
J Inf Process Syst, Vol.9, No.4, pp.567-574, December 2013

http://dx.doi.org/10.3745/JIPS.2013.9.4.567

567

The Architectural Pattern of a Highly Extensible System
for the Asynchronous Processing of a Large Amount of

Data

Ro Man Hwang*, Soo Kyun Kim*, Syungog An*, and Dong-Won Park*

Abstract—In this paper, we have proposed an architectural solution for a system for the
visualization and modification of large amounts of data. The pattern is based on an
asynchronous execution of programmable commands and a reflective approach of an object
structure composition. The described pattern provides great flexibility, which helps adopting it
easily to custom application needs. We have implemented a system based on the described
pattern. The implemented system presents an innovative approach for a dynamic data object
initialization and a flexible system for asynchronous interaction with data sources. We believe
that this system can help software developers increase the quality and the production speed of
their software products.

Keywords—Large data, UML Diagram, Object-Oriented Software

1. INTRODUCTION

These days the amount of information required by human hands is constantly increasing. In

turn, results in an increase of a demand on software applications that allow representing, analyz-

ing, and modifying this information in a more convenient way. The sources of this amount of

information could be a local database, a corporate server database, or even the Internet.

In spite of the similarities of such applications, it is almost impossible to create a single software

framework for all of the applications, because every application domain has its own specifics and

rules for data processing. A developer, who wants to create a single solution, risks receiving a

product that is overloaded with a bulk of settings that must be tuned for a specific problem. More-

over, this kind of solution is difficult, and therefore, expensive, to implement and support.

The best approach in this situation is the creation of a single solution—a pattern for the con-

struction of such applications. By following this pattern, developers would be able to effectively

create products to solve specific problems. The expenses of the implementation and integration

to a custom software product will be slightly decreased.

2. REQUIREMENT ANALYSIS

The main requirement for an architectural pattern [1] is abstraction. The pattern should be ap-

Manuscript received January 21, 2013; accepted March 8, 2013.
Corresponding Author: Dong-Won Park (dwpark@pcu.ac.kr)
 * Dept. of Game Engineering, Paichai University, Deajeon, 302-735, Korea (minlog@empas.com, nicesk@gmail.com,

dwpark@pcu.ac.kr, sungohk@pcu.ac.kr)

pISSN 1976-913X
eISSN 2092-805X

Copyright ⓒ 2013 KIPS

mailto:dwpark@pcu.ac.kr
mailto:minlog@empas.com
mailto:nicesk@gmail.com
mailto:dwpark@pcu.ac.kr
mailto:sungohk@pcu.ac.kr

The Architectural Pattern of a Highly Extensible System for the Asynchronous Processing ~

568

plicable to a large range of problems. The next section describes the common problems of such

software applications.

2.1 Cascading the propagation of lower level modifications

Changes in a data source structure result in serious changes in all the application layers. Even

when using a three-tier architecture approach [2] (See Fig. 1), the changes often cause a cascad-

ing modification of each layer up to the user interface (the Presentation layer). Some might note

that a careful upfront design of a data source structure can eliminate such problems. However,

such a design is virtually impossible in reality. The advent of iterative software development

methodologies, such as SCRUM [3, 4] and Extreme Programming [5], proves this point.

Data Layer
Domain Logic

Layer

Presentation

Layer

Database

Changes Changes Changes

Fig. 1. The propagation of changes from the data source to the Presentation Layer in three-layer architecture [2]

2.2 The conflict between a relational database and an object-oriented system

It is much more convenient for a programmer or a user to work with data that is represented

in an object-oriented way, when there is no need to care about the characteristics of relational

databases, such as an implementation of the “many-to-many” relation. This kind of relation re-

quires the creation of an additional link table [7], which does not have any representation in an

object-oriented paradigm. This relationship is modeled by having each object contain an array of

other objects (See Fig. 2).

However, in an object-oriented way, this relation can be easily described with the following

code in C# (See Fig. 3):

Fig. 2. A many-to-many relation as represented in a relational database

class Employee

{

 public List<Project> projects;

}

class Project

{

 Public List<Employee> employees;

}
Fig. 3. Example of a many-to-many relationship represented using the C# code

Ro Man Hwang, Soo Kyun Kim, Syungog An, and Dong-Won Park

569

2.3 Executing long running operation results in a user interface freeze

If you are using a single threaded application with a graphical user interface, every time you

are accessing a data source the user interface will freeze until the access is finished. Even work-

ing with high-speed local databases does not guarantee that freezing will not occur. During the

synchronous execution of a complicated query, a graphical user interface becomes irresponsible.

Based on the problems described above, we will present an outline below about the require-

ments for the system:

1. Support of an asynchronous execution of queries.

2. Execute a scalable number of execution threads.

3. Have the ability to set a synchronous execution mode for a debugging purpose.

4. Changes in a data source must not affect more than one architectural layer.

5. Be independent of the number and type of data sources.

The next section contains the description of a system that satisfies the above-listed require-

ments.

3. REFLECTIVE DATA REPRESENTATION

The system has adopted a graph model for representing data (See Fig. 4). Thus, every entity

from an application domain can both contain a collection of child entities and be a child of other

entities. This gives us tremendous power in representing virtually any complex structure.

We define an artifact, as an object that represents some entity from an application domain. Ba-

sically, the artifact has a name, a list of properties, and a list of values associated with the proper-

ties. Because an artifact is just a collection of properties, it does not exactly represent an entity in

an application domain, but it can represent any entity in a generalized way. This could be seen

as a negative performance hit to the system. However, the purpose of the system is to flexibly

manage large amounts of data with slow data sources. Thus, gaining (or increasing) flexibility is

much more important than decreasing the number of execution cycles.

In order to enclose a structure of the artifact from its representation in a database, we used a

reflective approach [8, 9]. Reflection is a mechanism of meta-programming that allows obtaining

(a) (b)

Fig. 4. Example of tree (a) and graph model (b) for a data representation of a publishing house database

The Architectural Pattern of a Highly Extensible System for the Asynchronous Processing ~

570

information about a class structure during the run-time [9]. The described system has a dynamic

reflection of an artifact structure in a database on the artifact class. The number of properties and

their value is defined during the creation of each artifact, and depends on the information re-

turned from a database.

Fig. 5 provides a UML diagram of the artifacts of a publishing house database.

By our design each artifact contains an associative array, which is also known as a dictionary

or a map, where the key is a property name, and the value is a property value that is retrieved

Arifact

+URI
#Properties
#Connections

+operator[](string)
+GetPropertyIterator()

ArtifactCollection

+Artifacts
+IsLoaded

+Invalidate()
+LoadArtifacts()

Cache

+IsInCache()
+TryGetCached()
+AddToCache()

Edition Issue Article Rubric

Connections

1
0..*

Artifacts

1 *

Cached

PropertyIterator

+Name
+Value

+Next(): bool

Fig. 5. UML class diagram of artifacts of a publishing house database

class ControlFactory

{

 IControl CreateControl(string name, object value)

{

 switch(name)

{

 case “PublicationDate”: return new DateControl(name, value);

 case “Hyperlink”: return new HyperLinkControl(name, value);

 default: return new LabelControl(name, value);

}

}

}

foreach (var item in artifact.Properties)

{

 var control = controlFactory.CreateControl(item.Name, item.Value);

 gui.AppendControl(control);

}

Ro Man Hwang, Soo Kyun Kim, Syungog An, and Dong-Won Park

571

from data source. This approach helps to significantly protect the data and the domain logic lay-

ers from the actual structure of an artifact. The only thing that is depending on the real artifact

structure is the presentation layer and data modification algorithms. However, both the presenta-

tion layer and the data modification algorithms can dynamically adapt to changes to the structure.

A C#-based source code sample below shows how a representation layer can dynamically

adopt to changes in the data structure. A programmer can flexibly extend the controlFactory to

generate different controls depending on property name, and can provide default control for

items that did not match a specific property name:

To make an abstraction of the artifact structure even greater we have introduced property itera-

tor [1] classes. Iterators can greatly help to create architecture with low coupling. For example, in

the case when an application is required to visualize a table with the names and properties of an

artifact, the presentation layer does not need to know the name of each in order to be able to

retrieve it. It just needs to iterate all of the properties and to visualize a property name as the

table row, and a property value as the table cell value. The sample code above demonstrates the

usage of iterator patter in C#. However, the pattern is widely used in many other programming

languages, such as Java, Python, C++. For a C++ standard template library (STL), the pattern is

made up of well-known key components together with collections and algorithms, and it acts as

a connection mechanism between them [10, 11].

4. THE SYSTEM OF ASYNCHRONOUS INTERACTION WITH DATA SOURCES

This section provides a description about the system of asynchronous interaction. The main

class of the system, which is called “Core,” is responsible for the initialization of all the subsys-

tems and the interaction with the presentation layer (GUI) through the IArtifactView interface

(See Fig. 6). An object that implements the interface and registers itself in the Core, can receive a

notification each time the data in modified. The design of using an interface for view, without

any direct references from the Core object to the actual IArtifactView implementer class, is based

on the Model-View-Controller (MVC) architectural pattern [12].

During the initialization phase, the Core class constructs the necessary object of class that im-

plements the ICommandQueue interface. Classes from this hierarchy implement a command

queue. The command, which is put into the queue, will be executed asynchronously in a back-

ground thread.

Thus, during the initialization of one of the classes that implements IArtifaceView, a class can

query the loading of required artifacts. This query will be processed asynchronously and by the

end of it all of the classes that implement the IArtifaceView interface will be notified about the

update of data (See Fig. 7). This approach helps to eliminate the freezing of a graphical user

interface during the query processing, and can even visualize the process of loading, if a certain

mechanism is supported.

The command class significantly extends the capabilities of the queue. A command can encap-

sulate any action that requires a long execution time. The Core class mechanisms notify all the

IArtifactView classes about the execution process and the completion of the execution.

Most of the graphical user interface building systems (MFC, .Net Windows Forms) limit access

to their graphical objects only by the main thread. This forces the implementation of a dispatch

system, which moves the notification about the finishing of an executed command to the main

The Architectural Pattern of a Highly Extensible System for the Asynchronous Processing ~

572

graphical user interface thread.

In the described implementation there is only one instance of each command, and this in-

stance is put to the queue using ExecutionItem objects, together with all that is necessary for the

execution arguments. Because one command can be simultaneously executed in several threads,

it is implemented as an object without a state (stateless) and can only work with data passed as

parameters.

The artifact cache (Cache class) is designed to secure the uniqueness between an artifact inside

a data source and an artifact in the program. We have introduced the URI (Unique Resource

Identifier) for the unique identification of artifacts. If a currently loading artifact is already in the

cache, the loading is cancelled and a reference to the existing artifact is returned.

Besides asynchronous execution benefits, the described model proposes a wide spectrum of

modifications. On the basis of the existing system, it is possible to implement the following

items: a command and parameters parsing for the command line execution; an implementation

of the execution of commands in an arbitrary number of command threads (in the case where

the Internet is the data source, it will provide a huge performance boost); and the support of an

unlimited number of data visualization objects that are synchronized both with the database and

each other.

Fig. 6. Diagram of core classes and interfaces of the system

Ro Man Hwang, Soo Kyun Kim, Syungog An, and Dong-Won Park

573

Fig. 7. Sequence diagram of IArtifactView initialization and an artifact update

5. CONCLUSION

This work presented an architectural pattern for applications that interact with low-speed data

sources. The described pattern provides great flexibility, which helps in easily adopting it to a

custom application needs. We have implemented a system based on the described pattern. The

implemented system presents an innovative approach for the initialization of a dynamic data

object and a flexible system for an asynchronous interaction with data sources.

The approach used in the described system is highly flexible and is easily extensible for inter-

action with application domain logic and presentation layers. We believe that this system can

help software developers increase the quality and the production speed of their software prod-

ucts.

REFERENCES

[1] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns: Elements of Reusable

Object-Oriented Software, 1994. Addison-Wesley Professional.

[2] Martin Fauler, Patterns of Enterprise Application Architecture, 2002. Addison-Wesley Professional.

[3] Ken Schwaber, Mike Beedle, Agile Software Development with Scrum, 2001. Prentice Hall.

The Architectural Pattern of a Highly Extensible System for the Asynchronous Processing ~

574

[4] Ken Schwaber, Agile Project Management with Scrum, 2004. Microsoft Press.

[5] Kent Beck, Cynthia Andres, Extreme Programming Explained: Embrace Change, 2004. Addison-Wesley

Professional; 2ed.

[6] Bjarne Stroustrup, The C++ Programming Language: Special Edition, 2000. Addison-Wesley Professional.

[7] Avi Silberschatz, Hank F. Korth, S. Sudarshan, Database System Concepts, 2006. McGraw-Hill.

[8] Arthur H. Lee, Joseph L. Zachary,” Reflections on Metaprogramming,” November 1995. IEEE Transac-

tions on Software Engineering, Volume 21, Number 11.

[9] Manuel Clavel, Reflection in Rewriting Logic: Metalogical Foundations and Metaprogramming Applica-

tions, 2000. Cambridge University Press.

[10] Nicolai M. Josuttis, The C++ Standard Library: A Tutorial and Reference, 2012. Addison-Wesley Profes-

sional; 2ed.

[11] Scott Meyers, 50 Specific Ways to Improve Your Use of the Standard Template Library, 2001. Addison-

Wesley Professional; 1ed.

[12] Erik M. Buck, Donald A. Yackman, Cocoa Design Patterns, 2009. Addison-Wesley Professional; 1ed.

Ro Man Hwang

He received the MS Degree in Game & Multimedia Eng. from Paichai University in

2012.

Soo Kyun Kim

He received Ph.D. in Department of Computer Science & Engineering from Korea

University in 2006. He joined Telecommunication R&D center at Samsung Electron-

ics Co., Ltd., from 2006 and 2008. He is now a professor at Department of Game

Engineering at Paichai University, Korea. His research interests include multimedia,

pattern recognition, image processing, mobile graphics, geometric modeling, and

interactive computer graphics.

Syungog An

She received the Ph.D. in Computer Science from Korea University in 1989. She

has been a professor at PAICHAI University since 1991. Her research interests

include Computer Graphics, DataBase and Game Development.

Dong-Won Park

He received the Ph.D. in Computer Science from Texas A&M University in 1993.

He has been a professor at PAICHAI University since 1994. His research interests

include Networked Multimedia and Embedded S/W.

