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Abstract—Mobile authentication/identification has grown into a priority issue nowadays 

because of its existing outdated mechanisms, such as PINs or passwords. In this paper, 

we introduce gait recognition by using a mobile accelerometer as not only effective but 

also as an implicit identification model. Unlike previous works, the gait recognition only 

performs well with a particular mobile specification (e.g., a fixed sampling rate). Our work 

focuses on constructing a unique adaptive mechanism that could be independently 

deployed with the specification of mobile devices. To do this, the impact of the sampling 

rate on the preprocessing steps, such as noise elimination, data segmentation, and 

feature extraction, is examined in depth.  Moreover, the degrees of agreement between 

the gait features that were extracted from two different mobiles, including both the 

Average Error Rate (AER) and Intra-class Correlation Coefficients (ICC), are assessed to 

evaluate the possibility of constructing a device-independent mechanism. We achieved 

the classification accuracy approximately 91.33 ± 0.67 % for both devices, which showed 

that it is feasible and reliable to construct adaptive cross-device gait recognition on a 

mobile phone. 
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1. INTRODUCTION 

The explosion of mobility nowadays is setting a new standard for the information technology 

industry. Mobile device sales have skyrocketed over the recent years. Technology constantly 

evolves and creates more intelligent devices. Their abilities are not only limited to calling or 

texting, but also cover a variety of utilities, including portable storage and business applications, 

such as e-commerce or m-banking [2]. 

However, misconception of mobile devices as being an absolutely safe repository for storing 

critical information could cause owners to face up to security hassles. Such devices can be easily 

lost, stolen, or illegally accessed [1], which makes the sensitive and/or important information of 

mobile owners vulnerable (see more [1]). Consequently, identification settings have evolved to 
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become more of a priority issue. The most widely used identification methods in mobiles are 

currently PINs, visual patterns, and passwords because of their ease in use and implementation. 

However, these methods are not always effective when considering remembrance and security 

aspects [1]. Implementations on a physiological biometric could completely overcome this issue 

[3]. However, it is hard to deploy them on mobile phones since existing mobile resources cannot 

guarantee the acquisition of specialized data, such as iris, fingerprints, etc., properly. Moreover, 

all these forced us to pay attention and perform explicit gestures that need to be captured (e.g., 

typing passphrases, facing to the front camera, etc.). This causes obtrusiveness and inconven-

ience in frequent use. 

Thus, a friendlier yet more reliable identification mechanism, which can operate implicitly 

without users’ awareness, needs to be discovered and aimed at ameliorating mobile security. 

Recently, a novel approach using wearable sensors to authenticate the human gait has been in-

troduced and it has achieved potential results [11, 13]. Sensors are attached to the human body 

in various places such as the pocket, on the waist, and around footwear to record physical loco-

motion. This approach leads to takes advantage of modern mobile devices’ sensing capabilities 

including GPS, accelerometer, magnetometer, gyroscope sensor, etc. Moreover, devices are 

usually put in its owners' pockets for most of the day [1], so acquiring walking signals can au-

thenticate the gaits of people implicitly and continuously. For this reason, sensor-based gait 

identification has a significant advantage in being implemented in mobiles. It will provide de-

velopers with an edge over improving various techniques in identification.  

Since 2009, this study has been initiated on mobiles and has achieved encouraging results [18, 

19]. However, this type of mechanism has only been studied and has thus far only been proven 

to perform well on a certain device with a particular specification. There has been no research on 

establishing a device-independent model. Nowadays, the lifecycle of a mobile phone is eventu-

ally decreased. This is due to its evolution. Users are willing to change or upgrade their phone 

frequently after using it for a short amount of time. The gait identification mechanism should 

dynamically adapt with this tendency.  

In this paper, we conduct a thorough examination on the impact of sensor quality on the gait 

recognition model. Using a pair of old-fashioned and modern mobile phones, which have differ-

ent sampling rates for the built-in accelerometer, we collect gait signals simultaneously. Then, 

we measure the degrees of agreement between the gait features that have been extracted from 

signals acquired by such devices. Furthermore, various sampling rates are also analyzed to select 

an appropriate unique value for building a device-independent recognition model. With the re-

sults achieved from our experiment, our main contribution is that we are proposing a novel 

cross-device gait recognition with the accuracy rate of approximately 91.33%. The rest of this 

paper is organized into 4 sections. Section 2 presents related works. Section 3 presents our pro-

posed recognition model. Section 4 summarizes the result from our experiments. Our conclu-

sions are then presented in Section 5.  

 

 

2. RELATED WORKS 

Human gait has been considered to be a particular style and manner of how the human feet 

move and hence it contains information related to identity. In more explicit detail, the mecha-

nism of the human gait involves synchronization between the skeletal, neurological, and muscu-
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lar system of the human body [4]. In 2005, H. Ailisto et al. were the first to propose gait authen-

tication
1
 using wearable sensors [13] and Gafurov et al. [10] further expanded this area. In gen-

eral, sensors are attached to various positions on the human body to record locomotion signals. 

Various sensors have been experimented with, including the gyroscope and the rotation sensor, 

but the acceleration sensor (or accelerometer in short) is the most commonly used. In this used 

one. There are two typical approaches: (1) Template Matching (TM) and (2) Machine Learning 

(ML). In (1), the acquired signal is preprocessed and then split into patterns. The best patterns 

that match the most characteristics of the subject are considered to be the representative gait 

templates. They are then stored as referred templates that correspond to the individual. Various 

distance metrics, such as Dynamic Time Warping (DTW) [9, 19, 14], Euclidean distance [8, 9], 

auto–correlation [13], and nearest neighbors [11] are used for calculating the similarity score 

between a given pattern and the referred templates. 

The ML method is the most popular approach that is used in pattern recognition areas. In this 

approach, the gait signal is segmented into patterns. For each pattern, features are extracted in 

time domain, frequency domain, and wavelet domain, or by special techniques such as time de-

lay embedding [18]. Extracted feature vectors are then classified using supervised classifiers like 

HMM [16], SVM [14, 15, 17, 18, 20], and ANN [5], LDA [5]. Some other works propose hy-

brid approaches in which either distance metrics, such as DTW [7] and Euclidean [10, 12] are 

used to measure the similarity scores of features that have been extracted in time and frequency 

domains, or where the similarity scores of gait templates can be considered as features that are 

used for classification [6]. 

In the early stages, most of the works that have used standalone sensors (SSs) have been im-

plemented with a variety of success rates. However, they still have some restrictions. For exam-

ple, SSs are relatively expensive, hard to attach because of their size, and the interface of some 

special sensors needs to be developed separately. Recently, the development of micro electro 

mechanical (MEMs) technology helped such sensors to be miniaturized and integrated inside 

mobile devices (known as mobile sensors – MS). Gait identification has been initially experi-

mented on MS recently. In 2009, S. Sprager et al. used built-in accelerometer in Nokia cellphone 

positioned at the hip to collect and analyze gait signal [20]. Feature vectors for classification 

were built based on collected data using dimension reduction on cumulants by Principal Com-

ponent Analysis (PCA). The classification in this module was accomplished by Support Vector 

Machines (SVM). They achieved about 90.3% accuracy. However, the number of experimental 

participants is rather small (6 persons). In comparison to SSs, MSs are designed to be cheaper 

and simpler to be embedded in mobile devices, and as a result the quality is not as guaranteed as 

with SSs. For example, the sampling rate is low and unstable, and the noise is rather high. De-

rawi et al. [19] showed that impact by redoing Holien’s work [21] using MS instead of SS and 

achieved an EER of 20.1%, as compared to 12.9%. Table 1 summarizes the gait recognition 

approaches and their performances with various evaluation metrics, such as the Equal Error Rate 

(EER), Recoginition Rate (RR), etc. on both SS and MS.  

 

  

                                                           
1  The difference between authentication and identification is that authentication performs binary classification tasks, 

while identification performs multi-class tasks 
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3. METHODOLOGY 

3.1 Data collection 

The Google Android HTC Nexus One and the LG Optimus G (Figure 1 [a, b]), were used to 

collect data. To make sure that the gait signals are acquired simultaneously with the most accu-

rate rate on both devices, we roped them to be stuck together, as illustrated in Figure 1(c). The 

specifications of the two devices are described in Table 2. The sampling rates of the built-in 

accelerometers were set to the highest level of approximately 27 Hz, 100Hz, for the Nexus One 

and Optimus G mobile phones, respectively. The SENSOR_DELAY_FASTEST mode on the 

Android SDK was used to do this. 

An application that controls the data acquisition process via Bluetooth communication is also 

designed to ensure that gait signals are collected simultaneously from both devices. A total of 14 

volunteers, including 10 males and 4 females, with the average age ranging from 23 to 28, par-

ticipated in our data collection. 

The devices were put inside the subject’s trouser pocket with a constant orientation, as shown 

in Figure 1(d). Since mobile devices are usually put freely in the trouser pocket, a misplacement 

error could occur. From our observation, adapting an effective wavelet decomposition algorithm 

could eliminate such an error. This algorithm will be discussed in Section 3.2.2. Each volunteer 

was asked to walk 12 laps at a natural pace on the ground. Each lap cost around 36 seconds. In 

total, we accumulated around 12 (laps) × 36 (seconds) × 14 (volunteers) = 6,048 seconds of 

walking time. Within the counting time, the acceleration forces acting on the phones were meas-

Table 1.  Gait recoginition systems using the Standalone (S) and Mobile sensors (M) ,including 
the Accelerometer (A) and Rotation Sensor (R) by the following methods: Template 
Matching (TM), Machine Learning (ML), and Hybrid (H) 

Previous 

Work 

Sensor / 

Sampling rate 
Location Method No. of Subjects Result 

[14] 

[6] 

M–A / 27Hz 

S–A / 50Hz 

T Pocket 

Ankle 

TM, ML 

H 

11 

22 (16M 6F) 

79.1%, 92.7% RR 

3.03% EER 

[5] 9 S–R Body ML (LDA) 30 (25M 5F) ~ 100% RR 

[15] M–A T Pocket ML (SVM) 36 HTER: 10.1% 

[7] S–A / 40Hz Ankle H 22 3.27% EER 

[16-17] M–A / 120Hz 

M–A / 45Hz 

Hip ML (HMM) 

ML (SVM) 

48 (30M 18F) 6.15% EER, 5.9% 

FMR, 6.3%FNMR 

[8] 

[18] 

S–A / 100Hz 

M–A / 25 Hz 

Ankle 

T Pocket 

TM (Euclidean) 

ML (SVM) 

10 

25 

20% EER 

100% RR 

[9] S–A / 100Hz Hip TM (PCA) 60(43M 17F) 1.6% EER 

[19] M–A / 45Hz Hip TM (DTW) 51 (41M 10F) 20% EER 

[20] M–A / 37Hz Hip ML ( SVM) 6 90.3 ± 3.2% RR 

[10] S–A / 16Hz, 

100Hz 

Ankle 

Pocket 

Arm 

Hip 

H (Euclidean) 

H (Manhattan) 

21 (12M 9F)  

100 (70M 30F) 

50(33M 17F) 

30 (23M 7 F) 

5% EER 

7% EER 

10% EER 

13% EER 

[11] S–A / 100Hz Body TM(NN) 30 96.7% RR 

[12] [13] S–A / 256Hz 

 

Waist TM(cross-corr.),  

H (FFT, histogram) 

36 (19M 17F) 6.4 %, 10%, 19% 

EER 
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ured in three spatial dimensions (X, Y, and Z as illustrated in Figure 1[a, b]). Based on the rela-

tionships between gravity, acceleration, and motion, we present the output of the accelerometer 

as 3-component vectors as follows: 

 

    ,        - (1) 

 

where          represents the magnitude of the acceleration forces acting on three direc-

tions, respectively. 

 

3.2 Data pre-processing 

3.2.1 Time interpolation 

A mobile accelerometer works power saving mode. Its sampling rate is not stable and de-

pends entirely on the mobile OS. The time interval between the two consecutive returned sam-

ples is not a constant. The sensor generates the value only when the forces acting on each di-

mension have a significant change. Hence, we applied a linear interpolation to the acquired sig-

nals to make sure that the time interval between two consecutive samples remained constant. 

The linear interpolation is calculated by: 

 

      
(     )( 

    )

     
 (2) 

 

where       represents two samples collected at times          , respectively, (     ) is the 

new generated point that lies between (     ) and (     ). 

Table 2.  Specifications of the Google Nexus One and the LG Optimus G 

 HTC Google Nexus One LG Optimus G 

CPU 1 GHz Scorpion Quad-core 1.5 GHz Krait 

Memory RAM 512Mb + 2GB SD Card RAM 2GB + 16 GB internal storage 

Sensor BMA-150 Accelerometer LG Accelerometer 

Sampling rate 27 Hz (FASTEST MODE) 

Range: ± 2g  

100 Hz (FASTEST MODE) 

Range: ± 4g  

OS Android 2.3.6 Android 4.1.2 

 

 

Fig. 1.  (a) Google Nexus One, (b) LG Optimus G, (c) Two devices are bound together to collect gait 
signals at the same time, (d) Both devices are put inside a trouser pocket 
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3.2.2 Noise elimination 

When the accelerometer samples movement data from the user walking, some noises will in-

evitably be collected. These additional noises come from various sources (e.g., idle orientation 

shifts, screen taps, bumps on the road while walking). Moreover, the mobile accelerometer pro-

duces numerous noises as compared to standalone sensors, since its functionalities are fully gov-

erned by the mobile OS layer. A digital filter needs to be designed to eliminate noises and to 

concurrently reduce the impact of misplacement error.  

We found that the multi-level wavelet decomposition and reconstruction method are signifi-

cantly effective in eliminating noises. According to Figure 2, the input signal S(n) is decom-

posed into two equal parts, including the detail and coarse components. It uses a high-pass filter 

(HF) and low-pass filter (LF), respectively. Only coarse components are important for represent-

ing the characteristics of the signal so that the detail components are often eliminated to remove 

worthless information. 

When the phone is put in the subject’s trouser pocket, it rests near his/her thigh and as a result, 

a misplacement error could occur. From our observations, walking is a slow activity with a 

moderate fluctuation. Consequently, any strong acceleration is likely to last no longer than a few 

tenths of a second. Furthermore, once the phone is placed close to a joint of the leg, output sig-

nals are dominated by gravitational signals [22]. Hence, we use the Daubechies orthogonal 

wavelet with the order 6 being set at level n to eliminate noises and to concurrently reduce the 

influence of misplacement error. The value of n depends on the sampling rate of the recording 

devices. In our study, since experimental mobile phones are used with different sampling rates, n 

is selected as 2 then 3 for a sampling rate of 27Hz and 100Hz, respectively. 

 

 
 

3.2.3 Data segmentation 

After noise has been removed, the signal is segmented into separated patterns. As already 

stated, gait recognition is based on the walking style of individuals. Meanwhile, walking is a 

cyclical activity. The acquired signal should be segmented according to gait cycles instead of 

according to a fixed interval (e.g., 5 or 10 seconds) as was done in previous works [15-17]. 

The gait cycle is defined as the time interval between two successive occurrences of one of 

the repetitive events when walking [23]. In other words, two consecutive steps form a gait cycle. 

As shown in Figure 3, the cycle starts with the initial contact of the right heel, and then it will 

continue until the right heel contacts the ground again. The left heel goes through exactly the 

same series of events as the right, but is displaced in time by half a cycle. 

We designed an algorithm to detect gait cycle events that appear in the signal. At the time that 

the subject’s right heel touches the ground, the association between the ground reaction force 

and inertial force together makes the Y-axis signal change strongly and to form negative peaks 

 

Fig. 2.  Multi-level wavelet decomposition 
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with absolute high magnitudes. These peaks are considered to be marking points, which are used 

to distinguish separated gait cycles (Figure 4[b]). A threshold that is calculated from the mean 

and standard deviation of the peak
2
 set filters these high magnitude peaks. Moreover, the time 

gap    between two gait cycles is also estimated to obtain the most precise set of marking 

points.    is dynamically calculated based on each characteristic of the gait signal. 

First, the autocorrelation algorithm is applied to the transformed Z-axis data to determine the 

regularity of the signal. Let    be the autocorrelation coefficient which is computed as: 

 

   ∑       

  | |

   

 (3) 

 

where    is the time series data point,      is the time-lagged replication of   .  

Then    is normalized to ,   - by dividing to     

 

   
  

  
  with    ∑   

  
    (                       (4) 

 

Figure 4(a) illustrates the autocorrelation coefficients   that represent the regularity of the 

                                                           
2  A point is called a “peak” if its value is greater (or lower in a negative peak case) than its predecessor and successor 

 

Fig. 3.  Illustration of a gait cycle 

 

 

 

Fig. 4.  (a) Auto-correlation coefficients with the estimated    (b) The detected marking points in the 
Z-signal 
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walking signal. In this figure, the distance of two red peaks, in which the first one corresponds 

with    and the other is denoted as   , determines the approximate time gap    of gait cycles: 

 

    (  ) (5) 

 

where  ( ) is the time-lagged of point  . 

From our study, the gait signal is segmented into separated patterns in which each pattern 

contains n=4 consecutive gait cycles and overlaps n/2 gait cycles from the previous one. Fea-

tures are extracted from every separated pattern in both time and frequency domains to obtain 

feature vectors, which are used as the input of classification tasks. 

 

3.3 Feature extraction and classification 

3.3.1 Time domain features 

• Average maximum acceleration 

            (   (   ))   
    

 

• Average minimum acceleration 

            (   (   ))   
    

 

(6) 

 

 

 

 

(8) 

 

• 10-bin histogram distribution 

h         〈  〉 
     h    

∑    

    (    )
 

 
 (       )

  
          

(   )(       )

  
 

 

 

(7) 

 

• Average absolute difference 

             ∑|     |

 

   

 

 

 

(9) 

• Standard deviation 

   √(
 

   
)∑(    ) 

 

   

 

 

 

 

(10) 

• Root mean square 

    
 

 
∑  

 

 

   

 

 

 

(11) 

• Waveform length 

    ∑ |       |

   

   

 

 

 

(12) 

 

where    is the data point in time series of a segment,   is the number of gait cycles    in the 

segment, and   is the number of data points in the segment. 

These above features are extracted on 4 types of signal including the separating X, Y, Z-axis 

signal          and the magnitude    √  
    

    
 . 

 

• Time of a gait cycle 

     
∑  (   )
 
 

 
 

 

(13) 

• Gait cycle frequency 

     
 

∑  (   )
 
 

 

 

(14) 

 

where  (   ) is the time length of gait cycle i. 

 

3.3.2 Frequency domain features 

• The first 40 FFT coefficients  
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       ∑ ( )  

     
 

   

   

 (15) 

 

• The first 40 DCT coefficients 

 

    〈  〉   
       

 

 
   ∑      [

 

 
 (  

 

 
)]

   

   

  (16) 

 

Similar to features in time domains, these coefficients are extracted on         , and  . 

Note that the walking speed of users is not absolutely constant. Hence, the length of the gait 

cycles is not stable. Calculating coefficients in a frequency domain (e.g., FFT, DCT) requires 

window frames (or patterns) that have the same fixed length. Meanwhile, the length of the gait 

cycles fluctuates slightly around time gap   . As a result, the number of data points in every gait 

cycle needs to be normalized by using our proposed algorithm [14] to make sure that frequency 

coefficients are calculated exactly. Lastly, the final feature vector, which is formed by all of the 

features that has been extracted in both time and frequency domains, is classified by using the 

Support Vector Machine. 

 

3.4 Validating features extracted from both devices 

In order to validate the feasibility of constructing a cross-device gait recognition model, the 

Average Error Rate (AER) [25] and Intra-class Correlation Coefficients (ICC) [26] are adapted 

to measure the level of agreement between concurrent gait features extracted from both mobile 

phones with different sampling rates of 32 Hz and 100 Hz. As illustrated in [27], ICCs value of 

< 0.4, 0.40 to 0.75, and > 0.75 are interpreted to represent poor, fair-to-good, and excellent con-

sistency between the two measurements. The AER is calculated by: 

 

    

∑
|         |

|    |
 
    

 

 (17) 

 

The ICC is calculated by: 

 

    
∑ |      ||      |
 
    

   
 

 

where: 

 

(18) 
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(      )

 
 (      )

 

  
 

 

    

 

 

(20) 

with     being the feature of the     subject, which is extracted from the signal acquired by 

device 𝑇. 

 

3.5 The downsampling and upsampling rates of mobile devices 

To measure the impact of the sampling rate on a recognition mechanism, gait signals acquired 

by the Google Nexus One and LG Optimus G (100 Hz) mobile phones were down/up-sampled 

to lower/ higher rates, which have been calculated by: 

 

              *     +                (21) 

 

The linear interpolation illustrated in 3.2.1 is adapted as a method to down/up-sample. By 

looking at the classification results achieved from various sampling rates, we come to choose the 

only one value which gives the best classification accuracy as a standard value. Signals acquired 

from diverse sampling rates will be down/up-sampled to be equal to this value before perform-

ing preprocessing steps such as noise elimination, segmentation, feature extraction and classifi-

cation. 

 

 

4. RESULTS 

4.1 The overall classification of both devices with their default settings 

1,054 samples were extracted from our own dataset in total. This dataset was divided into two 

equal parts including T-PART and P-PART, which would be used for training and prediction, 

respectively. The number of collected samples corresponding to each volunteer is illustrated as 

shown in Table 3. We used Libsvm
3
 [24] as the effective tool to perform the Support Vector 

Machine (SVM) classifier with the Radial Basis Function (RBF) kernel. Once using the RBF 

kernel, parameters including (γ, C) are very sensitive to the classification rate of this type of 

classifier. Hence, a 10-fold cross validation is also applied to the entire T-PART to deal with the 

issue of over fitting and finding an optimal pair (γ’, C’). We achieved a cross validation accura-

cy rate of 100% at (γ’, C’) = (2
-5.25

, 2
3.5

). After that, all of the T-PART is trained again using this 

(γ’, C’) to gain the final classification model that is used to predict P-PART. We achieved the 

classification accuracy of 99.81% (1052/1054) and 97.53% (1028/1054), which correspond to 

the gait signals acquired by the Google Nexus One and LG Optimus G phones, respectively. The 

confusion matrices of two cases are illustrated in Figure 5. 

Upon our examining the results achieved from the data collected by both devices, we were 

able to determine that the classification rate of Google Nexus One is slightly better than LG 

Optimus G and that regardless of the sampling rate of the built-in accelerometer, the LG Opti-

                                                           
3  Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm 
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mus G is significantly higher than the Google Nexus One (100 Hz vs. 27 Hz). One main reason 

to interpret this phenomenon is the noises that were produced by the quality of the mobile sensor 

and the OS layer. The higher the sampling rate is, the noisier the product can be, which could 

negatively affect the gait recognition rate.  

 

4.2 Impact of the sampling rate on extracted features 

Table 4 illustrates the Average Error Rate (AER) and Intra-class Correlation Coefficients 

(ICC) of features extracted at the same time from both mobile devices. Most of the extracted 

features in the time domain (excepts         ,         ,           ), which had a low AER, 

showed that they were not under the influence of the sampling rate. Moreover, such features 

have excellent consistency with a high ICC ranging from 0.7 to 0.996 and hence, they can be 

extracted with a high reliability even when the sampling rate is totally different (32 Hz vs. 100 

Hz).  

Features in the frequency domain, including FFT, DCT coefficients have fair to good con-

sistency with the ICC values ranging from 0.666 to 0.804. However, the AER ranging from 

0.451 to 2.992 is rather high. Hence, they are very sensitive to the sampling rate. Such features 

Table 3.  The number of samples used for training and predicting each of the volunteers 

Volunteer 
Nexus One Optimus G  

Volunteer 
Nexus One Optimus G 

T P T P  T P T P 

A 84 83 83 83  H 64 60 74 69 

B 79 77 79 78  I 72 73 72 73 

C 84 83 84 86  J 80 84 80 84 

D 72 73 72 73  K 79 78 78 78 

E 49 61 50 60  L 83 82 83 83 

F 77 74 76 74  M 67 72 70 71 

G 79 78 77 76  N 71 74 72 75 

 

 

   

(a)                                     (b) 

Fig. 5.  Confusion matrices of the gait recognition on distinct samples extracted from the (a) Google 
Nexus One and (b) LG Optimus G phones 

 

 

 



  

Adaptive Cross-Device Gait Recognition Using a Mobile Accelerometer 

  

344 

should be used with caution when building a cross-device for gait recognition. 

 

4.3 Classification of the downsampling and upsampling rates 

Figure 6 represents the classification accuracies of down/up-sampling the gait signals that 

have been acquired by both mobile devices with various sampling rates and levels of noise filter-

ing. The best classification of each device is achieved at the sampling rate of 32 Hz and 36 Hz 

along with noise filtering at Level 2. Based on the characteristics of the wavelet decomposition 

technique, higher levels of decomposition will eliminate noise better. As discussed above, sig-

nals acquired by the Google Nexus One phone at a low frequency will contain less noise than 

the LG Optimus G device. Hence, using any level of decomposition (1, 2, and 3) at any sam-

Table 4.  The degree of agreements, including the AER and ICC, between features extracted from 
the Google Nexus One and LG Optimus G phones 

Features 
AER ICC 

X Y Z M X Y Z M 

        1.398 0.031 0.061 0.034 0.833 0.935 0.870 0.913 

        0.898 0.152 1.413 0.104 0.749 0.905 0.835 0.928 

          𝑓𝑓 0.082 0.069 0.107 0.061 0.931 0.945 0.839 0.948 

𝑅 𝑆 0.093 0.022 0.058 0.020 0.944 0.859 0.848 0.854 

          0.869 0.451 0.473 0.408 0.705 0.740 0.595 0.672 

𝜎 0.078 0.051 0.073 0.055 0.941 0.975 0.896 0.966 

𝑤𝑙 0.143 0.107 0.093 0.085 0.904 0.948 0.902 0.951 

𝑇𝑐𝑎𝑑 0.004 0.996 

𝑓𝑐𝑎𝑑 0.004 0.995 

𝑓𝑓  1.053 1.080 0.930 0.795 0.666 0.708 0.683, 0.678 

 𝑐  2.992 2.337 2.691 2.243 0.804 0.706 0.679 0.684 

 

 

 

Fig. 6.  Recognition rate at various sampling rates and the noise filtering level of both devices 
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pling rate does not significantly affect the accuracy rate.  

In contrast to the Google Nexus One, the LG Optimus G produces more noises at the default 

sampling rate of 100 Hz. Hence, even when downsampling to a lower rate using linear interpola-

tion, the noise is still high and as a result, the accuracy rate is reduced. Using noise filtering at 

Level 1 is only suitable for sampling rates ranging from 12 Hz to 48 Hz. With higher sampling 

rates, the noise not only decreases the accuracy rate but it will also harm the segmentation algo-

rithm. Patterns extracted by using our algorithm do not reflect a sequence of gait cycles because 

too much noise prevents marking points from being vividly displayed. At Level 2, the segmenta-

tion algorithm could operate well at sampling rates ranging from 12 Hz to 100 Hz. However, the 

accuracy rate decrements significantly when the sampling rate increments, since this level is not 

enough to eliminate all noises at the high sampling rates. At the sampling rate of 100 Hz, the 

best accuracy rate of 97.53% is achieved by using wavelet decomposition (Daubechies of Level 

6 in this study) at Level 3. 

 

4.4 Cross-device gait recognition results 

Based on results achieved from acquiring the down/up-sampling rate of both devices, we also 

did a cross-device experiment to check the possibility of deploying a unique gait recognition 

model on various devices. To do this, we synchronized the sampling rate of the Google Nexus 

One and the LG Optimus G to a fixed value. After that, samples extracted from the Google Nex-

us One were used to construct the classification model. Lastly, this model was used to predict 

samples extracted from the LG Optimus G. This process will reiterate vice versa in which, sam-

ples from the LG Optimus G are used to build up the classification model that was used to pre-

dict samples from the Google Nexus One. Moreover, based on the levels of the agreement of 

features extracted from both devices concurrently (Table 4), a poor level of agreement features 

(e.g. FFT, DCT coefficients, etc.) having a high AER or low ICC were excluded from the final 

feature vector to obtain the optimal set. Table 5 illustrates features that are kept to form the final 

feature vector, which is classified by SVM. 

From our experiment, the most suitable value for the sampling rate is 36 Hz as it gives the 

best accuracy for a cross-device for gait recognition. Samples acquired by the Google Nexus 

One were used for training while samples from the LG Optimus G were used for prediction and 

vice versa and we achieved accuracy rates of 92.03 % and 90.68 %, respectively. 

  

Table 5.  Optimal features (marked as ‘×’) used to construct a cross-device for gait recognition 

Features 
Axis 

Features 
Axis 

X Y Z M X Y Z M 

         × × ×           𝑓𝑓 × × × × 

         ×  × 𝑅 𝑆  ×  × 

𝑤𝑙 × × × ×            ×   

     𝜎 × × × × 

𝑇𝑐𝑎𝑑 × 𝑓𝑐𝑎𝑑 × 
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5. CONCLUSION 

In this paper, we examined the impacts of the sampling rate on constructing an adaptive gait 

recognition model with two different mobile phones. The most suitable sampling rate of 32-36 

Hz, with noise filtering at Level 2, was considered for constructing an effective gait recognition 

mechanism. This type of sampling rate is rather low, which could be very useful for saving en-

ergy on a mobile. Moreover, a cross-device for gait recognition was also discovered, based on 

analyzing the level of the agreements of extracted features. In this study, we only used interpola-

tion as a simple method for down/up-sampling. Therefore, applying modern adjusting sampling 

rate techniques to improve the accuracy rate of a cross-device for gait recognition will be the 

main focus of further work that we need to conduct. 
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