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Abstract—This paper presents an approach for improving the use of VP-tree in video 

indexing and searching. A vantage-point tree or VP-tree is one of the metric space-based 

indexing methods used in multimedia database searches and data retrieval. Instead of 

relying on the Euclidean distance as a measure of search space, the proposed approach 

focuses on the trigonometric inequality for compressing the search range, which thus, 

improves the search performance. A test result of using 10,000 video files shows that this 

method reduced the search time by 5-12%, as compared to the existing method that uses 

the AESA algorithm. 
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1. INTRODUCTION 

Thanks to both the low pricing and large capacity of primary or secondary storage units now-

adays, it has become possible to store a huge amount of multimedia data such as text, video, 

image, music, etc. even on a personal computer. As a result, there has been a demand for a tech-

nology that would search for data quickly and accurately. To enhance search efficiency, features 

from the stored data are extracted and organized into indexes [1], which are accessed during data 

search and retrieval. So, search efficiency is greatly influenced by the index-organizing method 

that is used. 

In general, the features of multimedia data are expressed in vectors. A search is performed 

based on the similarity of features or on the distance between features in vectors [2, 3]. There are 

many schemes for the multidimensional indexing of feature vectors, which include the following 

methods: R-tree [4], R*-tree [5], SS-tree [6], SR-tree [7], X-tree [8], and VA-FILE [9]. For all of 

these methods, only the Euclidean distance is normally used as a metric for searching. While 

others, such as in [10], a quadratic form distance measure, which considers correlations among 

multidimensional data, is used in addition to the Euclidean distance. The edited distance, which 

calculates similarities among strings, and the Earth Mover's Distance, which calculates the struc-

tural similarities among videos, are used [11]. In essence, it is important to consider metric dis-
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tance information when an index is prepared based on the coordinates in a multidimensional 

index, and a metric-based indexing would only be possible if a metric axiom were formed. By 

having metric axioms, indexing is made simpler, and metrics besides the Euclidean distance 

become applicable. 

Generally speaking, the metric space index is represented as a hierarchical tree structure. By 

recursively dividing the space (data set) based on metric information, the search space is reduced. 

Based on the space division scheme that was used, different tree structures are formed. The M-

tree [12], VP-tree [13, 14], MVP-tree [15] and MI-tree [16] have been proposed. The M-tree 

consists of a bottom-up index tree where at the division of space the search efficiency decreases 

in the amount of common areas in the divided spaces. But, the VP-tree divides the search space 

in a top-down approach. After choosing a good reference point, which is called the 'vantage 

point' (𝑣𝑝), the distance is calculated from this reference point to others in the search. It be-

comes efficient if the search range under consideration can approach a leaf object, which is 

linked to the leaf node, along the appropriate node from the root node. However, it slows down 

the search speed by increasing the distance calculation frequency in the lead node.  

To reduce the distance calculation frequency an improvement in the search algorithm in the 

leaf node of VP-tree is sought. By applying the trigonometric inequality to several spaces (i.e., 

given the vectors of two sides, x and y, in a norm vector space, the inequality shall be as follows: 

‖x + y‖ ≤ ‖x‖ + ‖y‖). In addition, provided that 𝑥, 𝑦 and 𝑧 are in the metric space, , 

and the distance between them is set to 𝑑, the inequality shall be as follows: 𝑑(x, z) ≤
𝑑(x, y) + 𝑑(y, z). This work focuses on the fact that as the distance between the base point of 

the trigonometric inequality and a query object gets closer, the analysis range for the search is 

narrowed. Therefore, the distance calculation frequency can be reduced by significantly narrow-

ing down the search range after using the nearest node on the query object in terms of the base 

point of trigonometric inequality. Also, instead of using a 𝑣𝑝 as the base of inequality, the 

method uses a base in the leaf node of the VP-tree. 

However, the nearest node cannot be determined in advance. Therefore, the object that is 

nearest to the query object in the search list is assumed to be the nearest virtual node. Then, the 

compression technology on the range based on the nearest node can be realized. In addition, in 

order to use the trigonometric inequality using the base point as the nearest virtual node, it is 

necessary to be aware of the distance between the nearest node and all object distances in the 

leaf node. Here, because the nearest virtual node cannot be limited in advance, it is necessary to 

obtain all of the inter-object distances. Therefore, a distance list file that calculates the distance 

between objects at indexing is constructed. However, constructing a huge distance list file in 

each object can reduce the size of file that can be read through the memory. In the search, the 

Approximating and Eliminating Search Algorithm (AESA) [17] compresses a range using the 

distance list file against all objects. Unlike AESA, which targets all of the objects, and where file 

reading frequency substantially increases, the proposed method only targets the objects in a leaf 

node. By using a VP-tree, fewer objects in a leaf node are targeted, and files are read provided 

that the nearest virtual node (base point) is updated. Therefore, the file access frequency can be 

significantly reduced, thus, boosting the search efficiency. 

The Locality-Sensitive Hashing (LSH) algorithm is relevant to our research method. The LSH 

is an algorithm for solving the (approximate/exact) Near Neighbor Search in high dimensional 

spaces. We were able to find pointers to the newest LSH algorithm in Euclidean spaces, as well 

as the description of the E2LSH package, which is an implementation of this new algorithm for 
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the Euclidean space. The earlier algorithm for Euclidean space is [23], which is a good introduc-

tion to the LSH, and the description of an affair is in [24]. For the LSH algorithm, [25] is a good 

survey of the LSH, and the most recent algorithm is [26]. However, this LSH algorithm is the 

approximate Near Neighbor Search in high dimensional spaces. 

This paper is structured as follows: in Section 2, the construction and search algorithms of the 

VP-tree are described, and a method to compress the range of the leaf node is introduced. In 

Section 3, the method of an improved search algorithm for the leaf node is stated. In Section 4, 

the tests and evaluations that were based on the improvement method are explained. In Section 5, 

the conclusion and future prospects are described. 

 

 

2. AN IMPROVED METHOD FOR THE VP-TREE 

2.1 Construction Algorithm 

In this section, the construction algorithm of the VP-tree is described. Provided that an index-

ing is performed against the data set 𝑆, which consists of 𝑁 data, each tree node selects the 

vantage point (hereinafter, vp) according to the random algorithm as shown below. 

 

• VP-tree Construction Algorithm 

Step 1. Randomly select the virtual 𝑣𝑝 from a data set; 

Step 2. Calculate the distance from the virtual 𝑣𝑝 to the (n-1)th object; 

Step 3. Estimate the median and variance of the distance; 

Step 4. Repeat the said processes (Steps 1-3) and decide on the point in which the variance 

reaches the maximum level as 𝑣𝑝. 

 

The median of the distance against all data from the 𝑣𝑝 to 𝑆 is 𝜇. Provided that 𝑑(𝑝, 𝑞) is 

the distance between 𝑝 and 𝑞, the data set (𝑆) shall be divided into 𝑆1 and 𝑆2 as follows: 

 

𝑆1 = *𝑠 ∈ 𝑆 | 𝑑(𝑠, 𝑣𝑝) < 𝜇+ 

𝑆2 = *𝑠 ∈ 𝑆 | 𝑑(𝑠, 𝑣𝑝) ≥ 𝜇+ 

 

Then, an index is created by recursively applying the said division mechanism to 𝑆1 and 𝑆2. 

All subsets, such as 𝑆1 and 𝑆2, are equivalent to a single node of the VP-tree. In addition, sev-

eral objects can be stored in a leaf node. 

 

2.2 Search Algorithm 

In this section, the search algorithms of the range search of the VP-tree and the 𝑘-nearest 

neighbor search are described. The range search is a search method that is used to get a set of 

objects that exist within a radius from the center after designating the query objects and search 

range (radius). The k-nearest neighbor search is a search method that is used for getting a set of 

objects in order of closeness in terms of distance by designating query objects and 𝑘 (search 

frequency). In this paper, the k-nearest neighboring search has been used. Because this method is 

based on the range search algorithm, both search methods will be described. 

In the range search, first, the distance between the leaf object, which is linked to a leaf along 
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the appropriate node from the root node, and the query object is calculated, and objects that exist 

in the search range are obtained. On the other hand, in the 𝑘-nearest neighbor search, objects are 

added to the search list along the root after setting the search radius to an infinite level. If the 

number of searches on the search list exceeds the designated search number, the search objects 

with a maximum distance are deleted from the list. In addition, the search radius is narrowed by 

repeating the search with the maximum distance of search list as search radius. Ultimately, the 

designated number can be obtained as the search result. 

 

2.3 Search Range Compression in the Leaf Node 

As described in Section 2.2, in a conventional VP-tree the distance with the query object was 

calculated by approaching all of the objects in a leaf node during the search. As an improvement 

plan a search range reduction method [18], which uses a trigonometric inequality in the search 

of each object in a leaf node has been proposed, as shown below. 

The distance between the 𝑣𝑝 object and each leaf object is preserved in a distance list in a 

leaf node. In terms of the distance between the 𝑣𝑝 object and each leaf object, the trigonomet-

ric inequality-based distance calculation frequency can be reduced. Let the query object be 𝑞; 

the radius, 𝑟; the 𝑣𝑝 object in a leaf node, 𝑣; and a leaf object linked to the leaf node, 𝑜; as 

such the search algorithm can be then summarized as follows: 

 

• Leaf Node-based Search Algorithm w/the K-nearest Neighbor Search 

 

Input: 𝑞, 𝑟, 𝐿 

Output: 𝐿, 

Search Leaf (𝑞, 𝑟, 𝐿) 

{ 

for each (all leaf objects) { 

if (|𝑑(𝑣, 𝑜) − 𝑑(𝑣, 𝑞)| ≤ 𝑟) { 

if ( |𝑑 (𝑜, 𝑞)| ≤ 𝑟) 

 

Fig. 1.  Compression of the search range with vp as the base point 
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{as the maximum distance value by adding 𝑜 to 𝐿} 

} 

} 

} 

Here, 𝑞: query object, 𝑟: search radius, 𝑜: leaf object, 𝑣: 𝑣𝑝 object and 𝐿: search result. 

 

Both 𝑑(𝑣, 𝑜) and 𝑟 in theorem ① are already known at the start of searching for the leaf 

node, and 𝑑(𝑣, 𝑞) can get each leaf node once. Therefore, it is possible to find out if a lead 

object exists in the search range without calculating the distance between each leaf object. 

Hence, the frequency of distance access to the distance calculation and leaf object can be re-

duced. A method to reduce the candidate of the leaf node (analysis candidate) is shown in Fig. 1, 

and the k-nearest neighbor search algorithm is proposed. In the figure, the parts other than the 

diagonal lines represent that theorem ① is proven. The distance calculation on the objects here 

can be omitted. Meanwhile, the diagonal line sections are the area in which theorem ① is NOT 

proven. Therefore, the distance of the objects that exist here should be calculated. 

 

  Theorem ① 

If 𝑑(𝑣, 𝑜) − 𝑑(𝑣, 𝑞) > 𝑟, the leaf object (𝑜) does NOT exist in the search range. 

[Proof] Based on the trigonometric inequality (𝑑(𝑣, 𝑞) + 𝑑(𝑞, 𝑜) ≥ 𝑑(𝑣, 𝑜)), 𝑑(𝑣, 𝑜) +

𝑑(𝑣, 𝑞) > 𝑟 becomes 𝑑(𝑣, 𝑜) − 𝑑(𝑣, 𝑞) > 𝑟. In other words, ' 𝑜 ' does NOT ex-

ist in the search range. The inequality (−𝑑(𝑣, 𝑜) + 𝑑(𝑣, 𝑞) > 𝑟) also becomes 

𝑑(𝑞, 𝑜) > 𝑟. Therefore, the said theorem ① is proved. 

 

In addition, the search range can be compressed using all of the 𝑣𝑝 objects that exist on the 

path from the root node to the leaf node, as well as compressing all of the 𝑣𝑝 objects in the leaf 

node. In this case, the distance of all the leaf objects linked to the leaf node and all 𝑣𝑝 objects, 

which exist on the path from the root node to the leaf node, should be saved before the leaf node. 

 

Fig. 2.  Compression of the search range when vp is taken as the base point 
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In terms of the distance between multiple 𝑣𝑝 objects and each leaf object, using a trigonometric 

inequality can reduce the distance calculation frequency. If the query object = 𝑞, the search radi-

us =  𝑟 , the '  𝑘  ' 𝑣𝑝  objects on the path from the root node to the leaf node = 

𝑣  ( =  ,  ,  ,  , 𝑘),
 

and the leaf object linked to the leaf node = 𝑜, the analysis candidates can 

be reduced as shown in Fig. 2. This algorithm makes it possible to further narrow down analysis 

candidates using several 𝑣𝑝 objects. 

 

 

3. SEARCH RANGE COMPRESSION USING THE NEAREST NODE 

When the 𝑣𝑝 is used as the base point of a trigonometric inequality, The less diagonal line 

section which theorem ① is not satisfied, the better compression effect of the search range. The 

radius of the circumference can be obtained by adding the radius (𝑟) to the distance from 𝑣𝑝 to 

the query object (𝑞). Here, because 𝑟 is a fixed value against the search request, the compres-

sion of the search range becomes advantageous as the distance between 𝑣𝑝 and 𝑞 decreases. 

In fact, the object that is nearest to 𝑞 is the nearest node. In other words, the search range can 

be reduced by eliminating the parts in which theorem ① is not proven from the search target by 

using the object (the nearest node to 𝑞 instead to 𝑣𝑝) as the base point of a trigonometric ine-

quality. Therefore, this paper proposes a search range compression method using a trigonometric 

inequality that takes the nearest node as the base point. 

If the query object = 𝑞, the search radius = 𝑟, the nearest node that is the nearest to the query 

object in the search list = 𝑜1, and the leaf object linked to the leaf node = 𝑜, the following theo-

rem ② is proven. 

 

  Theorem ② 

If 𝑑(o1, 𝑜) − 𝑑(o1, 𝑞) > 𝑟, the leaf object (𝑜) does NOT exist in the search range. 

[Proof] 𝑑(𝑜1, 𝑜) − 𝑑(𝑜1, 𝑞) > 𝑟becomes 𝑑(𝑞, 𝑜) > 𝑟 because of the trigonometric ine-

quality (𝑑(𝑜1, 𝑞) + 𝑑(𝑞, 𝑜) ≥ 𝑑(o1, 𝑜)). It is confirmed that 𝑜 does NOT exist 

in the search range. 

 

Here, if 𝑑(o1, 𝑜) and 𝑑(o1, 𝑞) are already known, it can be confirmed that an object does 

not exist in the search range without calculating the distance with each leaf object. This process 

is illustrated in Fig. 3. Unless a leaf object exists in the diagonal line sections as shown in this 

figure, a calculation of the distance with the query object can be omitted. In fact, the search al-

gorithm of the leaf node is proposed as described below. 

 

• The Leaf Node-based Search Algorithm by the Proposed Method 

 

Input: 𝑞, 𝑟, 𝐿 

Output: 𝐿, 

Search_Leaf(𝑞, 𝑟, 𝐿) 

{ 

foreach 𝑜 (all leaf objects) { 

if ( ((𝑑(o1, 𝑞) + 𝑟) < 𝑑(o1, 𝑜))) { 

if (𝑑(𝑜, 𝑞) ≤ 𝑟) 
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{𝑟 as the maximum distance value by adding 𝑜 to 𝐿} 

} 

} 

} 

Here, 𝑞: query object, 𝑟: search radius, 𝑜: leaf object, 𝑜1: object that is nearest to 𝑞 in the 

search list, and 𝐿: search list. 

 

In terms of 𝑑(𝑜1, 𝑜) in theorem ②, value is given if a list of the distance between the nearest 

node and an object in the leaf node exists. However, because which object is the nearest node to 

𝑞 cannot be confirmed in advance, 𝑜1 does not consider all objects in reality. Here, it is neces-

sary to make a file that calculates the distance between a leaf object that is linked to the leaf 

node and other objects. However, it is not a good idea to construct this huge file in the memory. 

In this paper, a file set has been constructed with each object ID as a file name just like the 

Akama method [19]. However, to avoid the restriction on the number of files in a directory, the 

lower three digits of the ID were set to a file name, while the upper three digits were set to a 

directory name. For example, the maximum number of files in a single directory is set to 1,000. 

In addition, the nearest node cannot be decided in advance in 𝑑(𝑜1, 𝑞), or for the distance be-

tween the query object (𝑞) and the nearest node (𝑜1), as well. As proposed in the leaf node-based 

search algorithm as shown above, the object that is nearest to the query object (𝑞) in the search 

list (𝑜1) is presumed to be the nearest node (𝑜1). In addition, the nearest node is updated when-

ever an object in the search range is newly discovered. 

 

 

4. RESULTS 

4.1 Test Method 

Experiments have been conducted using our method to create a VP-tree for a video indexing 

 

Fig. 3.  Compression of the search range that takes the nearest node as the base 
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search. The improvement method mentioned in this paper as applied to the VP-tree. Then, a test 

on the similar video search was performed. For the test, a 2 GB computer (Pentium D 3.2 GHz) 

with Linux was used. A total of 10,000 videos were prepared, and their features were collected 

using the HSI histogram. The HSI histogram is a color histogram that consists of hue, saturation, 

and intensity. In terms of dimensions, four types were used; 12 (4 3), 24 (8 3), 48 (16 3), and 

96 (32 3). In this case, 4, 8, 16, and 32 mean the corresponding vector, and 3 means HIS. In 

addition, 10,000 video objects whose features were already collected were indexed with the VP-

tree. The 𝑣𝑝 at indexing has been calculated based on random data (up to 100 data sets every 

time). From the 1,000 input videos that were not used for indexing, the distance calculation fre-

quency and the average per video (CPU time) were calculated using the k-nearest neighbor 

search. 

In addition, the quadratic form distance has been used as a metric scale among video objects. 

The quadratic form distance between histogram 𝐻 and histogram 𝐾 can be expressed as fol-

lows: 

 

  ( , K) = √( −  )  ( −  ) 

 

 = √∑ ∑    (  −   )
 
  1

 
  1 (  −   )                   (1) 

 

Here, A=[   ] is a matrix which represents similarity between  th side and 𝑗th side. In this 

paper, a determinant [18] as shown in the Equation (2) below has been used: 

 

    =  − d      

    
                              (2) 

 

In the Equation (2) above, 𝑑( , 𝑗) is the distance of the color space between the  th side and 

the 𝑗th side, while 𝑑    refers to the maximum value of 𝑑( , 𝑗). In addition, this paper has 

proposed a search range compression method that uses the nearest node of the VP-tree. However, 

AESA [19] is also available as a search range compression algorithm that uses the nearest node. 

In AESA, the search range is decided after preparing and using a file that has calculated the dis-

tance between objects without constructing an index tree such as a VP-tree. In terms of search 

range compression, the nearest node is compressed using a trigonometric inequality just like the 

method proposed in this paper. AESA has an algorithm that is very similar to the method men-

tioned in this paper. The difference between the two methods is described in the following sec-

tion. This paper has used AESA for making a comparison with the search range compression 

improvement method, which uses the nearest node in the VP-tree to evaluate the effect of the 

range compression. The specific algorithm of AESA is stated in the next section. 

 

4.2 AESA 

AESA can predict the nearest node (𝑠) by using Equation (3) as shown below: 

 

s =  r          ∑ | (o,  ) −  (q,  )|                       (3) 

 

Here, 𝑃 = a set of all objects, 𝐸 = a set of objects that have been removed after not having 
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been chosen as search targets, 𝑈 = a set of objects that have been chosen as the nearest node ( ) 

in the past, and 𝑞 = query object. This equation is described in Fig. 4. 

If the circles C1, C2, and C3, which have 𝑑(𝑞, 𝑢) as their radius are assumed, ∑|𝑑(𝑜, 𝑢) −

𝑑(𝑞, 𝑢)| is the sum of the distance between each circle and 𝑜. The lowest sum of the distance 

(𝑜) is chosen as 𝑠. In other words, 𝑜, which is expected to be the nearest to 𝑞 when viewed 

from each 𝑢, is calculated. Therefore, the point that is the nearest to 𝑞 without calculating the 

distance between the query object and all objects in person can be estimated. The distance be-

tween 𝑠, which has been chosen based on the said method, and the query object (𝑞) is calculated. 

If it is likely that the distance would be included in the search list, it should be added to the 

search list. In addition, if it is nearer distance between the nearest node in the past (the No.1 

candidate in the search list) and 𝑞, 𝑠 is updated into the nearest node. Lastly, the compression 

of search range is continued using a trigonometric inequality. Just like theorem ① and theorem 

②, the following theorem ③ is proven.  

 

  Theorem ③ 

If 𝑑(𝑠, 𝑜) −  𝑑(𝑠, 𝑞) >  𝑟, the leaf object (𝑝) does NOT exist in the search range. 

 

Here, the radius 𝑟 refers to the distance between the query object (𝑞) and the object posi-

tioned at the bottom of the search list. In addition, 𝑑(𝑠, 𝑜) can be read and updated from the 

distance list file among the objects that have been prepared in advance. 𝑑(𝑠, 𝑞) is calculated 

when the nearest node is updated. Therefore, all of the metric information used in theorem ③ is 

already known when being applied to a trigonometric inequality. It can be said that an object is 

not included in the search range without calculating the distance between each object and 𝑞 in 

person. In other words, the unnecessary calculation processes can be omitted, and the distance 

calculation frequency can be reduced. By repeating these processes until all objects are removed, 

the search results per case can be finally obtained.  

 

Fig. 4.  The base point (s) selection method 
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4.3 Test Results 

A test on the k-nearest neighbor search has been performed using an improvement method for 

the compression of each search range. The explanatory notes in each graph are test results that 

have been obtained after performing the four methods mentioned below. According to a conven-

tional research method (VP-tree), it is more effective to use several 𝑣𝑝 objects than to use a 

single 𝑣𝑝 object. Therefore, the VP-tree has been chosen in this paper. 

 

• vp_all: search range compression method using several 𝑣𝑝 objects 

• vp_nn: search range compression method using the nearest node 

• vp_all_nn: search range compression method that combines both vp_all and vp_nn 

• AESA: AESA-based search range compression method 

 

First of all, the test results on the metric calculation frequency in each dimension are shown in 

the figures below (Fig. 5 to Fig. 8). These figures are the results of 12, 24, 48, and 96-dimension 

data. The horizontal axis (k) and vertical axis (calc_num) refer to search frequency and metric 

calculation frequency, respectively. As shown in the VP-tree in the figure, metric calculation 

frequency decreased in order of vp_all, vp_nn and vp_all_num. Meanwhile, AESA is lower than 

the VP-tree in terms of metric calculation frequency (See the curves labeled 1, 2, 3, 4, respec-

tively). 

Then, the test results on the search time in each dimension are shown in the Fig. 9 to Fig. 12. 

These figures are the test results of 12, 24, 48, and 96-dimension data. Fig. 13 shows the data 

search execution time in all dimensions (12 to 96) using AESA. In these figures, the horizontal 

(𝑘) and vertical (cpu-time) axes are expressed in the second of time. The cpu-time of the VP-tree 

of the figures (Fig. 9 to Fig. 12) decreases in the order of vp_all, vp_nn and vp_all_nn. In particular,   

 

Fig. 5.  Metric calculation frequency on 12-dimension data 
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Fig. 6.  Metric calculation frequency on 24-dimension data 

 

 

 

Fig. 7.  Metric calculation frequency on 48-dimension data 
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the difference is minor compared to vp_all and vp_nn. However, about a 10% improvement is 

observed in vp_all_nn. The range compression based on the nearest node is processed in the 

ranges rather than in the conventional 𝑣𝑝. It appears that all of them have been possible because 

the search range compression has significantly narrowed.  

Regarding the improvement rate of the test time by change in dimensions, the improvement 

rate stayed at about 5% when 100 data sets were searched at 12 dimensions. However, the im-

provement rate increased up to 12% when 100 data sets were searched at 96 dimensions. As 

shown above, if the method mentioned in this paper is used, a sufficient search range compres-

sion effect can be obtained despite there being high dimensions. 

The detailed information on the indexed files, which was constructed for the test, has been 

stated in Table 1. Here, 'dim,' 'node,' 'leaf_object,' and 'index_size' refer to dimensions, the num-

ber of nodes, the number of leaf objects, and the size of index data, respectively. In a leaf node, 

the maximum node was set to 10. Regardless of the dimensions, the size of files in which a dis-

tance list is recorded using the latest node was 313 Mbytes. 

The test results from the comparison with AESA are shown in the Fig. 13 below. Dimensions 

12, 24, 48, and 96 are curves 1, 2, 3, and 4, respectively. Even though AESA is superior to the   

 

Fig. 8.  Metric calculation frequency on 96-dimension data 
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Table 1.  Specification of the index file 

Dim Node Leaf Object Index Size (bytes) 

12 2357 7643 6,000,640 

24 2255 7745 5,742,592 

48 2265 7735 5,767,168 

96 2295 7705 5,844,992 
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Fig. 9.  Execution time on 12-dimension data 

 

 

 

 

Fig. 10.  Execution time on 24-dimension data 
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Fig. 11.  Execution time on 48-dimension data 

 

 

 

 

Fig. 12.  Execution time on 96-dimension data 
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VP-tree in terms of metric calculation frequency, the former was slower than the latter in terms 

of search speed because of a difference in the frequency of reading files from a distance list. The 

frequency for the VP-tree and AESA to read files from the distance list is stated in Table 2 below. 

The distance list file of the VP-tree is a file that calculated the distance between the leaf object 

and all of the other objects. On the contrary, the distance list file of AESA is a file that estimated 

the distance between all of the objects.  

In AESA, the distance list file must be read whenever the process is repeated. In other words, 

distance list files should be read as many times as the distance calculation frequency, which has 

had a significant impact on search time. Meanwhile, the distance list file is read in the compres-

sion of the search range of the leaf objects that are in the VP-tree. Therefore, the frequency for 

reading files can be reduced to the minimum level. In conclusion, it can be said that the VP-tree 

is better than AESA in improving search efficiency. 

 

 

  

Table 2.  Comparison of the frequency of reading files from the distance list 

Dimension AESA VP-tree 

12 110 6 

24 219 7 

48 257 7 

96 262 7 

 

 

 

Fig. 13.  The execution time of AESA 
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5. CONCLUSION 

As the search descends down the tree, some distance calculations can be omitted, and instead 

the distance is inferred from the distance of the query object from the parent node, and the dis-

tance of the parent node from the child node is pre-calculated in indexing time. The search 

through multimedia data has been discussed. The features of multimedia data are expressed in 

one vector, and a search is performed based on the similarity between the features in vectors 

representing indexed data and the vector representing the query. The vectors representing the 

indexed data are hierarchically arranged as a tree structure. In terms of search time, the search 

space is reduced by recursively dividing the data set based on metric information, while de-

scending down the tree [21]. We suggest narrowing the search space and consequently reducing 

the number of distance calculations, by applying trigonometric inequalities over several dimen-

sions that are simultaneously searched. 

This paper has attempted to reduce distance calculation frequency and to improve search 

speed by enhancing the search algorithm of the leaf node in the VP-tree. Experimental results 

are reported from a comparison against the AESA algorithm. We illustrated that AESA made 

much less distance calculations than the proposed VP-tree schemes. Our proposed schemes run 

faster than AESA. The reason why is their smaller number of readings of the distance list file, 

which calculates the distance between objects during the indexing time. This, seemingly, too, is 

a result of applying the trigonometric inequalities, or the larger number of items stored in the 

AESA files as compared with the VP-tree files, which again is a result of applying the trigono-

metric inequalities. 

Using the improvement method, a test has been performed on a similar video search. As a re-

sult, the search time was reduced by 5-12%. In addition, it has been confirmed that the VP-tree 

was more effective than AESA in reducing the search time. It is necessary to perform an addi-

tional study on the search algorithm, which can further reduce the distance calculation by using 

a smaller index size. 
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