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The Construction and Viterbi Decoding of New
(2k, k, I) Convolutional Codes

Wanquan Peng* and Chengchang Zhang**

Abstract—The free distance of (n, k, /) convolutional codes has some connection with
the memory length, which depends on not only / but also on k. To efficiently obtain a
large memory length, we have constructed a new class of (2k, k, /) convolutional codes
by (2k, k) block codes and (2, 1, /) convolutional codes, and its encoder and generation
function are also given in this paper. With the help of some matrix modules, we
designed a single structure Viterbi decoder with a parallel capability, obtained a unified
and efficient decoding model for (2k, k, /) convolutional codes, and then give a
description of the decoding process in detail. By observing the survivor path memory in
a matrix viewer, and testing the role of the max module, we implemented a simulation
with (2k, k, I) convolutional codes. The results show that many of them are better than
conventional (2, 1, /) convolutional codes.

Keywords—Convolutional Codes, Block Codes, Double Loop Cyclic Codes, Matrix Decoding,
Viterbi Algorithm

1. INTRODUCTION

Convolutional codes have good BER performance and a memory characteristic. Early
classical convolutional codes have self-orthogonal codes, orthogonalizable codes, and “quick-
look-in” codes [1, 2]. In the 1970s, to search optimum codes, some scholars proposed a Viterbi
decoding search algorithm by computer [3]. In the 1980s, punctured convolutional codes and
tail-biting convolutional codes were widely used in a variety of digital communication systems
[4]. A recursive systematic convolutional code (RSC) was developed with the invention of
Turbo Codes in the 1990s [5]. An RSC is a system code with the distance characteristics of a
non-systematic code. Currently, convolutional LDPC codes [6, 7] have become the new hot
topic, as they can obtain a good cost performance when implementing the Belief Propagation
(BP) algorithm. In addition, the quantum convolutional codes used in quantum communication
have also become absorbing quantum error correcting codes [8].

In fact, the free distance of (n, k, /) convolutional codes depends on not only a good generator
matrix, but also on more memory length k/. However, in the development of convolutional
codes, more /, not &, are successfully increased. Based on this, by combining (2%, k) block codes
with (2, 1, /) convolutional codes, we constructed a new class of (2%, &, /) convolutional codes
that can have growth in both k and /. As a new kind of code, (2%, &, [) convolutional codes can
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implement the Viterbi algorithm like (2, 1, /) convolutional codes. In Section 3, by means of a
matrix module, we designed a soft decision Viterbi matrix decoder with a parallel capability [9],
and we describe the decoding process in detail. Section 4 covers the testing of the role of the
max module, deals with some (2%, k, /) and (2, 1, /) convolutional codes on the Gaussian channel
and BPSK, and compares the error-correcting capability of the two kinds of codes.

2. THE CONSTRUCTION OF CONVOLUTIONAL CODES

The encoder of new (2%, k, /) convolutional codes is shown in Fig.1. The input message M(?)
is q k-bits (k>1) vector, where M(0)=[ my(t) m(t) my(?) ...my(£) 1% io, iy, day ..., iy is 2"-ary for
M(1), M(-1), ..., M(t-]), respectively, that decimal scale is 0~2-1; IV is vector register, which
can delay £-bits information together, after j times delay, M(z-j)=[my(t-j) m(t-)) ms(t)) ... my(2-
M'; the linear combiner 1 implements the operation according to le__o g jM t—j), and
multiplies with the generation matrix G=[I P"]" of (2, k) block codes. Based on the operation of
the Galois field of GF(2), we can obtain the encoded output as follows:

Clioiln.i, :[ :| J

P ngjM(t_j):

!
=0
/
/=0 Pzng(t_j)
Jj=0

Where I is the identity matrix, I and P are A<k matrix. At the same time, the linear combiner

!
j=0
embedded zero module, the & bits 0 are embedded, then 2kx1 output vector is obtained as:

2 implements the operation according to 2 (g ;T h ; )M (t -] ) The result is input to the

Civn-ir — / 0
2 B Z(gj+hj)M(t_j)

j=0
The final encoded output is the sum of (1) and (2), which is as follows:

/

z ng(t - ])
C i = Cllollmlz + C;o’w’/ — ) J=0 3)

/

PY g M(t— )+ (g, +h)M(t~ )

J=0 J=0

Equation (3) is named the “generation function.” In the above process, (2%, k) codes are called
“embedded codes,” and can be taken from the block codes that have code rat R=1/2 and a good
Hamming distance. However, even if k is not too large, as a result of the multiplier effect, the
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growth of memory length of the (2%, &, /) convolutional codes is more significant than those of
the (2, 1, /) convolutional codes. So, we will pick out (6, 3) and (8, 4), which are two double
loop cyclic codes, as embedded codes in [10] to construct (6, 3, /) and (8, 4, /) convolutional
codes, and their generation matrix are respectively:

100011
G=|010101
001110

10001110
01000111
100101011
00011101

We can also see that their minimum distances are respectively 3 and 4 from (4) and (5), that
they have a very good length-distance cost performance, which is beneficial to the new
convolutional codes. On the other hand, the polynomial coefficient of linear combiner 1 and 2 g;,

h; can be derived from conventional (2, 1, /) convolutional codes that have a good free distance.

For this paper, we selected the codes with optimum distance characteristics from [10], where
[=1~5, and are shown in Tab.1, where gy~g; and h;=h; are used to delimit groups of three digits,

_ . G Clinilwil Cioilmi,
| linear combiner 1 B—1

Y K A y A

M(t
M > 4>[D']4

and are expressed in octal.

A ) 4 v
| linear combiner 2 |—>| Embedded zero

Fig. 1. Encoder of (2k, k, I) convolutional codes

The growth rate of the (2%, k, /) memory length is & times as that (2, 1, /) ones, which is very
advantageous for the study of large constraint degree convolutional codes. Fig. 1 fully
demonstrates the process where memory is injected from (2, 1, /) convolutional codes to block
codes that have a similar characterize with concatenated codes [11]. However, the code rate is
1/2, which is the same as the embedded codes, and there is not a loss of concatenated codes.
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Table 1. Generating polynomial coefficients of (2, 1, /) convolutional codes

8o0~81 ho~hy

3. VITERBI MATRIX DECODING

| path metric memory

aa % !

code word row column | variable

attenuator

B —>
generator merger merger 7| selector
X

< Y A 4
XA A’ 1 " =
R 2 9—>| shaper |—>| comparator U_| variable | X| Surviving path
a selector memory

Fig. 2. Matrix decoding of (2k, k, /) convolutional codes

The (2%, k, I) convolutional codes can also decode with the Viterbi algorithm, and they can
obtain faster decoding by adopting a parallel structure [12] at the expenses of the structure
complexity. In fact, the trellis of (2k, k, /) convolutional codes has 2* states. The number of
branch paths that converge at the same state node is 2°, which can form 2" branches. The
likelihood score of a branch path is defined as the branch metric. The accumulated value for all
branch metrics of a connected path is defined as the path metric. The decoder calculates branch
the metric for 2 branches converged at one of state nodes, respectively. It also adds with the
path metric from the previous time such that obtaining 2* new path metrics, and then picks out
the path with the maximum metric as a survivor path. There are 2 Add-Compare-Select
operations. In order to implement the next accumulating operation, the decoder needs 2"
registers to store the surviving path metric. To avoid overflow, the attenuation for the path
metrics should be implemented periodically. The 2 register sets are provided for the parallel
decoding to save the surviving path.

3.1 The Add-Compare-Select
With the help of some matrix modules, this paper provides a Viterbi matrix decoder with a
single structure and a parallel processing capability, which is shown in Fig. 2. First, there are 2°
1 branches in the trellis of (2k, k, I) convolutional codes. A branch has a codeword and so we
. k(1+1) .. .o . k .
can obtain a 2 x1 matrix in iyf,...i.,i; ascending sort by 2 -ary:

C:[COO...OO COO...OI CvOO...OK COO...IO CKK...KK]T (6)

where €%+~ corresponds to the 2% branches of state node Soo...0, that can be derived from
(3). Each element is 1x2k vector in (6), which can be converted into 2*““Vx2k matrix:
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0000 0001 00--0K _00--10 _
Co Co Gy Co

00--00 _00---01 000K 0010 _
¢ 9 G ¢

00--00 _00---01 000K 0010 _ KK--KK
| Cok—1 Copt " Cop Copq 7 Copg

Since C is a constant matrix that can be obtained and converted to a bipolar code beforehand
and can be stored in a “code word generator.” We assume that the received vector with noise is
R()=[ ro(f) r(1) ... ry(0)]". The matrix multiplier completes the "multiply" operation and the
output is:

0()=Cx RO)=[p" (1) 0 (1) o™ (1) o (0)-- o™ (0]

where:

1011 R/ 1’1 (9)

Equation (9) is a inner product for C 1 and R(?), which is equivalent to a

maximum a posteriori (MAP). Thus, the matrix multiplication between C and R(¢) can complete
the likelihood operation for all 2**"* branch paths. The result is in accordance with the
maximum likelihood decoding. Suppose the output of the matrix adder is:

A(t) — [10(%00 (t) ﬂOOmOl (t) . AOOWOK (t) ﬂOOmlO(t) . XKKWKK (t)]T (10)

A(l ), as well as Q(7), is a 2'""*x1 matrix, in order to facilitate the implementation of the
“comparison operation.” The shaper then orderly extracts 2* elements from (10), which are
shaped into a new 2"*x2* matrix:

_/100~-00(t) /100'“01(t) ﬂOOwOK(t) ]
2,00"'10(t) ioou-ll(t) 200"'1K(t)

/100"'K0(t) /10(;-~-K1(t) lOO---KK(t)

ﬂ,KKmKO(l‘) //{IKKmKl (t) . ﬂKK-nKK (t)

The superscript of high / bits in each column is sorted by 2*-ary. The comparator compares
2" elements and outputs the maximum element of each row:
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_maxogng {/100“.0‘,‘ (t)} 7]
maXOSjSK {100...1/' (t)}

max,. ;< {100...19' (t)}

_maXOSjSK {ﬂ“KKWKj (t)}

The role of the above process is to find the maximum likelihood path by comparing the 2*
path metrics of the state node S,

iohy .y

. In order to avoid the ¥(#) gradually enlarging, the

attenuator finds the minimum value A.;, in (12), and subtracts the value from all rows. As
such, it follows that:

max ;g {AOON.OJ‘ (t)}_ Armin
= Anin

max,. ¢ {/1004“1,' (t)}

Where the maximum likelihood criterion does not have to be destroyed under the same
attenuation for all elements of ¥(7), and the path metric can be limited to a small value. Y'(?) is
sent to the path metric memory to be saved, due to each old state, and should point to the 2" new
states. The corresponding path metric will be called 2 times in the next accumulation, such that
2" times row merging is needed for ¥'(7). So, the output of the accumulator in the next time is:

‘poo.uo (t + 1) +max, . g {/100...0]‘ (t)}_ Arnin

p00-~1 (t + 1) +max, g {ﬂoo...l_/ (t)}_ Aumin
pKK'”K(t + 1) + maXOSjSK {/,i’KKWKj (t)}_ ﬂ’min
A n)=0( +1)+| V=] o0 1) 4 max, 2 () 4

‘min

‘min

pKK'”K(t + 1) +max, ; « {XKK“‘KJ (t)}— A

pKKmK (t + 1) +max, ;g {AKK“AK]A (t)}_ /1min
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The accumulator, shaper, comparator, attenuator, path metric memory, and the merger in the
loop complete the add-compare-select the attenuation of the path metric and update operations.
3.2 Saving and Updating the Survivor Path

Each current state node will be connected with the surviving path that has been retained by
the previous state node selected in (12). It will delete the oldest branch to complete the update of
the survivor path. This procedure is completed by a variable selector and columns merger in Fig.
2. The decoder is required to provide original information groups that are consistent with the
current state node Sioilu-i/,l . Considering that the 2" groups information vector forms the

following matrices:

ﬂ:[ﬂOO...OO ﬂOO...Ol ﬂOO...OK ﬂOO...lO ---ﬂKK...KK]T (15)

where g :(jO)B is 1xk binary information, suppose that the current surviving path
01121

memory information is:

ﬂoo... ..400(t_1) Xoo.” XOO--»OO(t_T)
ﬂoo... ...Ol(t_l) X()()... XOO---Ol(t_T)

ﬂoo... 0K (t_l) X()().A. X00~~-0K (f—T)
ﬂoo... ...10(f_1) Xoo-.- Xoo-nlo(t_r)

_ﬂKKmKK XKK--~KK (t_l) XKK~-~KK (Z—Z)"- XKK~-~KK (Z_T)

This is a 2%xk (r+1) matrix and the total memory depth is k(z+1). The last k column of the
matrix is the oldest group.

The role of the variable selector is to find a survivor path in the previous time that
corresponds to each new branch. Let the index matrix of the maximum value in (12) be:

. . . . . T
I=Tligo...00 Z00..01--- 0.0k ©00...10 - -~ ikK.. kK] (17)

The value range of each element is 0~2*-1. In fact, (17) is the column index of each row of
(12). It needs to be transformed into the row index of (16) to be used. Let:

a=or=... =0 =210 12 .25 (18)
Equation (18) can be merged to obtain the correction vector:

T
o=[og a0y ... ag]
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Equation (19) adds (17) to obtain a new row index matrix:
U=[ugo...00 too...01 --- Uoo...0k U00...10 - - - uKK...KK]T (20)

In the next moment, the variable selector would obtain X(¢) from the surviving path memory,
select new row one by one according to U, and complete the reordering of all rows:

ﬂ"oo‘.,oo X“oo---oo (t - 1) X"oo---oo (t - 2) o Xuo(,...go (t - 7’—)
ﬂ”oo.m X"on..m (t a 1) X"on...m (t o 2) o X”oo.“m (t - T)

ﬂuOO‘.,OK X“oo,..OK (t - l) X“oo‘.,(m (t - 2) o X"oo,..OK (t - T)
ﬂ”oomlo X“oo“.m (t a 1) X”OU.HIO (t - 2) o X”OU.HIO (t - T)

ﬂ”KK,..KK X“KK.“KK (t - 1) X“KK.“KK (t - 2) o X"KK“,KK (t - T)

Then, merge the column with § and automatically delete the last k£ columns to obtain a new
survivor path matrix:

_ﬂOO.”OO ﬂ”ou...oo X"oomoo (t - 1) o Xuoo...oo (t —T+ 1)
ﬂOO.”Ol ﬂl‘oo...m Xuoo..m (t - 1) h Xzfoo___ol (t -+ 1)

ﬂOO.“OK ﬂ”ou..,(ﬂ( X”oo.,.ox (t - 1) t Xlloov_.OK (t -+ 1)
ﬂOO.“lO ﬂ“oo,..lo X"oo...lo (t - l) o Xlloo__.lo (t -7+ 1)

_ﬂKK"'KK ﬂ"KK“,KK X"KK“,KK (t - 1) o X”KK.”KK (t —Tt 1)

With the increase of the memory depth, some survivor paths will be brought together, which
is reflected in the right column where the element will gradually become more identical. The
role of the max module is that it outputs the index of the largest element in ¥'(¢). The variable
selector selects the last £ columns of (22) as the output based on the index, which can effectively
reduce memory depth. This is because even if the last node survivor path does not completely
meet together, the decoder can still choose the best path as the decoding output.

Matrix processing makes the (2k k, /) convolutional codes decoder have the same single
structure, and it achieves a high unity for the viterbi algorithm. It only needs to modify the inner
parameters of some modules with different types of codes. This is very conducive to analysis
and design.
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4. SIMULATION ANALYSIS

- 0 -1.5db without
—o— 1.5db with

- 8-2.0db without
—8—2.0db with

— v~ 2.5db without
—v—2.5db witho

L4 HitI- + +

il

memory depth
Fig. 3. Convergence of BER performance for memory depth

Simulation is implemented in the Gaussian channel and BPSK modulation. Double precision
data is used in add-compare-select. It is well known that if the memory depth is too small it will
affect the error-correcting capability and an excessive increase in the spending of the decoder.
The first task is to verify the validity of the max module, and to determine a suitable memory
depth. Take the (6, 3, 3) convolutional code as an example where 10 different memory depths
are selected based on integer times of k/=9. When the Eb/No is respectivelyl.5db, 2db, and
2.5db, the BER is shown with or without the max module separately in Fig. 3. The results
indicate that the convergence of the decoder was significantly improved after the max module
was introduced, and it is obvious that the max module is really able to reduce the memory cells.
When the memory depth is approximately 6xk/=54 the decoder will approach the best
performance. Therefore, the memory depth will be 64/ in the simulation listed below.

In order to monitor the decoding process, we can observe the output of the survivor path

my

I
I‘ III‘IH‘FHI ﬁ IIII I:III
AT AR
1] | 11

state node
]| Iﬂﬂj
|l
A

FIF-H \II-I-

state node

[
LI

20 30
memory depth memory depth

a. Good channel conditions b. Poor channel conditions

Fig. 4. Screenshots of the path memory matrix for (8, 4, 2) convolutional codes
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memory with a matrix viewer. Fig. 4 shows the screen capture of (8, 4, 2) convolutional
codes, where the memory depth 7 is set to 6xk/=48, the numbers for the state node are
2¥=256, and the black and white denote 1 and 0. By comparing the two figures, we can
implement a helpful observation for a real time channel condition.

Combining Tab. 1 with (4) and (5), we construct five (6, 3, /) convolutional codes and four (8,

4, I) convolutional codes. Their BER performances are shown in the real line of Fig. 5 and Fig. 6.
It can be seen that the SNR can obtain a stable gain with the growth of /. For example, when
only /=4, the SNR is 2.9 and 2.4dB at BER=10".

Ho @13 f

o

Eb/No(dB) Eb/No(dB)
Fig. 5. Performance comparison between Fig. 6. Performance comparison between
(6, 3, /) and (2, 1, /) convolutional codes (8,4, )and (2, 1, /) convolutional codes

In order to analyze the BER performance of (2%, &, /) convolutional codes further, we will
compare it with (2, 1, /) conventional convolutional codes. Let /;jand /, be the encoding
restriction of (2k, k, /) and (2, 1, /) convolutional codes respectively. When kx/,=l, their memory
length and state number are equal. The decoding complexity is generally the same, so it is
comparable between the two codes. The best eight (2, 1, /) convolutional codes derived from [10]
are listed in Table 2, and their performances are added respectively as the dotted line of Fig. 5
and Fig. 6. It can be seen that, except for (6, 3, 1), the other (2%, k, /) convolutional codes have
different degrees of advantage over (2, 1, /) convolutional codes.

Table 2. Generated polynomial coefficients of (2, 1, /) convolutional codes

L 8o~8gi ho~hy
17 13

27 31

117 155

435 657

1671 1233

15521 10677

152711 126723

205347 375145
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5. CONCLUSION

The method to construct long codes with short ones has always been the main point of error
correcting codes. In this paper, we showed how we constructed a new class of (2k, &, /)
convolutional codes with earlier (2%, k) block codes, which visibly hold this feature. The (2%, &, /)
convolutional codes can achieve k-times increase in the memory length. We also developed a
new approach for the study of large memory convolutional codes. For Viterbi decoding, we
proposed a single structured decoder with a parallel processing capability by introducing a series
of matrix modules, and we ended up with a high quality of decoding model. However, the
complexity of the Viterbi algorithm is the exponential growth of &/, which results in its
advantage not being able to be fully shown. We will keep this problem as we carry out new
research to discover the existence of the relationship between the (2%, &, /) convolutional codes
and LDPC, and will fully uncover its potential error-correcting capability.
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