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Generic Constructions for Strong Designated
Verifier Signature

Deng-Guo Feng?*, Jing Xu* and Wei-Dong Chen*

Abstract—A designated verifier signature is a special type of digital signature, which
convinces a designated verifier that she has signed a message in such a way that the
designated verifier cannot transfer the signature to a third party. A strong designated
verifier signature scheme enhances the privacy of the signer such that no one but the
designated verifier can verify the signer’s signatures. In this paper we present two generic
frame works for constructing strong designated verifier signature schemes from any
secure ring signature scheme and any deniable one-pass authenticated key exchange
protocol, respectively. Compared with similar protocols, the instantiations of our
construction achieve improved efficiency.

Keywords—Strong Designated Verifier Signature, Ring Signature, Deniable Authenticated
Key Exchange, Provable security

1. INTRODUCTION

The concept of undeniable signature was proposed by Chaum et al. [1] to enable signers to
have complete control over their signatures. In an undeniable signature scheme, in order to avoid
undesirable verifiers getting convinced of the validity of the signature, the verification of the
signature requires the participation of the signer in an interactive protocol. However, the signer
does not know to whom he is proving the validity of a signature [2, 3]. To solve this problem,
Jakobsson et al. proposed a designated verifier signature (DVS) scheme [4] in 1996. In a DVS
scheme, the signature provides authentication of a message without providing the non-
repudiation property of traditional signatures. This is due to the fact that the designated verifier
can always construct a signature intended for himself that is indistinguishable from an original
signature. Designated verifier signatures have many applications such as in E-voting, call for
tenders and software licensing.

However, DVS schemes still have some limitations. In a scenario, where the verifier can
prove to a third party that he has not yet received the signature, the third party believes with high
probability that the signer has created it. The Strong Designated Verifier Signatures (SDVS),
proposed by Jakobsson et al. [4], overcome this problem by forcing the designated verifier to
use his secret key at the time of verification. Thus, no one else other than the designated verifier
can verify an SDVS. This notion was formally defined by Saeednia et al. [5] and strengthened
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by Laguillaumie et al. [6]. Following Saeednia et al.’s work, Susilo et al. proposed an identity-
based SDVS scheme based on pairings in [7].

Jakobsson et al. [4] suggested a generic approach for constructing SDVS. In their
construction, to sign a message, the signer first uses their signing key to produce a DVS
signature for the verifier and then encrypts the signature under the verifier’s encryption key. The
ciphertext is sent as the SDVS signature to the verifier. This approach is conceptually simple,
however, the resulting scheme is not efficient enough, as it requires the encryption of a DVS
signature which usually is comprised of several group elements. Nevertheless, the idea of
employing certain security protocol as a building block for a generic construction motivates our
work.

In this paper, by using a secure ring signature scheme and using deniable one-pass
authenticated key exchange protocol as building blocks respectively, we present two secure and
generic constructions for SDVS. One merit of this work lies in that we can now design provably
secure SDVS schemes in a systematic way by taking advantage of existent research results on
ring signature schemes and deniable one-pass authenticated key exchange protocols. In addition,
we show that the generic constructions can be instantiated efficiently, and the computation costs
of the instantiations are lower than those of similar schemes.

The rest of this paper is organized as follows. Section 2 formally describes a strong
designated verifier signature scheme. Section 3 reviews some cryptographic primitives used in
our constructions. Our two generic constructions are presented along with the security analysis
in Section 4 and Section 5, respectively. The performance comparison of our instantiations with
existing DV'S schemes is given in Section 6. Section 7 concludes the paper.

2. STRONG DESIGNATED VERIFIER SIGNATURE

Roughly speaking, a strong designated verifier signature (SDVS) allows the signer to sign
documents so that only the intended verifier can verify the validity of their signatures and while
simultaneously preventing the signature from being arbitrarily disseminated. Below we give the
formal definition of an SDVS.

Definition 2.1 A Strong Designated Verifier Signature (SDVS) scheme in the public-key in-

frastructure setting consists of the following four (probabilistic) polynomial-time algorithms:

- Key Generation: On input 1 (where & is the security parameter), the algorithm outputs a pair
of matching public and secret keys (pk, sk).

- Signature Generation. On input the secret key of the signer S, public keys of S and ¥ (the
designated verifier), and the message M, the algorithm outputs a signature o on M, i.e.
o =Sig(skg, pkg, pky M)

- Signature Verification. On input the secret key of the verifier 7, public keys of S (the signer)
and ¥, the message M and the purported signature © , the algorithm outputs 1 (accept) or 0
(reject).

- Simulation. On input the secret key of the verifier 7, public keys of S (the signer) and 7, and
the message M, the algorithm outputs a signature & on M, i.e. O = Sim(sky, pks, pky, M)

The correctness of SDVS requires that Ver(sky,pks,pky M,c) = 1 for all o =
Sig(sks. pks. pky, M) . Besides the correctness, a secure SDVS should also satisfy three security
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requirements: unforgeability, non-transferability and strongness. In the following, we define
these properties respectively.

Unforgeability: Unforgeability requires that any third party other than the signer S and the
designated verifier 7 cannot forge a signature on behalf of S with non-negligible probability.
Formally, it is defined by the following game played between a game challenger C and a prob-
abilistic polynomial-time adversary 4:

(1) Setup: C runs the algorithm to obtain the key pairs of Sand 7, i.e. (pks, sks) and

(pky .sky ), and gives (pks. pky) to A.

(2) Sign Queries: A can request a signature on a message M for the signer S, and the designated
verifier V. In response, C outputs a signature o for a message M.

(3) Verify Queries: 4 can request a signature verification on a pair (M,o) for the signer S,
and the designated verifier V. In response, C outputs 1 if the signature is correct, and 0
otherwise.

(4) Output: Finally, 4 outputs its forgery (M*,a*). It wins the game if 37" has never been
queried during the Sign queries and &~ is a valid signature on 37*.

Definition 2.2: (Unforgeability) An SDVS scheme is said to be (t,qs,vg'qw,u«?)-unforgeable if
there is no adversary 4 which runs in time at most ¢, issues at most ¢, Sign queries, and at
most ¢, Verify queries, and wins the game with a probability of at least £ .

Non-transferability: Non-transferability means that the signature output by the signer is
computationally indistinguishable from the simulated output by the designated verifier. For-
mally, it is defined by the following game played between a game challenger C and a probabilis-
tic polynomial-time distinguisher D:

(1) Setup: C runs the algorithm to obtain the key pairs of S and V, ie. (pks.sks) and

(pky.sky ), and gives (pks.pky) to D.

(2) Sign and Verify Queries: D issues queries adaptively for polynomially as many times as
in the unforgeability game.

(3) Challenge: D submits a new message u~ to the challenger C. C then flips a fair coin
b2 {01}, generates a signature o and returnsitto D. If b =0, "= Sig(sks, pks, pky M) ;
Otherwise, "= Sim(sky, pk, pky,M") .

(4) Output: Finally, D outputs a bit 5’ and wins the game if 5 =b".

Definition 2.3 (Non-transferability) An SDVS scheme is said to be non-transferable against
an adaptively chosen message distinguisher D if ‘F’r[b—b 1-4/2| is negligible.

Strongness: Strongness requires that anyone who does not know the designated verifier’s se-
cret key cannot tell if a signature is from the real signer or other signers. Formally, it is defined
by the following game played between a game challenger C and a probabilistic polynomial-time
distinguisher D:

(1) Setup: C runs the algorithm to generate the key pairs for signers S;, S, and the verifier 7,

i.e. (Pks,sks, ), ( Pks, ks, ) and (pky . sky ), and gives ( Pks, ks, Pky ) to D.

(2) Sign and Verify Queries: D issues queries adaptively for polynomially as many times as

in the unforgeability game.
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(3) Challenge: D submits a new message ,,* to the challenger C. C then flips a fair coin
b2 {01}, computes the challenge signature "= Sig(sks, . pks, . pky,M") and returns o
to D.

(4) Output: Finally, D outputs a bit 5" and wins the game if b=5".

Definition 2.4 (Strongness) An SDVS scheme is said to be strong against an adaptively cho-
sen message distinguisher D if ‘Pr[b—b 1-12| is negligible.

3. TooLs

Our transformation uses several tools, including the ordinary ring signatures defined in sub-
section 3.1, the deniable authenticated key exchange protocols defined in subsection 3.2, and the
public key encryption schemes defined in subsection 3.3.

3.1 Ring Signature

The concept of ring signature was first introduced by Rivest et al. in 2001 [8]. In a ring signa-
ture scheme, a user wants to sign a message on behalf of a set (or ring) of users which include
himself. The verifier can be convinced that the signature was indeed generated by one of the
ring members; however, the verifier is unable to tell which member actually produced the signa-
ture.

A ring signature scheme consists of the following two algorithms:

Signature Generation: Given a message M and the set of ring members S ={4,4.....4,}, the
actual signer 4,(L<s <n)can produce a ring signature ¢ using the public keys pki, pkz..... pk, of
the ring and her own private key sk, .

Signature Verification: Given a message M and a ring signature o , which includes the ring
S=1{4,4,,.... 4, a verifier can determine whether (M.c) is a valid ring signature generated by
one of the ring members.

The resulting ring signature scheme must satisfy the following security requirements:

Anonymity: Any verifier should not have probability greater than 1/7 to guess the identity
of the real signer who has computed a ring signature on behalf of a ring of 7 members.

Unforgeability: Any adversary should not have non-negligible probability of success in forg-
ing a valid ring signature for some message M on behalf of a ring that does not contain himself,
even if he knows valid ring signatures for messages, different from A that he can adaptively
choose.

3.2 Deniable One-Pass Authenticated Key Exchange

The concept of deniable authenticated key exchange (DAKE) was first introduced by Rai-
mondo et al. in 2006 [9]. A deniable key exchange allows two parties (sender A and responder B)
to jointly share a secret key while neither of the two nor an outsider can prove to a judge that the
communication between the initiator and the responder happened. Another variant of DAKE is a
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deniable one-pass authenticated key-exchange protocol in which 4 sends a single message to B
after which both parties share a secret key.

We first recall the security model for authenticated key exchange due to Bellare and Rogaway
[10] and then add deniability to this model following the approach in [11].

The model includes a set u# of participant identifiers and each participant U€ ¢ has a public
and private key pair (pku.sky). The interaction between an adversary 4 and the protocol partici-
pants occurs only via oracle queries, which model the adversary capabilities in a real attack. Let
v’ denote the instance i of a participant U. All possible oracle queries are listed in the following:

- Execute (U'): This oracle query is used to simulate an eavesdropping attack by the adver-
sary. The output of this query consists of the messages that were exchanged during the hon-
est execution of the protocol.

- Reveal (U'): This query models the misuse of session keys. It returns to the adversary the
session key of participant instance ¢, if the latter is defined.

- Corrupt (U): The adversary 4 may request the long-term private key of participant U.

- Test (y'): This oracle query is not used to simulate the adversary’s attack, but to define the
session key’s semantic security. After querying the oracle, the session key of {7 or a ran-
dom number will be returned according to a predefined random bit 4. If b = 1, the adversary
would learn the session key of {/¢; otherwise the adversary only learns a random number
with the same length. This query can be called only once.

We say an instance ¢y has been accepted if it is successfully completed. An instance yiis
said to be fresh if the following conditions hold: (1) It has been accepted; (2) No Reveal or Cor-
rupt queries have been made to U or its partner, where the partner denotes the party with which
U is presumably interacting.

A secure DAKE protocol should satisfy two security requirements: semantic security of ses-
sion key and deniability.

Definition 3.1 (Semantic security) Let Succ (4) denote the success of A in the Test query.
The advantage of 4 in violating the semantic security of DAKE protocol is defined to be
def
Adv(A) = 2Pr[Succ(A4)]-1
We say that DAKE protocol satisfies semantic security if the advantage Adv (4) is negligible.

Definition 3.2 (Deniability) we say that DAKE protocol satisfies deniability if for any adver-
sary A, for any input of public keys and any auxiliary input, there exists a simulator SIM, that,
running on the same inputs as 4, produces a simulated view which is indistinguishable from the
real view of A4. It is noted that not only the communication during the session but also the value
of the session key should be part of the output of the simulation.

3.3 Public Key Encryption

A public key encryption scheme consists of the following polynomial-time algorithms:

- Key Generation: On input 1% (where k is the security parameter), the algorithm outputs a
pair of matching public and secret keys (pk, sk).
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- Encryption. On input a public key pk and the message M, the algorithm outputs a cipher text
c :Encpk(M)_

- Decryption. On input a secret key sk and a ciphertext ¢, the algorithm outputs a message M
or a special symbol L denoting failure.

The first formal security definitions for public key encryption appeared in [12]. The indistin-
guishability under chosen plaintext attack (IND-CPA) is one of the most natural practical re-
quirements for a public-key cryptosystem. Its intuitive meaning is that a ciphertext does not leak
any useful information about the plaintext but its length.

The security is defined by the following game between an adversary and a challenger. The
challenger generates a key pair (pk.sk) based on some security parameter & (e.g., a key size in
bits), and publishes pk to the adversary. The challenger retains sk . The adversary may per-
form any number of encryptions or other operations. Eventually, the adversary submits two dis-
tinct chosen plaintexts A4, and M; to the challenger. The challenger selects a bit &< {01} uni-
formly at random, and sends the challenge ciphertext ¢=£ncy (M) back to the adversary. The
adversary is free to perform any number of additional computations or encryptions. Finally, it
outputs a guess for the value of 5. We say the adversary wins if it correctly identifies 4.

Definition 3.3 (IND-CPA) A public key encryption scheme is IND-CPA secure if every prob-
abilistic polynomial time adversary wins the above game with a probability of 1/2+&(k), where
&(k) is a negligible function in the security parameter .

4. GENERIC CONSTRUCTION FROM RING SIGNATURE

We now propose a generic approach to construct a strong designated verifier signature
scheme. In our proposal, we employ a secure 2-party ring signature as the building block.

4.1 Construction

Let RS be a 2-party ring signature scheme that is secure as defined in Section 3.1. Then the
generic construction proceeds in the following steps:

Key Generation: This phase is the same as the key generation phase of the RS scheme. Sup-
pose that the signer S and the designated verifier ¥ obtain their respective key pairs (pks.sks)
and (pky ,sky ).

Signature Generation: Given the key pairs (sks, pks) of the signer S, the public key pk, of
the designated verifier 7 and message M, this phase computes the signature o as follows: S
chooses a random number » and computes £ncpi, (r) | M'=h(M, pks, pky .7, Enc i, (7)) | where A is a
hash function and £, (") means the encryption of r using ¥ ’s public key pk,. Then, S starts

the signature generation phase of the RS scheme and generates the signature
o= (Encka (r),RS.Sig(M")) .

Signature Verification: Upon receiving the signature o on message M, the designated veri-
fier V decrypts E£ncp, () by using his private key sk and obtains . Then, he com-
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putes M'= (M, pks,pky.r.Ep, (1)) | starts the signature verification phase of the RS scheme
(RS.Ver(M',5)) , and returns accept or reject.

Simulation: Given the key pairs (skv. pky) of the verifier ¥, the public key rks of the sign-
er S and message M, this phase computes the signature o as follows: 7 chooses a random
number » and computes Encp, (1), M'=h(M,pks, pky,r.Enc,, () | Then, V starts the signature
generation phase of the RS scheme and generates the signature o = (Encpy, (), RS.Sig(M")) |

4.2 Security Analysis

We now investigate the security of our generic construction presented above. The analysis
concerns the three security properties defined in section 2.

Theorem 4.1: Our generic construction GC is unforgeable as long as the underlying 2-party
ring signature scheme RS satisfies the unforgeability.

Proof: Let 4 be an adversary without the knowledge of the signer S’s or the verifier 7’s secret
keys. We assume that 4 can forge the signer S’s signature o = (Encpy, (). RS.Sig(M")) in our gen-
eral construction GC. Then 4 can forge the ring signature RS.Sig(M'). Therefore, the unforge-
ability of our construction reduces to the unforgeability of RS.

Theorem 4.2: Our generic construction is non-transferable as long as the underlying 2-party
ring signature scheme RS satisfies the anonymity.

Proof: Since both the signer S and the verifier 7 can compute the RS.Sig(M'), and thus can
obtain the signature o = (Enc y, (), RS.Sig(M")) on any message M, where M'= (M, pks. pky ,r,Encpp, (1)) ,
In addition, it is infeasible for any probabilistic polynomial-time distinguisher to tell whether the
message M was signed by the signer S or the designated verifier 7, which follows easily from
the anonymity of RS.

Theorem 4.3: Our generic construction is strong as long as the underlying public key en-
cryption scheme Enc () is IND-CPA secure.

Proof: In our generic construction, the verification of validity or invalidity of signatures can
only be performed by the designated verifier, since his secret key is involved in the verification.
This would guarantee that anyone, who does not know the designated verifier’s secret key, can-
not verify such a signature, nor distinguish the transcripts from random strings of the same
length and distribution. This means that our scheme is inherently strong.

4.3 Discrete Logarithm (DL) Instantiation

We now present a concrete instantiation of transforming a DL ring signature scheme [13] into
a strong designated verifier signature scheme. As is the case in all discrete logarithm based
schemes, we assume that some common parameters are initially shared between the users: a
large prime p, a prime factor ¢ of p—1, a generator g<z, of order ¢ and a one-way hash func-
tion 4 that outputs values in Z,.
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Key Generation: The signer S chooses his secret key xs<Z, and publishes the correspond-
ing public key pk; =g mod p. The verifier I also chooses his secret key x <z, and pub-
lishes the corresponding public key pk. =g” mod p.

Signature Generation: When S wants to sign a message M for 7, she chooses random values
k r, ¢ <z, and computes

z = pkizg* mod p
M'=h(M, pks, pky , pky’)
¢=h(pks, pky M',z)
¢ =(c—cy)modg
s =(k—xgc) modg

The signature is then o =(g",s,¢1,¢c5).

Signature Verification: Upon receiving the signature o=(g",s,c.c;) Oon message M, the
designated verifier  Computes

M'=h(M, pks, py,(g")")
z = g’ pkg pk;? mod p
¢ =h(pks, pky M’ ,2)
and outputs accept if and only if
cte,=c
holds. Otherwise, outputs reject.
Simulation: The designated verifier 7 can also compute a simulated signature o', which is

indistinguishable from S’s signature o . To do so, ¥ chooses random values k’, ’, ¢'e Z; , and
computes

z'= pkgigk‘ mod p
M'=h(M, pks, pky, k)
c'= h(pkg, pky ,M',2")
¢,'=(c'-¢")modg
s'= (k'—x,c,)modg

The simulated signature is then o'=(g",s'¢,"c,").
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4.4 RSA Instantiation

We now present a concrete instantiation of transforming an RSA ring signature scheme [13]
into a strong designated verifier signature scheme.

Key Generation: We denote by (Ns ,es ) and ( Ny , ey ) the signer S’s and the verifier s
public keys, respectively, and by ds and d, the respective private keys. Let #:01" >z, and
h,:{0.1" >z, be hash functions.

Signature Generation: When S wants to sign a message M for ¥, she chooses two random
values k, ¢ €Zy, , and Computes

z=h(eg,ey, M k)
s=hy(eg, ey, M,z+c3” modN,)

¢ = (K — )% mod Ny
The signature is then o =(s.c1.c2) .

Signature Verification: Upon receiving the signature o =(s.c1.c2) on message M, the desig-
nated verifier I computes

k=(s+cfs modNg)¥ mod N,

z="M(eg,ey,M,k)
and outputs accept if and only if

hy(eg,ep, M,z +c3 modN,)=s
holds. Otherwise, outputs reject.

Simulation: The designated verifier 7 can also compute a simulated signature o', which is

indistinguishable from S’s signature o . To do so, ¥ chooses two random values ', a'€Zy, ,
and computes

s'=hy(eg,ey , M, k")
2'=Iy(eg, ey, M, (s+¢;"s mod Ng)¥ mod ;)
¢,'=(k'=z") mod Ny,
The simulated signature is then o'=(s",¢;",¢,") .

5. GENERIC CONSTRUCTION FROM DENIABLE AUTHENTICATED KEY
EXCHANGE

We now propose another generic approach to construct a strong designated verifier signature
scheme from deniable one-pass authenticated key exchange (DOP-AKE) protocols.
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5.1 Construction

Let DOP-AKE be a deniable one-pass authenticated key exchange protocol that is secure as
defined in Section 3.2. Then the generic construction proceeds in the following steps:

Key Generation: This phase is the same as the key generation phase of the DOP-AKE proto-
col. Suppose that the signer S and the designated verifier 7 obtain their respective key pairs
(pks.sks) and (pky,sky) .

Signature Generation: Given the key pairs (pks,sks) of the signer S, the public key prky of
the designated verifier 7 and message M, this phase computes the signature o as follows: S
starts authentication phase in the DOP-AKE protocol and generates authentication message 7.
Then S computes the session key SK and C = H(pkg, pky,M,SK) , and outputs the signature ¢ =
(Ts,C) , where H() is a secure hash function.

Signature Verification: Upon receiving the signaturec = (Zs.C) on message M, the des-
ignated verifier 7 starts the authentication phase in the DOP-AKE protocol and computes the
session key SK by using his private key sky . Then, he compares C'= H(pkg, pky ,M,SK) with
C and outputs accept if and only if C’ = C holds.

Simulation: Given the key pairs (pky.sky) of the verifier V', the public key pks of the
signer S and message M, this phase computes the signature o as follows: According to the
deniability of DOP-AKE protocol, there exists a simulator S7M that, running on the same inputs
as V', produces a simulated view T and a simulated session key SK. Then, ¥ generates the simu-
lated signature o = (Ts, C=H(pks, pky,M,SK)).

5.2 Security Analysis

We now investigate the security of our generic construction presented above.

Unforgeability: For an adversary 4 to forge a signature on the message M without the knowl-
edge of the signer S’s or the designated verifier 77s secret keys, 4 needs to compute
C=H(pks,pky,M,SK) . It is impossible for 4 to learn SK, provided that DOP-AKE protocol sat-
isfies the semantic security of the session key. Therefore, A cannot forge a legal signature.

Non-transferability: Clearly, the deniability property (Definition 3.2) of DOP-AKE protocol
guarantees that the transcript view T and the session key SK simulated by the designated veri-
fier V are indistinguishable from those generated by the signer S. This means the simulated sig-
natureo = (Ts, H(pks,pky,M,SK)) is also indistinguishable from the real signature.

Strongness: In our generic construction, except for the designated verifier 7 and the signer S,
no third party can check the validity of a signature o for message M. First of all, according to
the semantic security (Definition 3.1) of DOP-AKE protocol, no adversary can reveal the ses-
sion key SK agreed between S and the receiver (designated verifier) V. Furthermore, without the
value of SK the third party cannot check the validity of o, since the session key SK is in-
volved in the verification. This means that our construction is strong as long as the underlying
deniable one-pass authenticated key exchange (DOP-AKE) protocol is semantically secure.
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5.3 Instantiation |

Many famous authenticated key exchange protocols such as [14] have their deniable one-pass
variants. Following the generic construction, we present a concrete instantiation of transforming
a DOP-AKE protocol [14] into a strong designated verifier signature scheme. Let p, ¢, g and
hash function () be as defined in Section 4.3.

Key Generation: The signer S chooses his secret key xs €Z; and publishes the correspond-

ing public key pkg =g*S mod p. The verifier 7 also chooses his secret key x €Z; and pub-
lishes the corresponding public key pkg =¢™ mod p.

Signature Generation: When S wants to sign a message M for ¥, she chooses random value
kez,, and computes
Ty =g" mod p
d = (T, pks, pky)
SK = h(phkyt*s)
C = h(pkg, pk,,M,SK)

The signature is then o = (75.0).

Signature Verification: Upon receiving the signature ¢ = (Z5.C) on message M, the des-
ignated verifier 7 computes

d =h(Ty,pkg, pky)
SK" = h((Tg - pk )™)
and outputs accept if and only if
C = h(pkg, pk, M ,SK™)
holds. Otherwise, outputs reject.
Simulation: The designated verifier 7 can also compute a simulated signature < ’, which is

indistinguishable from s signature o . To do so, ¥ chooses random value &' Z,, and com-
putes

TSI = gk‘ mod p
d = h(Ty, pks, pky)
SK' = h((Ts - pk¢ )™)
C' = h(pkg, pky ,M,SK")

The simulated signature isthen ¢ = (T5'.C').
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5.4 Instantiation Il

We now apply our construction to another concrete instance, using a DOP-AKE protocol va-
riant derived from a signature with message recovery [15]. Let p, ¢, g and hash function 4() be
as defined in Section 4.3.

Key Generation: The signer S chooses his secret key xs €Z, and publishes the correspond-
ing public key pkg =g™ mod p. The verifier ¥ also chooses his secret key xr €Z, and pub-
lishes the corresponding public key pkj = g*7 mod p.

Signature Generation: When S wants to sign a message M for V7, she chooses two random
values u, k € Z, , and computes
r=pkitg™ mod p

;:=rm0dq
s=(k—rsks)modg
SK =h(g")
C =h(pkg,pky M,SK )
The signature isthen o = (r, 5, C).

Signature Verification: Upon receiving the signature o = (r, s, C) on message M, the des-
ignated verifier 7 computes

r=rmodgqg
pky =g’ pkgr

SK™ = h((pki)™)
and outputs accept if and only if
C =h(pkg, pky,M,SK")
holds. Otherwise, outputs reject.

Simulation: The designated verifier 7 can also compute a simulated signature o ', which is
indistinguishable from S’s signature o . To do so, ¥ chooses two random values r'eZ,,s'<Z,
and computes

r =r modg

U =g’ pkir

SK' = h(U')™)

170



Deng-Guo Feng, Jing Xu and Wei-Dong Chen

C' = h(pks, pky ,M,SK').

The simulated signature is then o '= (7', s', C').

6. EFFICIENCY EVALUATION

In Table 1, we compare our instantiations (including DL instantiation, RSA instantiation, in-
stantiation | and instantiation I1) with Saeednia et al.’s [5], based on the length of the signature
and the required computational cost, where C, denotes modular exponentiation operation, C,,
denotes public encryption operation, C,, denotes public decryption operation, and “ Pre” denotes
pre-computed operation. For the comparison of signature length, we set p = 512 bits and ¢ = 160
bits for all discrete logarithm based schemes. In order to have comparable security, we set the
RSA modulus to 512 bits in the RSA instantiation.

From the comparison one can see that all our instantiations are much more efficient than the
scheme in [5] regarding both signature generation and verification, since the scheme [5] needs to
be encrypted using a public key in order to provide strongness.

Table 1. Comparisons of performance

DL instant. RSA instant. instant. | instant. I [5]
Length 992 1536 672 832 480
Sign Cost 4Pre 2Pre+ 1C, 2Pre 3Pre 1Pre + 1Cpe
Verify Cost 4C, 3C. 2C, 3C. 3Ce+1Cpq

7. CONCLUSION

In this paper, we have proposed two secure and generic approaches to constructing a strong
designated verifier scheme, employing a secure ring signature scheme and a deniable one-pass
authenticated key exchange protocol as the building blocks, respectively. We have also provided
formal security proofs for our construction based on the random oracle model. Moreover, the
constructions can be instantiated efficiently, and the computation and communication costs of
the instantiations are lower than or comparable to those of similar schemes.
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