

Journal of Information Processing Systems, Vol.7, No.1, March 2011 DOI : 10.3745/JIPS.2011.7.1.063

63

Accelerating the Sweep3D for a Graphic Processor
Unit

Chunye Gong*, Jie Liu*, Haitao Chen*, Jing Xie** and Zhenghu Gong*

Abstract—As a powerful and flexible processor, the Graphic Processing Unit (GPU) can
offer a great faculty in solving many high-performance computing applications. Sweep3D,
which simulates a single group time-independent discrete ordinates (Sn) neutron
transport deterministically on 3D Cartesian geometry space, represents the key part of a
real ASCI application. The wavefront process for parallel computation in Sweep3D limits
the concurrent threads on the GPU. In this paper, we present multi-dimensional
optimization methods for Sweep3D, which can be efficiently implemented on the fine-
grained parallel architecture of the GPU. Our results show that the overall performance of
Sweep3D on the CPU-GPU hybrid platform can be improved up to 4.38 times as
compared to the CPU-based implementation.

Keywords—Sweep3D, Neutron Transport, GPU, CUDA

1. INTRODUCTION
When the first GPU was introduced in 1999, the GPU mainly had been used to transform,

light and to rasterize triangles in three dimension (3D) graphics applications [1]. The perform-
ance of GPU doubles about every six to nine months, which means that it outperforms the Cen-
tral Processing Unit (CPU) by a lot [2]. The modern GPUs are throughput-oriented parallel
processors that can offer peak performance up to 2.72 Tflops single-precision floating-point and
544 Gflops double-precision floating-point [3]. At the same time, the GPU programming models,
such as NVIDIA’s Compute Unified Device Architecture (CUDA) [4], AMD/ATI’s Streaming
Computing [5] and OpenCL [6], have matures and they simplify the processing of developing
non-graphics applications. The enhancement of computing performance, and the development of
programming models and software makes GPU more and more suitable for general purpose
computing. At present, GPU has been successfully applied to medical imaging, universe explo-
ration, physics simulation, linear system solutions, and other computation intensive domains [7].

There is a growing need to accurately simulate physical systems whose evolutions depend on
the transport of subatomic particles coupled with other complex physics [8]. In many simula-
tions, particle transport calculations consume the majority of the computational resources. For
example, the time devoted to particle transport problems in multi-physics simulations takes up

※ This research work is supported by the National Natural Science Foundation of China under grant No.60673150, also
by the 973 Program of China under grant No. 61312701001. We would like to thank the anonymous reviewers for
their helpful comments.

Manuscript received September 30, 2010; accepted February 22, 2011.
Corresponding Author: Chunye Gong
* Dept. of Computer Sciences, National University of Defense Technology, Changsha, P.R. China (gongchunye,

@nudt.edu.cn, liujie@nudt.edu.cn, bugkiller@126.com, gzh@nudt.edu.cn)
** School of Information, XI’AN University of Finance and Economics, Xi’an, 710100, P.R. China (xaxj710@126.com)

Copyright ⓒ 2011 KIPS (ISSN 1976-913X)

Accelerating the Sweep3D for a Graphic Processor Unit

64

50-80% of the total execution time for many of the realistic simulations on Department of En-
ergy (DOE) systems [9, 10]. So parallelizing deterministic particle transport calculations is rec-
ognized as an important problem in many applications targeted by the DOE’s Accelerated Stra-
tegic Computing Initiative (ASCI). The benchmark code, Sweep3D, [11] represents the heart of
a real ASCI application that runs on the most powerful supercomputers such as Blue Gene [12]
and Roadrunner [13]. Sweep3D is a challenging application for large-scale systems, in that it
exhibits parallelism at different levels of granularity and the single-core efficiency is the basis [10].

Sweep3D has been ported to accelerators like CELL (processor name) and GPU. Sweep3D
runs as a stand case on the first Pflops heterogeneous supercomputer Roadrunner [13]. Petrini et
al [18] implemented Sweep3D on CELL (also called CBE, Cell Broadband Engine). They ex-
ploited 5 dimensions of parallelism, including process-level, thread-level, data streaming, and
vector and pipeline parallelism, to achieve good performance. All the technologies make full use
of CELL’s processing elements, data traveling, and it's hierarchical memory and they achieve
4.5-20 times speedup compared with different kind of processors. Barker et al. [13] employed
Sweep3D as a case study to exploit Roadrunner’s hybrid architecture. Roadrunner is the first
heterogeneous supercomputer to run Linpack at a sustained speed in excess of one Pflops. The
most impressive thing in their work is that the ported Sweep3D performs on preproduction Roa-
drunner at full scale. Lubeck et al [21] implemented Sweep3D on the double precision perform-
ance improved CELL (PowerXCell8i) using an intra-chip message passing model that mini-
mizes data movement. The advantages and disadvantages of this programming model with a
previous implementation using a master-worker threading strategy are compared. A micro archi-
tecture performance model was applied to predict overall CPI (cycles per instruction), and gives
a detailed breakdown of processor stalls. We [22] presented multidimensional optimization me-
thods for Sweep3D, which can be implemented on the fine-grained parallel architecture of the
GPU. The multi-dimensional optimization methods include thread level parallelism, more
threads and repeated computing, and using on-chip shared memory, etc.

Because the representation of Sweep3D and the potential computing performance of the new
GPU platform for particle transport, we accelerated Sweep3D on GPU. This is an extended pa-
per on the previous implementation of Sweep3D [22]. In this paper we describe our experiences
of developing Sweep3D implementation for the CUDA platform, and we analyze the bottleneck
of our GPU execution. Our GPU version is based on the Single Instruction Multiple Data (SIMD)
and uses the massive thread level parallelism of GPU. Efficiently using registers and thread lev-
el parallelism can improve performance. We use the repeated computing and shared memory to
schedule 64 times more threads, which improves performance with a 64n-cubed problem size. Our
GPU version achieves 4.38 times speedup as compared to the original single CPU core version.

The remainder of this paper is organized as follows: in the next section, the overview of
Sweep3D is presented. The architecture of GT200 GPU and programming model CUDA are
described in Section 3. In Section 4 we present the multi-dimensional optimization methods. In
Section 5 we present the experimental results and analysis. Finally we give the conclusion and
plans for the future in Section 6.

2. AN OVERVIEW OF SWEEP3D
Sweep3D [11] solves a three-dimensional neutron transport problem from a scattering source.

Chunye Gong, Jie Liu, Haitao Chen, Jing Xie and Zhenghu Gong

65

The basis of neutron transport simulation is the time-independent, multi-group, inhomogeneous
Boltzmann transport equation. The numerical solution to the transport equation involves the
discrete ordinates (Sn) method and the procedure of source iteration. In the Sn method, where N
represents the number of angular ordinates used, the angular-direction is discretized into a set of
quadrature points. In Cartesian geometries (XYZ), each octant of angles has a different sweep
direction through the mesh, and all angles in a given octant sweep the same way. The sweep of
the Sn method generically is named, “wavefront” [14]. The solution involves two steps: the
streaming operator is solved by sweeps and the scattering operator is solved iteratively.

A Sn sweep for a given angle proceeds as follows: every grid cell has 4 equations with 7 un-
knowns (6 faces plus 1 central) and boundary conditions complete the system of equations. The
solution is by a direct ordered solve known as a, “sweep.” Three known inflows allow the cell
center and 3 outflows to be solved. Each cell’s solution then provides inflows to 3 adjoining
cells (I, J, and K directions). This represents a wavefront evaluation with recursion dependence
in all 3 grid directions. Sweep3D exploits parallelism via a wavefront process. First, a 2D spatial
domain decomposition onto a 2D array of processors in the I and J-directions is used. Second,
the sweeps of the next octant pair start before the previous wavefront is completed; the octant
order required for reflective boundary conditions limits this overlap to two octant pairs at a time.
The overall combination is sufficient to give good theoretical parallel utilization. The resulting
diagonal wavefront is depicted in Fig. 1 just as the wavefront starts in the 4th octant and heads
toward the 6th octant [14, 15].

On single core, there is no communication in Sweep3D. The Sweep() subroutine, computa-
tional core of Sweep3D, takes about 97.70% of the whole runtime. The structure of the Sweep()
subroutine is listed in Fig. 2. The jkm loop (line 7 - line 22) in the Sweep() subroutine takes
99.05 % of the subroutine runtime. The major computation of each cell includes reading the
source from spherical harmonics (Pn) moments, solving Sn equation recursively, updating flux
from Pn moments, and updating diffusion synthetic acceleration (DSA) face currents.

A complete wavefront from a corner to its opposite corner is an iteration. The I-lines that is
the jkm loop in the iteration can be solved in parallel on each diagonal. As showed in Fig. 1, the
number of concurrent threads is 1, 3, 6 and 10. The relationship between maximum concurrent
threads ()(nMCT) and problem size n -cubed (+∈ zn) shows in (1):

lim

() 6MCT n n
n

=
→ ∞

 (1)

Similarly, the relationship between average concurrent threads ()(nACT) and problem size

n -cubed shows in (2):

Fig. 1. Wavefront parallelism in 3D geometry

Accelerating the Sweep3D for a Graphic Processor Unit

66

lim

() 3ACT n n
n

=
→ ∞

 (2)

3. ARCHITECTURE OF NVIDIA GT200 AND CUDA
3.1 Architecture of Nvidia GT200

The architecture of GPU is optimized for rendering real-time graphics, a computation and
memory access intensive problem domain with enormous inherent parallelism. Unlike CPU, a
much larger portion of a GPU’s resources are devoted to data processing rather than to caching
or controlling flow.

The NVIDIA GT200 chip (Fig. 3) contains 240 Streaming-Processor (SP) cores running at

Fig. 2. Structure of Sweep() subroutine

Fig. 3. Architecture of GT200 GPU

Chunye Gong, Jie Liu, Haitao Chen, Jing Xie and Zhenghu Gong

67

1.44 GHz. Eight SPs form one Streaming Multiprocessors (SMs or Multiprocessors) and each
SP run in a SIMD manner. There are ten independent processing units called, “Thread Process-
ing Clusters” (TPC) and each TPC contains a geometry controller, a SM controller, three SMs,
and a texture unit. Multiprocessors creates, manages, and executes concurrent threads in hard-
ware with near zero scheduling overheads and can implement barrier synchronization. The Sin-
gle Instruction Multiple Thread (SIMT) unit, which is akin to SIMD vector organizations, cre-
ates, manages, schedules, and executes threads in groups of 32 parallel threads called warps [4,
19].

The particular and useful specifications of Tesla S1070 and M2050 are listed in Table 1. The
ideal peak performance depends on how many operations can be performed per cycle. One
stream processor technically supports one MAD (multiply-add) and one MUL (multiply) per
cycle, which would correspond to 1.04 Tflops per GPU. There is only one double-precision unit
in a SM and the peak double-precision floating-point performance is about 78 Gflops per GPU.
There are 4 GPUs in a Tesla S1070. So the peak single- and double-precision floating-point
performances are 3.73 to 4.14 Tflops and 311 to 345 Gflops [19].

The application performance on the GPU is directly associated with Maximum Thread Blocks
(MTB) per Multiprocessor. Most compute capability 1.3 run eight thread blocks (MTBwarp) be-
cause of the restriction of warp. As listed in Table 1, the shared memory and registers also limits
maximum thread blocks. For example, the maximum thread blocks limited by registers (MTBreg)
is shown in (3):

Total number of registers available per block
(Threads per block)*(Registers per thread)regMTB = (3)

3.2 Programming Model and Software

The programming model is a bridge between hardware and application. As a scalable parallel
programming model, CUDA [4] does not abstract the whole computing system in an ideal level.
The hybrid system is separated into host and device. CUDA uses the kernel function, which is a
SPMD (Single Program Multiple Data) computation with a potentially large number of parallel
threads, to run efficiently on hardware. The concept of thread block in thread hierarchy makes
the CUDA programming model independent of the number of a GPU’s SMs.

Table 1. Technical specifications of a Tesla S1070 and M2050 GPU

GPU model S1070 M2050
CUDA compute capability 1.3 2.0

Total amount of global memory 4G 2.8G
Number of multiprocessors (SM) 30 14

Number of CUDA cores (SP) 240 448
Total amount of constant memory 64 KB 64 KB

Total amount of shared memory per block 16 KB 48 KB
Total number of registers available per block 16 KB 32 KB

Warp size 32 32
Clock rate 1.44 GHz 1.15 GHz

Accelerating the Sweep3D for a Graphic Processor Unit

68

CUDA exposes the Multiprocessors on the GPU for general purpose computation through a
minimal set of extensions to C programming language. Compute intensive components of a pro-
gram can run as kernel function. Kernel functions are executed many times with different input
data. The software managed on chip cache or shared memory in each SIMD core and barrier
synchronization mechanism let local data sharing and synchronization in a thread block become
a reality.

4. MULTI-DIMENSIONAL OPTIMIZATION METHODS
Although there is no data send and receive on a single GPU through MPI, we still keep the

process level parallelism as Fig. 2 shows. This will guarantee the portability of the existing
software. As mentioned in Section 2, the jkm loop takes the most runtime. So the strategy for the
implementation on this hybrid system is GPU-centric. That is to say, we have the compute in-
tensive part run on GPU and CPU do little computation. The architecture optimization of hybrid
computing of this application can be seen in Fig. 4.

4.1 Stage 1: Thread Level Parallelization

Fig. 2 indicates that there are two levels of parallelism of the subroutine Sweep(). One is the
I-lines on JK-diagonals with MMI pipelining (the jkm loop, line 7 - line 20) that can be proc-
essed in parallel, without any data dependency. The other one is the inner loop in the jkm loop,
including reading the source from Pn moments (line 8, 9), updating the flux of Pn moments (line
17, 18) and DSA face currents (line 19, 20). There are two reasons for why we don’t choose
exploiting the parallelism of the most inner loop. First, the inner loop is limited by the X dimen-
sion size of the space geometry (the value of ‘it’). Another shortcoming of parallelizing the most
inner loop is that CPU calls kernel functions a lot more times and keeps too much temp local
data. So, exploiting the parallelism of the jkm loop becomes the suitable choice.

In the jkm loop, there are two main branches: .NOT.do_fixups or do_fixups (line 10) and the
variable of data-dependent loops increases or decreases (line 11, 14). The branches don’t affect

Fig. 4. Architecture of hybrid CPU-GPU computing

Chunye Gong, Jie Liu, Haitao Chen, Jing Xie and Zhenghu Gong

69

the performance of the kernel’s execution, but they make the whole kernel too big to program
and debug on GPU. So we divide the jkm loop into four different kernels (jkmKernelNotFixUp,
jkmKernelNotFixDown, jkmKernelFixUp, jkmKernelFixDown) and let CPU deal with the
branches. Each time CPU invokes “ndiag” threads, which are divided into 1 to
⎡ ⎤BlockSize 1.0/threadndiag ⋅ thread blocks. The structure of every kernel is the same as line 8 -
line 20 except for two branches.

The runtime of 64 times-cubed problem size on both CPU and GPU are listed in Table 2.
When the problem size is 128-cubed, the runtime of the Sweep3D on GPU is 41.51 seconds,
which is slower than running on CPU. The following parts in Section 4 illustrate how to acceler-
ate Sweep3D on Tesla S1070.

4.2 Stage 2: More Threads and Repeated Computing

Although we achieve 1.35 times speedup on problem size 192-cubed, the performance of 128-
cubed and 256-cubed is relatively poor. Taking 192-cubed as an example, the average number of
concurrent threads)192(ACT is about 576. The jkmKernelNotFixUp and jkmKernelNot-
FixDown use 41 registers per thread while jkmKernelFixUp and jkmKernelFixDown use 52
registers per thread. According to (3), we have ⎣ ⎦ 641)16KB/(64 =⋅ and ⎣ ⎦ 452)16KB/(64 =⋅ . That is
to say, six or four blocks can concurrently run on every multiprocessor. However, unfortunately,
there are only 576 threads and 9 total blocks that cannot make full use of 30 multiprocessors in
256-cubed problem size, let alone a smaller problem size.

There is no data-dependence in the loops from the reading source from Pn moments, updating
the flux and DSA face currents. We use 64 times more threads to do the same work that one
thread does in stage 1. As mentioned in Section 2, the average number of concurrent threads in
n-cubed is about 3n in stage 1. Here, invocating a kernel has 3n thread blocks with 64 threads in

Table 2. Runtime on CPU and GPU (seconds)

Size (cubed) 64 128 192 256
CPU 2.43 28.72 107.85 254.33

Stage1 4.44 41.51 79.79 426.20

Fig. 5. Performance improvement using more threads and repeated computing on S1070

Accelerating the Sweep3D for a Graphic Processor Unit

70

each block.
It’s efficient to use the global memory bandwidth when the simultaneous memory accesses by

threads in a half-warp can be coalesced into a single memory transaction of 128 bytes. However,
the data-dependent Sn loop must be executed by one thread, so there are two barrier synchroni-
zations before and after the Sn loop. The performance improvement is depicted in Fig. 5.

4.3 Stage 3: Using Shared Memory

The shared memory is on-chip and software managed cache can reduce the memory access
time of the reusing data. However, most computations in the program lack data reuse. It is im-
portant to exploit data reuse. We found that the results of the computing source from Pn mo-
ments are reused in the Sn loop and medial results in the Sn loop are reused in the updating flux
of Pn moments and DSA face currents. We utilize the shared memory to store the corresponding
reusable vectors instead of accessing the global memory.

A multiprocessor takes 4 clock cycles to issue one memory instruction for a warp. When ac-
cessing local or global memory, there is an additional 400 to 600 clock cycles of memory la-
tency [4]. A multiprocessor takes 6 cycles per warp instead of the usual 4 to access the shared
memory [20]. There are three reasons why using the shared memory cannot run up to 100 times
faster than using global memory. First, because of the double data type, there exists two ways of
bank conflicts in shared memory [4]. Second, the global memory access is coalesced and thread
blocks scheduling can hide latency. Third, the real memory access operations are more compli-
cated than theory analysis. The performance improvement is depicted in Fig. 6.

4.4 Stage 4: Other Methods

Other methods include more work on GPU, communication overlapping computation, auto-
tunner in the running time, and the using of texture memory. More work on GPU can avoid data
movement between CPU and GPU. Communication overlapping computation can hide some
time that is spent on communication. Autotunner is valuable when ndiag is very small. Texture
memory has a high-speed cache that can reduce the memory access time of the neighboring data.
All the methods above reduce the runtime of 256-cubed by 5.69 seconds.

Fig. 6. Performance improvement by using shared memory on S1070

Chunye Gong, Jie Liu, Haitao Chen, Jing Xie and Zhenghu Gong

71

5. PERFORMANCE RESULTS AND ANALYSIS
In this section, we compare the runtime of our GPU and CPU implementations from a wide

range of problem sizes and present speedup and precision errors.
The platform consists of Intel(R) Core(TM)2 Quad CPU Q6600 2.40 GHz processors, 5 GB

of main memory, and the Red Hat Enterprise Linux Server release 5.2 operating system. The
Tesla S1070 high performance computing platform consists of 4 GTX200 GPU, clock rate 1.44
GHz, with 4 GB frame buffer memory each, making a total GPU memory of 16GB.

For the purpose of comparison, we measure the speedup provided by one GTX200 GPU and
compare it to a serial code running on the CPU (consequently only one core). Both codes run on
double-precision floating-point arithmetic, and are compiled using the GNU gfortran compiler
version 4.1.2, and the nvcc compiler provided by CUDA version 3.1. In both cases, level two
optimization has been performed. Sweep3D runs 4 iterations, half with flux fix-ups, and half
without.

The performance improvement of each optimization stage on S1070 is illustrated in Fig. 7.
Stage 1 ports kernel part of Sweep3D to GPU and uses thread level parallelism. Stage 2 does
some repeated computing and uses 64 times more threads to access global memory. Stage 3 uses
shared memory to store local array. Stage 4 mainly puts additional work on GPU. Sweep3D runs
2.25 times faster on S1070 than on the single core of Q6600. The performance comparisons
between different experimental platforms are shown in Fig. 8. The new GPU M2050 performs 2
times better than the S1070. And the peak performance improvement of Sweep3D on M2050
than on the single core of Q6600 is up to 4.38.

There are mainly four procedures in each cell’s computation. The four procedures are the
reading source from Pn moments named “source”; solving the Sn equation recursively, which is
named “Sn”; updating the flux from Pn moments named, “flux”; and updating DSA face currents
named, “face”. Except for these four procedures, the additional computation and control are
named “other” procedure. The percentage of each procedure in the whole runtime is shown in
Fig. 9. Their quotient on GPU and GPU are absolutely different. The flux holds up to 32.29% of
the whole runtime on Q6600; and the Sn procedure holds 83.24% to 86.68% of the whole run-
time. It is obvious that the Sn procedure is the bottleneck for Sweep3D on the GPU.

Fig. 7. Speedup of whole Sweep3D application on S1070

Accelerating the Sweep3D for a Graphic Processor Unit

72

Some double precision mathematical operations on GTX200 are IEEE-754 round-to-nearest-
even, or even worse. This kind of system error cannot be avoided. The maximum error of 4 it-
erations at problem size 128-cubed is smaller than 10-13, which is acceptable.

Petrini got that the CELL BE is approximately 4.5 and 5.5 times faster than the 1.9 GHz Pow-
er5 and 2.6 GHz AMD Opteron on 50-cubed problem size. The optimized runtime is 1.33 sec-
onds on CELL BE without knowing how many iterations there are. Consequently the runtime of
Power5 and Opteron are 5.985 seconds and 7.315 seconds. The runtime of Intel Q6600 2.40
GHz is 3.10 seconds with 12 iterations, which is the default on 50-cubed input size. So the
CELL BE is about 2.33 times faster than Intel Q6600 processors. If the proportion can scale to a
192-cubed input size then the Sweep3D on M2050 is 1.88 times faster than on CELL BE. How-
ever, Lubeck’s implementation on PowerXCell8i (a double precision improved CELL) is much
faster than Petrini’s implementation [21]. The runtime of 10 iterations with fixups and dsa off
for cubed-50 problem size is 0.19 seconds. The according runtime on Q6600 is 2.31 seconds.
The speedup of Swee3D on PowerXCell8i is up to 12.16. Subsequently, the CELL performs
much better than GPU at present implementation. So, the accelerated GPU implementation
needs further optimization.

Fig. 8. Performance comparisons between different experimental platforms

Fig. 9. Percentage of each procedure in the whole runtime

Chunye Gong, Jie Liu, Haitao Chen, Jing Xie and Zhenghu Gong

73

6. CONCLUSION
An optimized GPU based implementation of Sweep3D has been presented and up to 4.38

times speedup has been achieved compared to its CPU implementation. The implementation
efficiently uses the features of a hybrid system and explores its multi-dimension optimizations.
To the best of our knowledge, our work has revealed a new implementation of neutron transport
simulation problems and wavefront processes of parallelism on GPU. Other similar and complex
wavefront algorithms or applications are also likely to benefit from our experience with the
CPU-GPU hybrid system.

After careful comparison, the bottleneck for Sweep3D on the GPU is distinguished. The bot-
tleneck consumes more the 80% of the total runtime. Obviously, breaking this bottleneck must
be a part of the future work. Furthermore, the scalability and performance issues on heterogene-
ous CPU-GPU clusters will be investigated also.

REFERENCES
[1] H. Nguyen, “GPU Gems 3,” Addison Wesley, 2007.
[2] D. Kirk, “Innovation in graphics technology,” Talk in Canadian Undergraduate Technology Confer-

ence, 2004.
[3] AMD Corporation, “ATI Radeon HD 5870 Feature Summary,” http://www.amd.com/, 2010.
[4] NVIDIA Corporation, “CUDA Programming Guide Version 3.1,” 2010.
[5] AMD Corporation, “ATI Stream Computing User Guide Version 2.0,” 2010.
[6] A. Munshi, “The OpenCL Specification Version: 1.1,” Khronos OpenCL Working Group, 2010.
[7] NVIDIA Corporation, “Vertical solutions on CUDA,” http://www.nvidia.com/object/vertical solu-

tions.html, 2010.
[8] M.M. Mathis, N. Amato, M. Adams, W. Zhao, “A General Performance Model for Parallel Sweeps

on Orthogonal Grids for Particle Transport Calculations,” Proc. ACM Int. Conf. Supercomputing,
2000, pp.255-263.

[9] A. Hoisie, O. Lubeck, H. Wasserman, “Scalability analysis of multidimensional wavefront algorithms
on large-scale SMP clusters,” The 7th Symposium on the Frontiers of Massively Parallel Computa-
tion, 1999, pp.4-15.

[10] A. Hoisie, O. Lubeck, H. Wasserman, “Performance and scalability analysis of teraflop- scale parallel
architectures using multidimensional wavefront applications,” International Journal of High Per-
formance Computing Applications, Vol.14, No.4, 2000, pp.330-346.

[11] The Los Alamos National Laboratory, “Sweep3D,” http://wwwc3.lanl.gov/pal/software/sweep3d/,
2010.

[12] K. Davis, A. Hoisie, G. Johnson, D.J. Kerbyson, M. Lang, M. Pakin, F. Petrini, “A Performance and
Scalability Analysis of the BlueGene/L Architecture,” Proceedings of the 2004 ACM/IEEE confer-
ence on Supercomputing, 2004, pp.41-50.

[13] K.J. Barker, K. Davis, A. Hoisie, D.J. Kerbyson, M. Lang, S. Pakin, J.C. Sancho, “Entering the peta-
flop era: the architecture and performance of Roadrunner,” Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, 2008, pp.1-11.

[14] E.E. Lewis, W.F. Miller, “Computational Methods of Neutron Transport,” American Nuclear Society,
LaGrange Park, 1993.

[15] K. Koch, R. Baker, R. Alcouffe, “Solution of the First-Order Form of Three-Dimensional Discrete
Ordinates Equations on a Massively Parallel Machine,” Transactions of American Nuclear Society,
V65, 1992, pp.198-199.

[16] M.M Mathis, D.J. Kerbyson, “A General Performance Model of structured and Unstructured Mesh
Particle Transport Computations,” Journal of Supercomputing, Vol.34, 2005, pp.181-199.

[17] D.J. Kerbyson, A. Hoisie, “Analysis of Wavefront Algorithms on Large-scale Two level Heterogene-

Accelerating the Sweep3D for a Graphic Processor Unit

74

ous Processing Systems,” Workshop on Unique Chips and Systems, 2006, pp.259-279.
[18] F. Petrini, G. Fossum, J. Fernandez, A.L. Varbanescu, N. Kistler, M. Perrone, “Multicore Surprises:

Lessons Learned from Optimizing Sweep3D on the Cell Broadband Engine,” The 21st International
Parallel and Distributed Processing Symposium, 2007.

[19] NVIDIA Corporation, “NVIDIA Tesla S1070 1U Computing System,” http://www.nvidia.com/ob-
ject/product tesla s1070 us.html, 2010.

[20] V.Volkov, J.W. Demmel, “Benchmarking GPUs to tune dense linear algebra,” Proceedings of the
2008 ACM/IEEE conference on Supercomputing, 2008.

[21] O. Lubeck, M. Lang, R. Srinivasan, G. Johnson, “Implementation and performance modeling of de-
terministic particle transport (Sweep3D) on the IBM Cell/BE,” Scientific Programming, Vol.17, No.1,
2009.

[22] C. Gong, J. Liu, Z. Gong, J. Qin, J. Xie, “Optimizing Sweep3D for Graphic Processor Unit,” C.-H.
Hsu, L. Yang, J. Park, S.-S. Yeo (Eds.), Algorithms and Architectures for Parallel Processing,
Vol.6081 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2010, pp.416-426.

Chunye Gong
Chunye Gong received his BS degree in Applied Mathematics and his MS de-
gree in Computer Science from the National University of Defense Technology
(NUDT). He is now a PhD candidate in Computer Science at NUDT. He focuses
on: large scale scientific computing, heterogeneous computing on hybrid archi-
tecture, non-linear numerical simulation, and stochastic simulation.

Jie Liu
Jie Liu received his doctorate degree in Computer Science at NUDT. He is now an associate professor
at NUDT. He focuses on: large scale scientific computing.

Haitao Chen
Haito Chen received his doctorate degree in Computer Science at NUDT. He is now an assistant pro-
fessor at NUDT. He focuses on: numerical simulation and system software.

Jin Xie
Jin Xie is an assistant professor at XI’AN University of Finance and Economics and PhD candidate in
Computer Science at NUDT. He focuses on: distributed computing and network security.

Zhenghu Gong
Zhenghu Gong is a respected professor at NUDT. Professor Gong focuses on: pervasive computing,
high performance networks, and information security.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

