measures used to evaluate various

change prediction models.

4.1 Statistical Model

Logistic regression is a method that is commonly used to predict a dependent variable from a set of
independent variables (a detailed description is given in [2,25,26]). It is used when the dependent varia-
ble is dichotomous or binary. Univariate and multivariate regression, which are two types of logistic
regression analysis, were used in this study. Univariate regression finds a connection between the de-
pendent variable and each independent variable and it finds the significance of their association. On the
other hand, multivariate regression builds a prediction model for the change proneness of classes. It
analyzes the usefulness of metrics when the metrics are used in combination. Logistic regression results
in a subset of significant metrics. To find this type of independent metrics subset, two stepwise selection
methods are used, which are known as forward selection and backward elimination [26]. Forward selec-
tion analyzes one metric at the entry of each step. In backward elimination, all of the metrics in the
model are selected at the initial step and are then removed one by one from the model until the stop-
ping criteria is fulfilled. In this study, we used forward selection for statistical modeling.

Multivariate LR can be mathematically formulated as:
probab(X,;, X, X,) = exp™/ 1 + exp™ (1)
f(x) =C+CX;+CXo+.nnnn. + C,.X, (2)

where X, i = 1,2,...,n are the independent variables. ‘Probab’ is the probability of a class being change prone.

J Inf Process Syst, Vol.13, No.4, pp.778~804, August 2017 | 787

Prediction & Assessment of Change Prone Classes Using Statistical & Machine Learning Techniques

These are the following statistics for each significant metric in this particular model:

1. Odds ratio (OR): OR is calculated for each independent metric using Cis. The formula for the
odds ratio is OR = exp(C;). This is the ratio of probability that the event will occur to the proba-
bility of the non-occurrence of an event. The event is our case study of finding a change in the
recent version of the class and non-occurrence is the failure to detect any change in the class
[2,26].

2. Maximum-likelihood estimation (MLE) and coefficients (Cis): The coefficients of a model are
estimated by this statistical method. It is a likelihood function that records the probability of
observing the set of dependent variables [25]. MLE finds the coefficients that make the log for
the likelihood functions as large as possible. The larger the value, the better the impact of the
independent variable on the predicted outcome variable [2,26].

3. The statistical significance (sig): Every coefficient has a significance level described by sig. The
greater the value of the statistical significance, the lesser the impact of the independent OO
metrics in prediction is. In our study we considered 0.05 to be the threshold for the significance
level [2].

4.2 Machine Learning Methods

This section explains the machine learning methods that were used for conducting the analysis in our
study. We used the default setting of the WEKA tool [27].

4.2.1 Correlation-based feature selection

Recognizing a representative set of features (i.e., OO metrics [independent variables]) is very im-
portant for building a classification model using machine learning methods [28]. A good feature set
contains features that are highly correlated with the change in the class but that are not dependent on
each other [29]. CFS helps to find the unwanted and noisy features that are correlated with other fea-
tures. Hall [28] proved in his study that the “classification accuracy using a reduced feature set is equal
to or better than the accuracy that is obtained when using a complete feature set.” We utilized this
method in our study for feature selection. The advantages of feature selection are reduction in dimen-

sionality, improved predictive accuracy, and reduced execution time [28,29].

4.2.2 Random Forest (RF)

This is constructed from a collection of decision trees. Each of the trees is constructed by the random
selection of a subset from a training dataset by using replacement. A decision tree is created from the
random subset of the available variables. This helps us to create the best partitions for the dataset at
each node. The final outcome is the one that is selected by the majority. Each decision tree gives its own
vote for the result and the majority vote wins. RF is built using the unknown number of decision trees
in which each decision tree has reached its full size. The advantages of RF are as follows: very little pre-
processing of data and no need to select a variable to start building a model. RF itself selects the most
useful variables [30,31].

788 | J Inf Process Syst, Vol.13, No.4, pp.778~804, August 2017

Ruchika Malhotra and Ravi Jangra

4.2.3 AdaBoost

This stands for adaptive boosting. It can be used with other machine learning algorithms to improve
the efficiency and performance of the model. It adapts to the error rates of the individual weak hypothe-
sis. As the name suggests, it boosts the efficiency of a weak learning algorithm and converts it into a
strong learning algorithm. The important concept of AdaBoost is that it maintains a distribution of
weights over the training set. At the initial step, all of the weights are equal but with each successive
iteration the weights of incorrect classified examples are increased so that the weak learning algorithm
focuses more on the hard examples in the training set. This concept converts a weak algorithm into a
strong one. The advantage of AdaBoost is that it is less susceptible to the over fitting problem than most

other learning algorithms are [32].

4.2.4 Bagging

Bootstrap aggregating is a technique that repeatedly samples (with replacement) from a data set ac-
cording to a uniform probability distribution [33]. It is also called bagging. The size of the bootstrap
sample is same as the original data. As sampling is carried out with replacement, some instances may
appear more than once in the same training set, while others may not be present at all. Every bootstrap
sample contains 63% of the original training data on average. This is because each sample has the prob-
ability of I - (1 - 1/n)" of being selected in each training set D.. If n is sufficiently large enough the prob-
ability converges to 1 - I/e = 0.632. A test instance is assigned a class based on voting after training the k

classifiers [7].

4.2.5 Multilayer perceptron

Multilayer perceptron (MLP) are models that are used for computations that simulate biological neu-
rons. MLP models complex relationships between inputs and outputs and is used to find patterns in
data [34]. Multilayer feed-forward networks are those that have one input layer, one output layer, and
one or more hidden layers that are used for complex mapping and to extract higher order statistics [34].
Back-propagation is the most commonly used learning paradigm to train multilayer feed-forward net-
works. It consists of two passes through that run the different layers of network. In the forward pass, a
training input data set is applied and a set of outputs is produced as the actual response. In the back-
ward pass, an error signal is generated, which is propagated backward through the network so that the
synaptic weights can be readjusted to make the actual response closer to the desired response. The ad-
vantages of a neural network are its adaptive nature, non-linearity, parallel architecture, and fault toler-

ance.

4.2.6 Bayes Net

The Bayesian networks [35] are quite a powerful probabilistic representation and that is why they are
often used for classification purposes. Unfortunately, perform poorly when learned in a standard way.
Bayes Net is a graphical representation for probabilistic relationships among a set of random variables.
Given a finite set X (X1,X5X5,...,X») of discrete random variables where each variable X; may take values

from a finite set, denoted by Val(X;). A Bayes Net is an annotated directed acyclic graph ‘G’ that encodes

J Inf Process Syst, Vol.13, No.4, pp.778~804, August 2017 | 789

Prediction & Assessment of Change Prone Classes Using Statistical & Machine Learning Techniques

a joint probability distribution over X. In Bayes networks, the nodes of the graph correspond to the
random variables X1, X5,...X. The links of the graph correspond to the direct influence from one varia-
ble to the other. If there is a directed link from variable X; to variable Xj, variable X; will be a parent of
variable X;. Each node is annotated with a conditional probability distribution (CPD) that represents
Pp(Xi/Pa(X:)), where Pa(Xi) denotes the parents of X; in G. The pair (G, CPD) encodes the joint distribu-
tion p(X...Xu) [36].

4.2.7 Naive Bayes

This is a well-established Bayesian method that was primarily formulated for performing classifica-
tion tasks. Given its simplicity (i.e., the assumption that the independent variables are statistically inde-
pendent), Naive Bayes models are effective classification tools that are easy to use and interpret. Naive
Bayes is particularly appropriate when the dimensionality of the independent space (i.e., number of
input variables) is high (a problem known as the curse of dimensionality). For the reasons given above,

Naive Bayes can often outperform other more sophisticated classification methods [37].

4.2.8 J48

J48 is an open implementation of the C4.8 algorithm by the WEKA tool in Java. This decision tree-
based algorithm builds the tree in the same way as ID3 along with some improvements. Ros Quinlan
developed this algorithm and it is now widely used for classification purposes. In this algorithm, first the
base cases are checked and then for each attribute, the normalized information gain is found. The attrib-
ute that has the highest information gain is made the root node and this process is done recursively
[38]. J48 is an evolved and refined offshoot of ID3 that accounts for unavailable values, continuous at-
tribute value ranges, the pruning of decision trees, rule derivations, and so on. These properties make it

more fruitful.

4.2.9 LogitBoost

LogitBoost is one of the boosting techniques that were proposed by Friedman et al. [39]. Boosting
helps to change a weak learning algorithm into a strong learning algorithm. This is done by assigning
equal weights to all the training examples and then increasing the weights of incorrectly classified exam-
ples. In this way, a weak learner is forced to focus on the hard examples. In other words, boosting is the
process of applying a classification algorithm to the training instances, reweighting them again and
again, and then taking a majority vote on the number of classifiers thus produced. The LogitBoost algo-
rithm takes the AdaBoost algorithm as an additive model and applies the cost function of logistic regres-

sion [39]. LogitBoost is suitable for problems involving two class situations.

4.2.10 NNge

NNge is the nearest-neighbor-like algorithm that uses non-nested generalized exemplars (which are
hyper-rectangles that can be viewed as ‘if-then’ rules). It is an algorithm that was developed to deter-

mine the solution to the famous travelling salesman problem. It classifies a new example ‘a’ by finding

790 | J Inf Process Syst, Vol.13, No.4, pp.778~804, August 2017

Ruchika Malhotra and Ravi Jangra

the training example (a,b) that is nearest to ‘a’ according to the Euclidean distance. The nearest neigh-
bor algorithm follows the greedy approach to find the shortest distance. It is easy to implement and
executes quickly. The disadvantage of the NNge algorithm is that it may not find a feasible route at all,

even when one exists.

4.3 Model Development Techniques

This study evaluates the following two types of change prediction models: 1) models developed using
ten-fold cross validation where the training, as well as the validation set belongs to the same software
and 2) models developed using inter-project validation. We briefly explain the two procedures as laid
out below.

1. Ten-Fold Cross Validation: This procedure involves the random division of data into ten parts.
Each time, nine parts are used as a training set and the left out part is used as a test set [40]. There-
fore, we obtain the change proneness of all ten parts. Applying a prediction model to different data
sets gives a better view of its accuracy. Hence, we developed models using the ten-fold cross valida-
tion procedure. However, while using this procedure we used the data points of the same software
while performing model training or during model validation. This study analyzes the ten-fold cross
validation results of both the AOI data set and the Sweet-Home-3D data set.

2. Inter-Project Validation: A model would be more effective and useful if it can give good results
on a validation set that is different (belongs to a different data set) from the training set. This
procedure involves using data points of a specific type of software for model training and vali-
dating the model on the data points of a different type of software. Thus, inter project validation
can assess the possibility of using developed models on different software data sets, which can
lead to a lot of saving of resources. In order to perform inter-project validation, this study uses
the AOI software as the training data set and the Sweet-Home-3D data set as the test set. A good
inter-project model supports the reusability of the already established models on different data

sets effectively.

4.4 Performance Measures

We used the measures described below to evaluate the performance of the change proneness predic-
tion models that we developed in our study.

1. Sensitivity and Specificity: Sensitivity and specificity represents the correctness of these models.
The percentage of classes that have been correctly predicted to be prone to change from among
all the actual change prone classes is known as the sensitivity of the model. The opposite of sen-
sitivity (i.e., the percentage of classes correctly predicted to be not change prone) is called the
specificity of the model. The values of both the sensitivity and specificity should be high, in or-
der to predict change-prone and non-change prone classes correctly.

2. ROC Analysis: Outputs of prediction models are evaluated using ROC analysis. The ROC curve
is plotted between 1-specificity on the x-axis and sensitivity on the y-axis, which effectively pre-
dicts the quality of predicted models [3,41]. We selected many cutoff points between 0 and 1
while constructing ROC curves and calculated the sensitivity and specificity on those points.

The optimal choice of the cutoff point (that maximizes both sensitivity and specificity) can be

J Inf Process Syst, Vol.13, No.4, pp.778~804, August 2017 | 791

Prediction & Assessment of Change Prone Classes Using Statistical & Machine Learning Techniques

selected from the curve [3,41]. AUC is a combined measure of sensitivity and specificity [3]. The

AUC, which is computed by using ROC analysis, computes the accuracy of a model.

5. Analysis and Results

This section describes the type of analysis that is performed to find the relationship between OO met-
rics and the change proneness of classes. We employed a statistical method, which is the multivariate
logistic regression, to find the combined effect of OO metrics on the change proneness attribute of a
class. Apart from this method, we also employed nine machine learning methods to analyze the rela-
tionship between OO metrics and the change proneness of classes. The methods we used are Bayes Net,
Naive Bayes, MLP, Bagging, AdaBoost, LogitBoost, J48, NNge, and RF.

5.1 Attribute Selection Results

In order to construct an effective prediction model, a subset of metrics from Table 1 was selected by
applying the CFS technique. The selected subset of metrics for the AOI data set was comprised of CBO,
NPRM, SLOC, LCOM, and WMC metrics. CFS is only applied for model development using the ma-
chine learning methods. For the statistical method (LR), stepwise forward selection was used, which
selected the CBO, RFC, NPRM, and DIT metrics for AOI software. Table 5 shows the results of the met-
rics that were selected using the CFS or the forward stepwise selection on the AOI data set. The set of
metrics selected after the CFS technique was applied to the Sweet-Home-3D data set were the NPRM,
SLOC, and WMC metric. The metrics that were selected by using forward stepwise selection on the
Sweet-Home-3D data sets was NPRM and NPROM (Table 5).

Table 5. Metrics selected by CFS and stepwise forward selection LR method

Software name Metric selection method Metrics selected
. CFS CBO, NPRM, SLOC, LCOM, WMC
Art-of-Illusion
Forward LR CBO, RFC, NPRM, DIT
S CH D CFS NPRM, SLOC, WMC
weekHome Forward LR NPRM, NPROM

All abbreviations are listed in Table 1.

5.2 Result Analysis for Art-of-Illusion

This section describes the validation results of the various models that were developed using the AOI
software. Table 6 shows the coefficient (B), standard error (SE), statistical significance (sig), and odds
ratio (OR) for the metrics included in the multivariate LR prediction model for the AOI data set. Table
7 shows the ten-fold cross validation results on the system that were studied (i.e., AOI). The sensitivity
and specificity values for the model developed using the LR method were 63.4% each with a cutoff point
of 0.235. The AUC for LR was 0.719, which is much less than the AUC achieved by the model devel-
oped using the Bagging method, which is 0.803. The sensitivity and specificity values for the Bagging
model are also much higher at 71% and 71.3%, respectively. The cutoff point for Bagging was 0.291. The

792 | J Inf Process Syst, Vol.13, No.4, pp.778~804, August 2017

Ruchika Malhotra and Ravi Jangra

RF method gives some competitive results with an AUC value of 0.784 and the sensitivity and specifici-
ty values of 75.6% and 67%, respectively. The cutoff point for the RF method was 0.25. The Bayes Net
and LogitBoost methods also gave good results. Detailed results of the validation for all the change

proneness prediction models using AOI software are stated in Table 7.

Table 6. Result of multivariate LR analysis of Art-of-Illusion software

Metric B SE Sig. OR
CBO 0.078 0.021 0.000 1.081
RFC 0.024 0.008 0.001 1.025

NPRM 0.242 0.052 0.000 1.273
DIT -0.878 0.234 0.000 0.416

Constant -1.044 0.312 0.001 0.352

Table 7. Art-of-Illusion validation results

Method Specificity Sensitivity Cutoff point AUC
LR 63.4 63.4 0.235 0.719
Bayes Net 68.0 67.9 0.252 0.765
Naive Bayes 67.3 66.4 0.012 0.712
MLP 67.0 67.2 0.251 0.730
Bagging 71.3 71.0 0.291 0.803
AdaBoost 67.0 66.4 0.386 0.752
LogitBoost 69.3 68.7 0.298 0.782
NNge 81.8 55.0 0.500 0.684
]48 57.4 66.4 0.245 0.684

RF 67.0 75.6 0.250 0.784

5.3 Result Analysis for Sweet-Home-3D

The results of multivariate LR analysis for the Sweet-Home-3D data set are shown in Table 8. Ten-
fold cross validation results for the prediction models of the Sweet-Home-3D, along with the forward
LR model, are provided in detail, as shown in Table 9. According to Table 9, Naive Bayes provides the
best prediction results with an AUC value of 0.879 and high specificity (79.6%) and sensitivity (80%)
values. Other machine learning models also performed well in comparison to the statistical model. The
performances by J48 and NNge were the lowest among other models with AUC values at 0.414 and
0.591, respectively. Sensitivity and specificity for J48 and NNge were also low in the case of the Sweet-
Home-3D software system. The performance of the Naive Bayes method was slightly better than the
MLP method with a high AUC value (0.846) and a very good sensitivity value (80%).

Table 8. Result of multivariate LR analysis of Sweet-Home-3D software

Metric B SE Sig. OR
NPRM 0.289 0.051 0.000 1.336
NPROM -27.262 1695.25 0.987 0.000
Constant -4.394 0.506 0.000 0.012

J Inf Process Syst, Vol.13, No.4, pp.778~804, August 2017 | 793

Prediction & Assessment of Change Prone Classes Using Statistical & Machine Learning Techniques

Table 9. Sweet-Home-3D validation results

Method Specificity Sensitivity Cutoff point AUC
LR 72.7 73.3 0.018 0.780
Bayes Net 81.7 80.0 0.005 0.819
Naive Bayes 79.6 80.0 0.011 0.879
MLP 79.6 80.0 0.030 0.846
Bagging 75.7 80.0 0.037 0.796
AdaBoost 77.2 80.0 0.013 0.821
LogitBoost 68.2 73.3 0.013 0.802
NNge 98.2 20.0 0.500 0.591
J48 49.5 333 0.044 0.414

RF 89.2 53.3 0.050 0.730

Table 10. t-test to check statistical significance

Method Art-of-Illusion Sweet-Home-3D

Bagging 0
AdaBoost
LR
MLP
Bayes Net
Naive Bayes
Random Forest
J48
NNge

+ + © O o o o o o

+ + © + o + + +

5.4 Hypothesis Validation

We compared the percentage of correct statistics of one of the machine learning methods
(LogitBoost) with the other nine methods. This was done in order to check whether the different meth-
ods used in the study were statistically significantly different from each other for developing change
prediction models. For this, we used the t-test with a significance level of 0.05. We used the open source
tool, WEKA, to perform this test.

The number ‘0" indicates that this particular method is not statistically different from the baseline
method (LogitBoost) at the specified significance level of 0.05. Whereas, the symbol ‘+” indicates that
the method is statistically superior to the baseline method (LogitBoost) at the specified significance level
of 0.05. We performed this test for both the AOI and Sweet-Home-3D software. We can observe from
Table 10 that for AOI, that Adaboost, LR, MLP, Naive Bayes, J48, and NNge are statistically better or
superior than LogitBoost (rejection of the null hypothesis). Whereas, for Sweet-Home-3D, we can ob-
serve that the majority of the methods are statistically the same as the baseline method of LogitBoost
(acceptance of the null hypothesis). Thus, overall we can say that the results are either statistically superior
or the same as the baseline method and that no method has shown statistically worse performance than

the baseline method.

794 | J Inf Process Syst, Vol.13, No.4, pp.778~804, August 2017

Ruchika Malhotra and Ravi Jangra

5.5 Inter-Project Validation of the Prediction Model Using Sweet-Home-3D

In order to perform inter project validation, we developed a model using AOI software as the training
set and Sweet-Home-3D software as the validation set. Inter-project models were developed using only
machine learning methods. The results of the developed models are shown in Table 11. According to
the table, the results of all the prediction models are very good. The Bayes Net model outperformed
other machine learning models with a maximum AUC value of 0.913. The sensitivity and specificity
values for the model developed by using the Bayes Net method were 79.6% and 80%, respectively, with a
cutoff 0.664. LogitBoost and Naive Bayes models also gave competitive results with AUC values of 0.882
and 0.901, respectively. The sensitivity and specificity values were also high for these models. Other
prediction models that were developed using machine learning methods for change prone classes also

demonstrated high efficiency, as indicated in Table 11.

Table 11. Inter-project validation results with Sweet-Home-3D test set

Method Specificity Sensitivity Cutoff point AUC
Bayes Net 79.6 80.0 0.664 0.913
Naive Bayes 83.8 80.0 0.250 0.901
MLP 79.6 80.0 0.355 0.873
Bagging 79.9 80.0 0.419 0.847
AdaBoost 68.8 73.3 0.411 0.844
LogitBoost 80.2 80.0 0.417 0.882
NNge 83.8 80.0 0.500 0.819
J48 93.7 66.7 0.545 0.799

RF 73.6 733 0.350 0.814

5.6 Discussion of Results

In this section, we compare the performance of the models predicted for both of the projects (AOI
and Sweet-Home-3D). Various machine learning and statistical models were predicted and their per-
formance was measured using various performance measures, such as sensitivity, specificity, and area
under the ROC curve. As per the definitions of these measures (provided in Section 5), high values of
these measures are desired. The higher the values, the better the model is in terms of accuracy.

The ten-fold cross validation results for the AOI data set suggests Bagging as being the best method
from among all of the machine learning and statistical methods with an AUC value of 0.803. However,
the validation results for Sweet-Home-3D have shown that the model that was developed using Naive
Bayes as being the best prediction model with high values of AUC (0.879) and sensitivity (80%). Thus,
we can say that the validation results vary as the dataset changes and are not alike for different datasets.
However, if we have a dataset with similar characteristics, then the results may be similar (i.e., we may
get the same machine learning method as being the best one). The other machine learning methods viz.
Bayes Net, RF, and LogitBoost also gave comparable performances.

These models can be used for predicting the change proneness of classes. The prediction of change
prone classes in the early phases of software development will help us in effectively planning testing

resources. Change prone classes should be rigorously tested by allocating more resources to them, as a

J Inf Process Syst, Vol.13, No.4, pp.778~804, August 2017 | 795

Prediction & Assessment of Change Prone Classes Using Statistical & Machine Learning Techniques

change prone class requires a greater effort to be made during the maintenance phase. A major source
of change in change prone classes could be defects and testing these classes meticulously would decrease

the probability of a defect. Thus, the early prediction of such classes reduces our efforts during testing

and maintenance phases.

ROC Curve ROC Curve . ROC Curve
’ o
o] o o
£ " an} 2 o
s £ H
2 =
= 2 -]
H kS £
H H -3
? 04d @ 04 @ g4
02 02 o024
C
(a) (b) (c)
% 02 1) 0 o8 10 00 02) 08 o8 0 00 04)) 10
1- Specificity 1 - Specificity 1 - Specificity
i ROC Curve ROC Curve ROC Curve
, '
L ow Lly
05 s 04
'E .‘E‘ os -E
H 2 2
= S s
LY, ? o @ o
02 o o
(d) (e) (f)
0 T T T T T T T T T T
oo oz o4 o8 o8 o0 oz oa o8 os 1 00 o4 as . 10
1 - Specificity 1 - Specificity 1 - Specificity
RCC Curve ROC Curve , ROC Curve
1 '
Ly (1 1o
08 o 06
z z z
] S 2
4 £ H
s H H
9 oud D g @ o
LES o LES
(i)
o T T T T T T T T
oo oz o oe on oo ez o4 e o ' ﬂ‘! 08 an Y
1 - Specificity 1 - Specificity 1 - Specificity
ROC Curve
i
o]
E Ly
]
£
-
L4 04
02
L1} lI: d‘l D‘(n'a 10
1-Specificity

Fig. 2. Validation curves of AOI: (a) Forward LR, (b) Bayes Net, (c) Naive Bayes, (d) MLP, (e) Bagging,
(f) AdaBoost, (g) LogitBoost, (h) NNge, (i) J48, and (j) RF.

796 | J Inf Process Syst, Vol.13, No.4, pp.778~804, August 2017

Ruchika Malhotra and Ravi Jangra

ROC Curve

ROC Curve

ROC Curve
1 1
o8 o8] ,_)/' o]
06 06 Ly
£ g z
a2 = =
3 S 2
g g £
& s H
® o 9 5 N e
02 0.2 LEa
'
(a) (b) (c)
[} T T T T 0 T T T T T T T T
1] [04 [o8 10 oo 0z o4 " on oo ez 04 o8 o8 10
1- Specificity 1- Specificity 1 - Specificity
ROC Curve , ROC Curve g ROC Curve
1
n N ol /
z°* z o8 f
H] &
H : H
H H H
1 pad lx war @
02 02 02
(d) (e) (f)
£ o= B o £ Y £ [o oe s () 0= o ox or o
1 - Specificity 1 - Specificity 1 - Specificity
ROC Curve ROC Curve . ROC Curve
1 '
o ot o5
o5 04 o8
z z z
£ 2 £
H H £
H]
» o LW A e
o2 02 a3
() (h) (i)
-] DI;\ nrq q'; U‘, "W L1 o2 o4 os o8 .] nl o Brl DIB s
1-Specificity 1 - Specificity 1- Specificity
ROC Curve

/
/

[}

T T
02 04 o8 [10

1 - Specificity

Fig. 3. Validation curves of Sweet-Home-3D: (a) Forward LR, (b) Bayes Net, (c) Naive Bayes, (d) MLP,

(e) Bagging, (f) AdaBoost, (g) LogitBoost, (h) NNge, (i) J48, and (j) RF.

In this section, we compare the performance of the models predicted for both of the projects (AOI

and Sweet-Home-3D). Various machine learning and statistical models were predicted and their per-

formance was measured using various performance measures, such as sensitivity, specificity, and area

under the ROC curve. As per the definitions of these measures (provided in Section 5), high values of
these measures are desired. The higher the values, the better the model is in terms of accuracy.

J Inf Process Syst, Vol.13, No.4, pp.778~804, August 2017 | 797

Prediction & Assessment of Change Prone Classes Using Statistical & Machine Learning Techniques

The ten-fold cross validation results for the AOI data set suggests Bagging as being the best method
from among all of the machine learning and statistical methods with an AUC value of 0.803. However,
the validation results for Sweet-Home-3D have shown that the model that was developed using Naive
Bayes as being the best prediction model with high values of AUC (0.879) and sensitivity (80%). Thus,
we can say that the validation results vary as the dataset changes and are not alike for different datasets.
However, if we have a dataset with similar characteristics, then the results may be similar (i.e., we may
get the same machine learning method as being the best one). The other machine learning methods viz.
Bayes Net, RF, and LogitBoost also gave comparable performances.

These models can be used for predicting the change proneness of classes. The prediction of change
prone classes in the early phases of software development will help us in effectively planning testing
resources. Change prone classes should be rigorously tested by allocating more resources to them, as a
change prone class requires a greater effort to be made during the maintenance phase. A major source
of change in change prone classes could be defects and testing these classes meticulously would decrease
the probability of a defect. Thus, the early prediction of such classes reduces our efforts during testing

and maintenance phases.

if 1r I
1] |
] | 1
[@ | (b | [(c)

o o : 3 .3 o . o .
1- Specicity 1« Spaciainy 1 - Specimey
ROC Curve ROC Curve

S T T

Sempnivey
——

Senviy
e —

B
Y

Ly

Sonmvny
1 1
Samu

(d) (e (f)
[. -
1 Speaificy 1 - Specificier 1 - pwcificiey
ROC Curve — ROC Curve ROC Curve
—— | ——
,-“'f‘f /// — —
— - -

v
Sensimity
Tesrmen

~

i s e .) ' " o8 v
1. Speciuimy 1. Spachony 1 -Speciichy

Fig. 4. Inter-project validation curves: (a) Bayes Net, (b) Naive Bayes, (c) MLP, (d) Bagging, (e) AdaBoost,
(f) LogitBoost, (g) NNge, (h) J48, and (i) RF.

798 | J Inf Process Syst, Vol.13, No.4, pp.778~804, August 2017

Ruchika Malhotra and Ravi Jangra

Fig. 2 shows the ROC curves of prediction models for AOI, Fig. 3 shows the ROC curves for Sweet-
Home-3D, and Fig. 4 shows the ROC curves for inter-project validation. Thus, we can conclude that the
results of machine learning methods are competitive and comparable to the statistical method (i.e., LR).
Another conclusion from our study is that NPRM, SLOC, and WMC are good indicators of change
proneness as they are selected in the reduced feature sets of both data sets after the CFS technique is
applied. Another important result concluded from our analysis of inter-project validation models is that
we can use already constructed models for predicting the change prone classes of other software from

the same domain.

6. Threats to Validity

This section discusses the three areas of concern related to this study, which are as follows: construct

validity, external validity and internal validity, which are common to all empirical studies.

6.1 Construct Validity

Construct validity refers to the extent to which the dependent and independent variables accurately
measure the concept that they are supposed to measure [1]. Corrective, adaptive, and perfective or pre-
ventive are different classes of change in software [1,41]. The types of change that a class goes through
are not segregated in our study. A similar approach was followed in [1,43]. The metrics included in our
study cover concepts like cohesion, coupling, inheritance, etc. These metrics were already validated in
previous studies [4,44,45] (i.e., they are accurate measure of the concepts that they represent). The
change proneness or dependent variable is calculated manually with the help of WinMerge software.

Thus, the threat of collecting an incorrect dependent variable is removed.

6.2 Internal Validity

Zhou et al. [12] stated that “Internal validity is the degree to which a conclusion can be drawn about
the causal effect of independent variables on the dependent variables.” We empirically determined the
relation between independent variables and the change proneness attribute of a class. However, we did
not demonstrate the causal relationship of various attributes on the dependent variable. This can only
be evaluated by varying a particular measure (like coupling) and keeping the functionality constant
[46]. This type of controlled experiment is difficult to carry out in practice and this threat exists in vari-
ous studies [46]. Our main focus was not to analyze the causal relationship between OO metrics and

change proneness.

6.3 External Validity

This refers to the degree of generalization of the results. This can be achieved by analyzing and com-
paring the results that were achieved on a vast number of data sets [1]. We only used two open source
software in our study. Thus, the results cannot be generalized to all software systems. However, previ-

ous studies in this area with different projects in different languages have proved the relationship be-

J Inf Process Syst, Vol.13, No.4, pp.778~804, August 2017 | 799

Prediction & Assessment of Change Prone Classes Using Statistical & Machine Learning Techniques

tween OO metrics and the change proneness attribute of a class. Furthermore, we have successfully
performed the inter-project validation of prediction models using other software from the same domain
(i.e., 3D modeling). The results conclude that these models can be used for predicting the change prone
classes of the software systems from the same domain, but we cannot generalize these models for soft-
ware systems from other domains. We can eliminate this threat by carrying out replicated studies in this

area with different data sets belonging to different domains.

7. Application of the Work

This study has developed various models for predicting the change prone classes during the early
phases of the software development life cycle. The prediction of change prone classes would help devel-
opers in judiciously allocating the resources and pay focused attention in terms of cost, time and effort
on these classes. This would help in delivering better quality software products as effective testing would
decrease the number of defects in a software and would lead to more satisfied customers.

Change prediction models were developed using various OO metrics that are available at the design
phase. From a suite of 13 OO metrics, the univariate analysis gave CBO and NPRM metrics as signifi-
cant predictors of change proneness for both of the projects (AOI and Sweet-Home-3D). Using the CFS
technique, NPRM, SLOC, and WMC were found to be significant indicators of change proneness. Re-
searchers and practitioners can use these significant predictors in the earlier phases of software devel-
opment to measure the quality of the systems. Thus, closely monitoring these metrics would give devel-
opers an idea of the ideal values of these metrics. Thus, we can alter the design measurements if we find
the design to be inappropriate. These design measurements can be used throughout different organiza-
tions as quality benchmarks to assess and compare different industrial projects. Furthermore, within
this same project, we are able to check the design of the upcoming release and suggest any alternations,
if required. This helps in checking the quality of the new versions, which are released on a regular basis.

In order to draw stronger conclusions, more replicated studies are required.

8. Conclusions

The aim of the study was to analyze the relationship between OO metrics (independent variables) and
change proneness of a class. In order to explore this relationship, we empirically validated the results of
change prediction models on two open source software, AOI and Sweet-Home-3D. The second objec-
tive of the study was to analyze, compare and evaluate the performance of logistic regression and ma-
chine learning methods in predicting change prone classes of a software. The study evaluates the per-
formances of a number of machine learning and statistical change prediction models developed on the
two software data sets of the study using ROC analysis. This study also performed a statistical test (t-
test) to statistically compare the models developed using different methods on both the data sets. An-
other objective of the study was to ascertain whether inter-project change prediction models can be
successfully used for predicting the change prone classes of a different software. To achieve this objec-
tive, we performed inter-project validation by using the prediction model developed with AOI software

as the training set and Sweet-Home-3D software as the test set. Since both the software were from the

800 | J Inf Process Syst, Vol.13, No.4, pp.778~804, August 2017

Ruchika Malhotra and Ravi Jangra

same domain, our results would help the industry and academia to analyze whether these prediction

models can be used to predict change prone classes for the software data sets belonging to a similar do-

main. Thus, the contribution of this work can be summarized as follows: First, we performed analysis

on both open source software data sets taking change in classes in account for predicting change prone-

ness. Second, apart from statistical method, we applied nine different machine learning methods to

construct prediction models for change prone classes and evaluated their performances. Third, we ana-

lyze and assess the applicability of inter-project models for change prediction. The key findings and

recommendations of the study are summarized as follows:

1.

NPRM, SLOC and WMC metrics are significant indicators of change proneness in both the data
sets as they were selected after applying the feature subset selection technique, CFS. CBO and
NPRM metrics were found significant using univariate LR analysis. Thus, the values of these
metrics (NPRM, SLOC, WMC, CBO, and NPRM) should be closely monitored during devel-
opment and maintenance of a product as they are closely associated with change in a class. De-
velopers can formulate quality benchmarks stating appropriate values for these metrics so that
the quality of the software product can be monitored regularly. Corrective actions should be
taken if at any point the product is not in accordance with the quality benchmarks.

For both the software data sets used in the study, the models developed using the Bagging, RF,
Bayes Net, LogitBoost and MLP methods outperformed the model developed using the LR meth-
od. These models yielded good AUC values. This concludes that machine learning methods are
competitive and comparable with statistical methods for predicting change prone classes in a
software. Thus, software developers can use machine learning methods for developing effective
change prediction models.

The results of validation for ‘AIO’ project showed the best performance by Naive Bayes method,
whereas the results of validation for ‘Sweet-Home-3D’ showed the best performance by Bagging
method. Thus we conclude that it is not necessary that the results of validation for different pro-
jects will be similar. Researchers and developers should take into account the characteristics of
the data sets as well as the properties of the methods before choosing them to develop change
prediction model for a particular data set.

The AUC of machine learning based prediction models range from 0.799 to 0.913 when we per-
formed inter-project validation on Sweet-Home-3D data set. Hence, inter-project validation us-
ing Sweet-Home-3D as test data set, concludes that prediction models can successfully predict
the change prone classes for other software data set from the same domain. Inter-project models
save a lot of effort and time as we do not need to collect training data specific to a project. Such
models are useful when training data specific to a project may not be previously available or is
very expensive to compute.

The results of this study (effective change prediction models) can be used by researchers and practi-
tioners in the early phases of software development life cycle to reduce the maintenance effort
and costs. It can also be used for effectively planning testing resources. This is possible as change
prone classes need more attention and resources while maintenance and testing. These classes
are changed due to existing errors or a new requirement. Constantly monitoring and focusing re-
sources on these classes would help in identifying probable errors and changes in the early phases
of software development. Thus, developers can correct errors and may perform corrective de-
sign measures to reduce the changes and errors in the later stages of software development.

Thus, there is a reduction in maintenance costs and effective allocation of test resources.

J Inf Process Syst, Vol.13, No.4, pp.778~804, August 2017 | 801

Prediction & Assessment of Change Prone Classes Using Statistical & Machine Learning Techniques

This work is limited to a medium-sized object oriented open source project. So, it may not work well

in case of large software systems. We plan to replicate our study to predict models based on other highly

popular machine learning methods like ant colony optimization and particle swarm optimization. We

also plan to study the economical benefit of change proneness models.

References

(8]

&)

(10]

(11]

(12]

(13]

(14]
(15]
(16]

H. Lu, Y. Zhou, B. Xu, H. Leung, and L. Chen, “The ability of object-oriented metrics to predict change-
proneness: a meta-analysis,” Empirical Software Engineering, vol. 17, no. 3, pp. 200-242, 2012.

K. K. Aggarwal, Y. Singh, A. Kaur, and R. Malhotra, “Empirical analysis for investigating the effect of object-
oriented metrics on fault proneness: a replicated case study;” Software Process: Improvement and Practice, vol. 14,
no. 1, pp. 39-62, 2009.

Y. Singh, A. Kaur, and R. Malhotra, “Empirical validation of object-oriented metrics for predicting fault prone-
ness,” Software Quality Journal, vol. 18, no. 1, pp. 3-35, 2010.

L. C. Briand, J. Wust, J. W. Daly, and D. Victor Porter, “Exploring the relationships between design measures
and software quality in object-oriented systems,” Journal of Systems and Software, vol. 51, no. 3, pp. 245-273,
2000.

M. Cartwright and M. Shepperd, “An empirical investigation of an object-oriented software system,” IEEE
Transactions on Software Engineering, vol. 26, no. 8, pp. 786-796, 2000.

M. English, C. Exton, I. Rigon, and B. Clearyp, “Fault detection and prediction in an open source software pro-
ject) in Proceedings of the 5th International Conference on Predictor Models in Software Engineering (PROM-
ISE2009), Vancouver, Canada, 2009.

R. Malhotra and A. Jain, “Software effort prediction using statistical and machine learning method,” Interna-
tional Journal of Advanced Computer Science and Applications, vol. 2, no. 1, pp. 145-152, 2011.

A. Han, S. Jeon, D. Bae, and J. Hong, “Behavioral dependency measurement for change proneness prediction in
UML 2.0 design models,” in Proceedings of the 32nd Annual IEEE International Conference on Computer Soft-
ware and Applications (COMPSAC2008), Turku, Finland, 2008, pp. 76-83.

M. Ajrnal Chaumum, H. Kabaili, R. K. Keller, and E Lustman, “A change impact model for changeability as-
sessment in object oriented software systems,” in Proceedings of the 3rd European Conference on Software
Maintenance and Reengineering, Amsterdam, 1999, pp. 130-138.

N. Tsantalis, A. Chatzigeorgiou, and G. Stephanides, “Predicting the probability of change in object oriented
systems,” IEEE Transactions on Software Engineering, vol. 31, no. 7, pp. 601-614, 2005.

A.R. Sharafat and L. Tavildari, “A probabilistic approach to predict change in object-oriented software systems,”
in Proceedings of the 11th European Conference on Software Maintenance and Reengineering (CSMR2007), Am-
sterdam, 2007, pp. 27-38.

Y. Zhou, H. Leung, and B. Xu, “Examining the potentially confounding effect of class size on the associations
between object-oriented metrics and change-proneness,” IEEE Transactions on Software Engineering, vol. 35,
10. 5, pp. 607-623, 2009.

L. Malhotra and A. J. Bansal, “Prediction of change prone classes using machine learning and statistical tech-
niques;” in Advanced Research and Trends in New Technologies, Software, Human-Computer Interaction and
Communicability. Hershey, PA: IGI Global, 2014, pp. 193-202.

Understand your code official website [Online]. Available: http://www.scitools.com.

Understand your code - About SciTools [Online]. Available: http://www.scitools.com/about/index.php.

Understand your code - Metrics [Online]. Available: https://scitools.com/feature/metrics/.

802 | J Inf Process Syst, Vol.13, No.4, pp.778~804, August 2017

Ruchika Malhotra and Ravi Jangra

[17] S.R. Chidamber and C. E Kemerer, “A metrics suite for object oriented design,” IEEE Transactions on Software
Engineering, vol. 20, no. 6, pp. 476-493, 1994.

[18] K. K. Aggarwal, Y. Singh, A. Kaur, and R. Malhotra, “Empirical study of object-oriented metrics,” Journal of
Object Technology, vol. 5, no. 8, pp. 149-173, 2006.

[19] B. Henderson-Sellers, Object-Oriented Metrics: Measures of Complexity. Englewood Cliffs, NJ: Prentice Hall,
1996.

[20] M. Lorenz and J. Kidd, Object-oriented Software Metrics: A Practical Guide. Englewood Cliffs, NJ: Prentice Hall,
1994.

[21] Understand your code - County metrics [Online]. Available: https://scitools.com/support/metrics_list.

[22] Understand your code - Complexity metrics [Online]. Available: https:/scitools.com/support/metrics_list.

[23] Understand your code - Object oriented metrics [Online]. Available: https://scitools.com/support/ metrics_list.

[24] S. R. Chidamber, D. P. Darcy, and C. E Kemerer, “Managerial use of metrics for object-oriented software: an
exploratory analysis,” IEEE Transactions on Software Engineering, vol. 24, no. 8, pp. 629-639, 1998.

[25] V.R. Basili, L. C. Briand and W. L. Melo, “A validation of object-oriented design metrics as quality indicators,”
IEEE Transactions on Software Engineering, vol. 22, no. 10, pp. 751-761, 1996.

[26] D. W. Hosmer and S. Lemeshow, Applied Logistic Regression. New York, NY: Wiley, 1989.

[27] Weka 3: Data Mining Software in Java [Online]. Available: http://www.cs.waikato.ac.nz/ml/weka/.

[28] M. A. Hall, “Correlation based feature selection for discrete and numeric class machine learning,” in Proceedings
of the 17th International Conference on Machine Learning (ICML2000), Stanford, CA, 2000, pp. 359-366.

[29] K. Michalak and H. Kwasnicka, “Correlation based feature selection strategy in neural classification,” in Proceedings
of the 6th International Conference on Intelligent Systems Design and Applications (ISDA2006), Jinan, China,
2006, pp.741-746.

[30] I H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed.
Burlington, MA: Morgan Kaufmann, 2011.

[31] Y. Freund, R. E. Schapire, and N. Abe, “A short introduction to boosting,” Journal of Japanese Society for
Artificial Intelligence, vol. 14, no. 5, pp. 771-780, 1999.

[32] AdaBoost [Online]: Available: http://en.wikipedia.org/wiki/AdaBoost.

[33] L.Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp. 123-140, 1996.

[34] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. Delhi: Pearson education, 1999.

[35] J. Pearl, Bayesian Networks, 1988 [Online]: Available: http:/ftp.cs.ucla.edu/pub/stat_ser/R246.pdf.

[36] Bayes Nets [Online]. Available: http://www.bayesnets.com/.

[37] K. P Murphy, “Naive Bayes classifiers,” Technical Report, University of British Columbia, Canada, 2006.

[38] C4.5 algorithm [Online]. Available: http://en.wikipedia.org/wiki/C4.5_algorithm.

[39] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: a statistical view of boosting,” The Annals
of Statistics, vol. 28, no. 2, pp. 337-407, 2000.

[40] M. Stone, “Cross-validatory choice and assessment of statistical predictions;” Journal of the Royal Statistical
Society Series B: Methodological, vol. 36, no 2, pp. 111-147, 1974.

[41] K. El-Emam, S. Benlarbi, N. Goel, and SN. Rai, “A validation of object-oriented metrics,” Technical Report ERB-
1063, National Research Council of Canada, 1999.

[42] K. K. Aggarwal and Y. Singh, Software Engineering, 2nd ed. New Delhi: New Age International Publishers,
2007.

[43] A. G. Koru and J. Tian, “Comparing high-change modules and modules with the highest measurement values
in two large-scale open-source products;,” IEEE Transactions on Software Engineering, vol. 31, no. 8, pp. 625-642,
2005.

[44] L. C. Briand, J. Daly, and J. Wust, “A unified framework for cohesion measurement in object-oriented systems;’
Empirical Software Engineering, vol. 3, no. 1, pp. 65-117, 1998.

J Inf Process Syst, Vol.13, No.4, pp.778~804, August 2017 | 803

Prediction & Assessment of Change Prone Classes Using Statistical & Machine Learning Techniques

[45] L. C. Briand, J. Daly, and]. Wust, “A unified framework for coupling measurement in object-oriented systems,”
IEEE Transactions on Software Engineering, vol. 25, no. 1, pp. 91-121, 1999.

[46] L. C. Briand, J. Wust, and H. Lounis, “Replicated case studies for investigating quality factors in object-oriented
designs,” Empirical Software Engineering, vol. 6, no. 1, pp. 11-58, 2001.

Ruchika Malhotra

She is an Assistant Professor at the Department of Software Engineering, Delhi Tech-
nological University (formerly Delhi College of Engineering), Delhi, India. She has
been awarded the prestigious UGC Raman postdoctoral fellowship by the Indian
government and is currently pursuing postdoctoral research from Department of
Computer and Information Science, Purdue University, Indianapolis, USA. She was
an assistant professor at the University School of Information Technology, Guru
Gobind Singh Indraprastha University, Delhi, India. She has received her master’s
and doctorate degree in software engineering from the University School of Infor-
mation Technology, Guru Gobind Singh Indraprastha University, Delhi, India. She
has received IBM Faculty Award 2013. She is executive editor of Software Engineer-
ing: An International Journal. She is co-author of a book on Object Oriented Soft-
ware Engineering published by PHI learning. Her research interests are in software

testing, improving software quality and the definition and validation of software met-
rics. She has published more than 80 publications in international journals and con-
ferences.

Ravi Jangra

He is pursuing his masters in software engineering from Delhi Technological Univer-
sity (formerly called Delhi College of Engineering), Delhi, India. He completed his
graduation from YMCA Institute of Engineering, Faridabad, India. His research in-
terests are software quality, software metrics and statistical and machine learning
models.

804 | J Inf Process Syst, Vol.13, No.4, pp.778~804, August 2017

