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Abstract

Multimedia is a ubiquitous and indispensable part of our daily life and learning such as audio, image, and
video. Objective and subjective quality evaluations play an important role in various multimedia applications.
Blind image quality assessment (BIQA) is used to indicate the perceptual quality of a distorted image, while its
reference image is not considered and used. Blur is one of the common image distortions. In this paper, we
propose a novel BIQA index for Gaussian blur distortion based on the fact that images with different blur
degree will have different changes through the same blur. We describe this discrimination from three aspects:
color, edge, and structure. For color, we adopt color histogram; for edge, we use edge intensity map, and
saliency map is used as the weighting function to be consistent with human visual system (HVS); for
structure, we use structure tensor and structural similarity (SSIM) index. Numerous experiments based on
four benchmark databases show that our proposed index is highly consistent with the subjective quality
assessment.
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1. Introduction

With the rapid development of digital imaging and technology, large numbers of images are available
in our daily life. In recent years, more and more people share images through the social network.
Images play an important role in our communication and interaction with the world around us.
However, the quality of an image is usually degraded by various distortions during acquisition and
processing [1]. For example, the visual quality of image captured is poor under poor weather conditions
or by low end devices.

The purpose of image quality assessment (IQA) is to measure the image quality using models that is
consistent with the subjective evaluation. Therefore, it can be used to evaluate the performance of image
processing systems, and thus help to select the optimal parameters in image processing. It is useful in
many applications, such as image watermarking [2] and image enhancement [3]. To this end, various
IQA methods have been proposed. According to the usage of the reference image, objective IQA
metrics can be divided into three categories: full reference (FR) [4,5], reduced-reference (RR) [6], and
blind/no-reference (NR) [7].
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In general, the reference image is not available in most cases. Therefore, blind/no-reference image
quality assessment (NR-IQA) is more practical. The intent of NR-IQA is to design computational
models that can indicate the quality of distorted images without any prior information with respect to
the original images. Some NR-IQA algorithms utilize natural scene statistics (NSS). The NSS-based NR-
IQA algorithms can be classified into spatial domain method [8] and transform domain method [9].
The method based on the learned regression model is another category of NR-IQA algorithms [10].

Blur is one of the common distortions in image processing. The capturing of an image can cause
image blurring, such as out-of-focus. Image manipulation procedures can also produce image blurring,
such as image compression. To improve the quality of the compressed image, some image algorithms
are used to remove noise or compression artifacts. However, most of the corrections use low-pass
filters. They smooth artifacts, but lead to blurring effect.

To control and quantify the blurring effect, many blur metrics based on edge detection have been
proposed. Marziliano et al. [11] first used Sobel operator to detect image edges. Cao et al. [12] proposed
a local blur measure to estimate blurring effect on each pixel along the image’s edges. Because the most
common cause of image sharpness degradation is blur, blurriness evaluation is often equated with
sharpness assessment. Feichtenhofer et al. [13] provided sharpness metric by exploiting the local edges
gradient. A spatial domain sharpness metric based on just noticeable blur (JNB) was proposed in [14].
Based on the idea of JNB, Narvekar and Karam [15] proposed the cumulative probability of blur
detection (CPBD) to quantify the image sharpness. These methods are spatial domain. There are also
many transform-domain blur metrics. Hassen et al. [16] analyzed the local phase coherence (LPC) and
applied it in image sharpness assessment. In [17], a hybrid-domain approach was proposed and support
vector machine (SVM) was used.

Different from pervious methods, we propose a novel blind blur image quality assessment method in
this paper. The novel method is based on the fact that the image with different blur degree will have
different changes through the same blur. We describe this discrimination from three aspects: color,
edge, and structure. For color, the color histogram map is used to measure the difference of different
images; for edge, we use edge intensity map, and saliency map is used as the weight of edge intensity
map in order to correspond better to human subjective feelings; for structure, we use structure tensor to
distinguish between smooth and non-smooth regions and structural similarity (SSIM) index [4] to
calculate the difference of smooth regions. At last, three features are pooled into the final index.

The rest of this paper is organized as follows. Section 2 introduces the related work of this paper.
Section 3 presents the proposed scheme. The experimental results and analysis are presented in Section

4. Finally, conclusion and further research are given in Section 5.

2. Related Work
2.1 Structure Tensor Theory

In the practical application of human vision, how the image can be better perceived by human eyes
need to be focused firstly. Therefore, if we design a quality evaluation method which is suitable for
human vision, it is necessary to consider how to match up with the human visual system (HVS).

When eyes observe an image, the stimulus of the image to human eyes is a combination of different
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amplitudes and different frequency signals. The response of human eyes to stimulus is not only related
to the stimulus but also other signals. The contrast masking feature is a phenomenon that human eyes
in the presence of a visual stimulus would perceive changes of the other visual stimulus. Due to the
existence of masking, some distortions in the image can be ignored by human eyes, which have little
effect on the overall quality of the image, while some distortions will be enhanced.

Masking characteristics of the HVS show that the details of the image in an area of dramatic changes
are not likely to be perceived by human eyes. Even if the change is too drastic, it can also be masked out.
Therefore, using different weights can not only reflect the human visual masking characteristics in the
local area, but also more accord with visual image evaluation of human eyes.

The blur process can be obtained by the original image after the Gaussian filter, and the bandwidth of
the filter determines the blur degree of distorted images. Fig. 1 shows a series of Lena images with size
of 512x512.

(b) (c)

Fig. 1. Comparison of the original image and two blurred images: (a) original image, (b) blurred image,

and (c) twice blurred image.

Fig. 1(a) is the original image and Fig. 1(b) is a blurred image which is produced by the Gaussian
filter on Fig. 1(a). The Gaussian filter has the kernel with size of 11x11, and its mean and variance are 0
and 1.5, respectively. Fig. 1(c) is the twice blurred image which is produced on Fig. 1(b) using the same
Gaussian filter. From Fig. 1, we can see that there are obvious differences between Fig. 1(a) and Fig. 1(b)
in visual quality. However, there is a little difference between Fig. 1(b) and Fig. 1(c). Blur mainly affects
the regions of images rich in edge and texture, and it has little effect on the quality of smooth regions in
the image. Therefore, the measure of the blurred image is to calculate the effect of Gaussian filter on the
regions of images rich in edge and texture.

The visual response of the human eyes to blur and noise distortion is very different. Image quality can
be measured by calculating the degree of distortion in different regions of the image to make the
evaluation results closer to the visual perception evaluation results. In this paper, we use the structure
tensor [18] to distinguish different regions.

For an image f(x, y), the structure tensor is based on the gradient of f:

f)‘czgx,o'*f’ fyzgy,o'*f’ (1)

where * is convolution. f, and f, are gradients. g, , and g, , are the spatial derivatives in x and y

directions with standard deviation o, respectively:
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The structure tensor is shown as Eq. (4):
Soo =85, 857 = 85 * s (b €{1,2}), (4)

where o' is the scale of spatial averaging. Corner is measured by the strength of the intrinsically 2-D

response, for example:

det(s,
o= U o) or ¢y =det(sy1 o)~ 0.04[tr(s ;)T - (5)

tr(so_v,o_)

2.2 Structural Similarity Measure Theory

SSIM [4] is based on the assumption that images are highly structured, and HVS is sensitive to
structural distortion. For two image blocks x and y, the SSIM computes their similarity from three
components: luminance similarity /(x,)), contrast similarity c(x,y), and structural similarity s(x,y).

These three components are described as Egs. (6)-(8), respectively:

2ppr, +Cy
vy = e T2 (©)
My + My =+ Cl
20.0,+C
o(xy)=—t 2, )
oy +0o,+GC
s(x,y) =—2—"-, (8)
0.0, +C5

where 4, and (i, are the mean of x and y, respectively. O'i and O'i represent the variance of x and y,
respectively. o,,, is the covariance of x and y. C;, C,, and C; are small constants to keep the

denominator from being zero.
The SSIM is given as:

SSIM(x, ) = [10e, W [e(e P [s(x )Y ©)
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where «a, f, and y are weights of these three components. The higher the value of SSIM is, the more
similar image blocks x and y are. If y and x are the same, then the SSIM will be 1.

3. Proposed Blind Image Quality Assessment Method

3.1 Basic Principle

The process of image blurring can be described by Eq. (10):
g(x,y) =i(x,p)* h(x,y) +n(x,y) (10)

where * indicates convolution operation. i(x, y) is the original image. h(x, y) is the blurring point-spread
function. n(x, y) is the additive noise. g(x, ) is the degraded image. Because the blurring effect is caused
by a loss of the high frequency, we can use a low-pass filter to reproduce. We select one set of Monarch
images with Gaussian blur distortion from LIVE database [19], as shown in Fig. 2. These Monarch
images with different distortion levels are filtered by the same Gaussian low-pass filter with 7x7 filtering

window, as shown in Fig. 3.

(©)
Fig. 2. A series of Monarch images with different Gaussian blur levels in LIVE database: (a) img173,
(b) img3, and (c) imgl11.

(b) ©)
Fig. 3. A series of Monarch images re-blurred with the same Gaussian filter: (a) img173, (b) img3,
and (c) imgl1.

Comparing Fig. 2 with Fig. 3, we observe a high difference in terms of loss of details between Fig. 2(a)
and Fig. 3(a), and a slight difference between Fig. 2(b) and Fig. 3(b). Fig. 2(c) and Fig. 3(c) are almost
the same. We can find that the sharper the image is, the gray levels of neighboring pixels will change
larger after the same blur operation. The key idea of our proposed method is to blur the initial image

firstly, and then analyze the difference between the initial image and re-blurred image.
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3.2 Algorithm Description of Blur Metric

From Figs. 2 and 3, the color contrast of blurred images decreases with the enhancement of blur
degree. Fig. 4 represents color histograms of Figs. 2 and 3, respectively. From Fig. 4, we can see that the
more blurred the images are, the slower the signal intensity changes. Comparing Fig. 4, we observe a
high difference between Fig. 4(a) and 4(b), and a slight difference between Fig. 4(c) and 4(d). Fig. 4(e)
and 4(f) are almost the same. This phenomenon is the same as the above. In order to describe the
difference and quantitatively describe the characteristics of blurred images, this paper proposes a novel

method. The detailed process of this method is as follows:
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Fig. 4. Histograms maps of blurred images in Figs. 2 and 3: (a) imgl173, (b) re-blurred img173, (c) img3,
(d) re-blurred img3, (e) imgll, and (f) re-blurred imgl1 (that is, the left column corresponds to Fig. 2
and the right column corresponds to Fig. 3).
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Step 1. Filter input image f,(x, y) (that is, image to be evaluated) by Gaussian filter and obtain re-
blurred image f,(x, y);

Step 2. Calculate histograms of three color channels for input image f,(x, ) and re-blurred image
f2(x, ), dubbed as H, and H,, respectively;

Step 3. Calculate the absolute value of the difference between H, and H,, and the sum of these
changes, thatis, S, = Z|H| -H,|;

Step 4. A slight change of image is not easy to be detected. In order to avoid the cumulative
effect of small changes in three color channels, the obtained score §,; is sorted in descending order,
dubbed as Syp. The sum of top 80% in Sy is the evaluation index for blurred image, that is,

Sipr = ZS p(1:round(0.8L)) , where L represents the length of Sp.

Another major feature of blurred image is that edges of blurred image are harder to detect. The
regions of edges and texture in image are reduced, and the smooth regions become larger. Fig. 5 shows
edge intensity maps of blurred images in Figs. 2 and 3, which are obtained by using Sobel edge detection
operators. From Fig. 5(a)-(c), the more blurred the images are, the vaguer those edge intensity maps
will be. If input images are more blurred, there are smaller differences in edge intensity maps between
input images and re-blurred images. In order to quantitatively describe the characteristics of blurred

images, this paper proposes S, as shown in Eq. (11):

1

S =
£ omenl

2D =D, (11)

where D, and D, are edge intensity maps of input image and re-blurred image, respectively. The image

size is mx n pixels (vertical and horizontal pixels) and the number of color components is I. As for gray

images, /=1, and for color images, /=3.

®
Fig. 5. Edge intensity maps of blurred images: (a) img173, (b) img3, (c) imgl1, (d) re-blurred imgl73,

(e) re-blurred img3, and (f) re-blurred imgl1 (that is, the top row corresponds to Fig. 2 and the bottom
row corresponds to Fig. 3).
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Most vertebrates have a remarkable ability to automatically pay more attention to salient regions of
the scene. Many scholars have widely studied that how to build effective computational models to
imitate human visual attention [20]. The relationship between visual saliency and image quality
assessment has been investigated by some researchers, and many approaches have been tried to
integrate visual saliency into image quality assessment metric to potentially improve their prediction
performance. To make our image quality assessment model more consistent with HVS, we use visual

saliency map as a weighting function for calculating S,. According to the research of Zhang et al. [21],

we use the method proposed in [22] to calculate the visual saliency. Therefore, Eq. (11) is modified by

visual saliency map, and the modified image blur quality metric S, is shown in Eq. (12):

1

S =
B menl

Z(MVS'|D| -D, D, (12)

where Mys is visual saliency map.

As shown in Eq. (10), blurred image is produced by two parts: i(x, y)*h(x, y) and n(x, y). S, and S,
are calculated for the first part i(x, y)*h(x, y) from color and edge intensity. For n(x, y), people are more
prone to perceive noise in smooth regions. Humans have a greater tolerance for the noise in the texture
regions and edge regions. Considering this characteristic, this paper uses structure tensor to distinguish
between smooth and non-smooth regions of the image and calculates the SSIM of smooth regions
between input image and re-blurred image, dubbed as S, Fig. 6 shows smooth regions and non-
smooth regions of blurred images where non-black regions indicate smooth regions and black regions
indicate non-smooth regions. In this paper, these images are called as structure tensor maps. If S, is
smaller, the input image will be better. In fact, S, can also be used as index for i(x, y)*h(x, y), because

a more blurred image has a higher similarity with its re-blurred image.

(d) (e) ®
Fig. 6. Structure tensor maps of blurred images: (a) imgl73, (b) img3, (c) imgl1, (d) re-blurred img173,
(e) re-blurred img3, and (f) re-blurred imgl1 (that is, the top row corresponds to Fig. 2 and the bottom
row corresponds to Fig. 3).
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With the color, edge intensity, and structure tensor features, we can define a novel method for blind
quality assessment of blurred image. The input blurred image f(x, y) is firstly pre-processed by
Gaussian low-pass filter, and the re-blurred image f,(x, y) is obtained. We define the final score S as

follows:
S=aSr+ ﬂSEF - /’i’SSSIMT , (13)

where «, f3, and y are three parameters used to adjust the weights of color, edge intensity, and structure

tensor features, respectively. This process can be illustrated by Fig. 7.

Inputimage | | Low-pass | | Re-blurred

£ (x, ) filtering imagef, (x, y
[ [
] ] ] ] v v v
Visual Edge intensity Histogram Structure
saliency map map map tensor map

Fig. 7. The process of our proposed blind blur image quality assessment.

4. Experimental Results and Discussion
4.1 Datasets and Evaluation

Experiments were conducted on four large-scale image datasets, including TID2013 [23], TID2008
[24], CSIQ [25], and LIVE [19]. The important information of these four datasets was summarized in
Table 1. For TID2013 database, 125 blurred images at 5 distinct levels were used in this study; for
TID2008 database, 100 blurred images at 4 different levels were applied here; for CSIQ database, we
picked 150 blurred images from this database for testing; for LIVE database, we adopted 174 images
(including 29 source images and 145 blurred images). The subjective quality of the images in TID2013
and TID2008 is measured by mean opinion scores (MOS). In LIVE and CSIQ, the difference mean
opinion score (DMOS) is used.

Table 1. Benchmark datasets for the experimentation

Datasets Source images Distorted images Distortion types Observers

TID2013 25 3000 25 971

TID2008 25 1700 17 838
CSIQ 30 866 6 35
LIVE 29 779 5 161
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Four commonly used performance metrics are employed to evaluate our proposed method:
Spearman rank-order correlation coefficient (SROCC), Kendall rank-order correlation coefficient
(KROCCQ), Pearson linear correlation coefficient (PLCC), and root mean squared error (RMSE). A good
method is expected to attain high values in SROCC, KROCC, and PLCC, as well as low values in RMSE.
In this experiment, for calculating SROCC and KROCC, we use the proposed score and MOS/DMOS;
for calculating PLCC and RMSE, we use MOS/DMOS and the proposed score after nonlinear regression.

The nonlinear regression uses the following mapping function [26]:

1 1

1e=4 '[2 exp(f,(x— )

J+ﬁ4X+ﬂ5, (14)

where f8;, i=1,2,...,5 are the parameters to be fitted.

4.2 Results and Discussion

We first conduct the image-level evaluation using our proposed method. We test our proposed
method using four kinds of images which have different blur levels in LIVE database, as shown in Fig. 8.
Fig. 8 only shows the four source images and the number in this experiment is 24, including the source
images. For calculating S according to Eq. (13), we select a=1, $=1/20, and p=1. The blur scores
generated by single feature and pooling feature are given in Table 2.

Table 2. Blur scores generated by single feature and pooling feature

Test images DMOS Stpr Ser Sssmr S
Monarch imgll 11.3333 0.0434 0.0344 0.9826 -0.9374
img37 2.8541 0.1447 0.3490 0.8580 -0.6959
img3 1.8515 0.2271 0.7181 0.7839 -0.5209
imgl03 1.7083 0.2480 0.8214 0.7658 -0.4820
img96 0.9062 0.3547 2.0615 0.5859 -0.1281
imgl73 0.0000 0.8351 4.3802 0.3496 0.7045
Parrots img69 7.6667 0.0575 0.0663 0.9690 -0.9082
imgl05 4.0000 0.0775 0.1305 0.9425 -0.8585
img31 2.1666 0.1001 0.3197 0.8753 -0.7592
img56 1.2500 0.1299 0.8796 0.7528 -0.5789
imgl2 0.7916 0.1619 1.7204 0.6035 -0.3555
imgl54 0.0000 0.2881 3.6035 0.3274 0.1409
Woman-hat img132 3.5416 0.1068 0.1583 0.9123 -0.7976
img36 1.9375 0.1350 0.4689 0.8394 -0.6810
img42 1.4791 0.1680 0.8022 0.747 -0.5365
img61 1.0208 0.2205 1.5684 0.5717 -0.2728
img82 0.6670 0.2736 2.7055 0.3988 0.0101
imgl62 0.0000 0.4500 49183 0.2165 0.4794
Church-and- img104 7.6667 0.1090 0.1018 0.9625 -0.8484
capitol img66 1.5651 0.2756 1.4966 0.6655 -0.3151
img91 1.2500 0.3226 2.3716 0.5745 -0.1334
img2 0.9062 0.3944 4.1164 0.4414 0.1588
img142 0.7343 0.4305 5.4987 0.3729 0.3325
imgl72 0.0000 0.6042 11.3414 0.2212 0.9500
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(@) (b) © )
Fig. 8. Four kinds of images in image-level evaluation: (a) Monarch, (b) Parrots, (c) Woman-hat, and
(d) Church-and-capitol.

In LIVE, a lower subjective score indicates a better image quality. From Table 2, the proposed method
monotonically decreases blur scores Sypr and Sgr, pooling score S, while monotonically increases blur
score Sgspr- Humans have the capability to distinguish the blur degree independent of image content. If
images have similar blur degree, we should give them similar blur scores. Compared img96 with img2,
their DMOS scores are the same. Their Sy scores are 0.3547 and 0.3944. Their Sg; scores are 2.0615
and 4.1164. Their Sgr scores are 0.5859 and 0.4414, and their S scores are -0.1281 and 0.1588. By
observing distorted images in LIVE database, people can hardly distinguish the blur degree levels of
“img91 & img2” and “img2 & img142”. For img91, img2, and img142, their DMOS scores are 1.2500,
0.9062, and 0.7343, respectively. Correspondingly, the scores of the proposed method are -0.1334, 0.1588,
and 0.3325, respectively. Compared with these differences, the experimental results of the proposed
method are better.
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Fig. 9. Scatter plots of subjective DMOS against predicted scores obtained by the proposed method in
LIVE database: (a) objective score Sypp, (b) objective score Sgy, (c) objective score Sgsr, and (d) objective
score S.
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Fig. 9 gives the scatter plots of subjective DMOS against predicted scores obtained by our proposed
method in LIVE database. Table 3 shows the experimental results of blurred images in LIVE for Sypp,
Ser Sssur and S in terms of SROCC, KROCC, PLCC, and RMSE.

Table 3. Experimental results of images in LIVE database for the proposed method

Metrics Supr Ser Sssur S
SROCC 0.8841 0.9122 0.9378 0.9374
KROCC 0.7157 0.7606 0.8064 0.7993
PLCC 0.9416 0.9545 0.9811 0.9616
RMSE 0.6934 0.6139 0.3984 0.4870

The overall performance of our proposed method is evaluated based on the four image quality
databases. For comparison, we also compared with previously proposed methods including FR methods
and NR methods. The FR methods include PSNR and SSIM [4]. The NR methods include JNB [14] and
CPBD [15]. Fig. 10 gives the scatter plots of subjective MOS/DMOS scores against predicted scores
obtained by the proposed method on four databases. Table 4 summarizes the experimental results of

our proposed method with different image quality assessment methods in terms of SROCC, KROCC,

PLCC, and RMSE.
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Fig. 10. Scatter plots of subjective MOS/DMOS against predicted scores obtained by the proposed
method on four databases: (a) TID2013, (b) TID2008, (c) CSIQ, and (d) LIVE.
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Table 4. Summary of experimental results for the proposed method and other existing image quality

metrics
Datasets Metrics SROCC KROCC PLCC RMSE
TID2013 PSNR 0.9149 0.7884 0.9137 0.5071
SSIM 0.9629 0.8285 0.9577 0.3592
JNB 0.6902 0.5137 0.7114 0.8770
CPBD 0.8515 0.6462 0.8553 0.6466
Proposed 0.6888 0.5259 0.7492 0.8266
TID2008 PSNR 0.8697 0.7332 0.8729 0.5726
SSIM 0.9386 0.7862 0.9338 0.4200
JNB 0.6667 0.4951 0.6931 0.8459
CPBD 0.8414 0.6301 0.8237 0.6654
Proposed 0.7392 0.5208 0.7582 0.7560
CSIQ PSNR 0.9291 0.7543 0.9252 0.1087
SSIM 0.9245 0.7665 0.9005 0.1246
JNB 0.7624 0.5976 0.8061 0.1696
CPBD 0.8853 0.7090 0.8822 0.1349
Proposed 0.8156 0.6406 0.8615 0.1454
LIVE PSNR 0.7832 0.5847 0.7835 11.478
SSIM 0.8944 0.7136 0.8743 8.9643
JNB 0.7871 0.6069 0.8160 10.677
CPBD 0.9186 0.7634 0.8953 8.2263
Proposed 0.9374 0.7993 0.9616 0.4870

From Fig. 10 and Table 4, it can be seen that our proposed method has the best performance for LIVE
database among four databases. Compared with the five different image quality assessment methods,
our proposed method in LIVE database also achieves the best experimental results. In TID2013,
TID2008, our proposed method achieves similar results compared with JNB and CPBD. In CSIQ, our
proposed method obtains slightly better experimental results compared with JNB and CPBD. From all
the experimental results, we can find that our proposed method can achieve better performance in

terms of monotonicity and prediction accuracy.

5. Conclusions

We proposed a novel blind quality assessment scheme for Gaussian blurred images. The novel
method is based on the fact that images with different blur degree will have different changes through
the same blur. This discrimination is described from three aspects: color, edge, and structure. The
nonlinear fitting gives good consistency with MOS/DMOS scores. We use the visual saliency to make
experimental results consistent with human visual system, and make full use of good characteristics of
SSIM and structure tensor. Extensive experiments show that our proposed method achieves better
performance, especially in LIVE database. We can use it to test image dehazing algorithms because

dehazed images have the similar features of blurred images. Given the phenomenon that the blur is one
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of the distortions of the JPEG compressed images (another is blocking artifacts), we can research this

scheme for JPEG compressed images further.
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