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Abstract—As a powerful and flexible processor, the Graphic Processing Unit (GPU) can 
offer a great faculty in solving many high-performance computing applications. Sweep3D, 
which simulates a single group time-independent discrete ordinates (Sn) neutron 
transport deterministically on 3D Cartesian geometry space, represents the key part of a 
real ASCI application. The wavefront process for parallel computation in Sweep3D limits 
the concurrent threads on the GPU. In this paper, we present multi-dimensional 
optimization methods for Sweep3D, which can be efficiently implemented on the fine-
grained parallel architecture of the GPU. Our results show that the overall performance of 
Sweep3D on the CPU-GPU hybrid platform can be improved up to 4.38 times as 
compared to the CPU-based implementation. 
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1. INTRODUCTION 
When the first GPU was introduced in 1999, the GPU mainly had been used to transform, 

light and to rasterize triangles in three dimension (3D) graphics applications [1]. The perform-
ance of GPU doubles about every six to nine months, which means that it outperforms the Cen-
tral Processing Unit (CPU) by a lot [2]. The modern GPUs are throughput-oriented parallel 
processors that can offer peak performance up to 2.72 Tflops single-precision floating-point and 
544 Gflops double-precision floating-point [3]. At the same time, the GPU programming models, 
such as NVIDIA’s Compute Unified Device Architecture (CUDA) [4], AMD/ATI’s Streaming 
Computing [5] and OpenCL [6], have matures and they simplify the processing of developing 
non-graphics applications. The enhancement of computing performance, and the development of 
programming models and software makes GPU more and more suitable for general purpose 
computing. At present, GPU has been successfully applied to medical imaging, universe explo-
ration, physics simulation, linear system solutions, and other computation intensive domains [7]. 

There is a growing need to accurately simulate physical systems whose evolutions depend on 
the transport of subatomic particles coupled with other complex physics [8]. In many simula-
tions, particle transport calculations consume the majority of the computational resources. For 
example, the time devoted to particle transport problems in multi-physics simulations takes up 
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50-80% of the total execution time for many of the realistic simulations on Department of En-
ergy (DOE) systems [9, 10]. So parallelizing deterministic particle transport calculations is rec-
ognized as an important problem in many applications targeted by the DOE’s Accelerated Stra-
tegic Computing Initiative (ASCI). The benchmark code, Sweep3D, [11] represents the heart of 
a real ASCI application that runs on the most powerful supercomputers such as Blue Gene [12] 
and Roadrunner [13]. Sweep3D is a challenging application for large-scale systems, in that it 
exhibits parallelism at different levels of granularity and the single-core efficiency is the basis [10].  

Sweep3D has been ported to accelerators like CELL (processor name) and GPU. Sweep3D 
runs as a stand case on the first Pflops heterogeneous supercomputer Roadrunner [13]. Petrini et 
al [18] implemented Sweep3D on CELL (also called CBE, Cell Broadband Engine). They ex-
ploited 5 dimensions of parallelism, including process-level, thread-level, data streaming, and 
vector and pipeline parallelism, to achieve good performance. All the technologies make full use 
of CELL’s processing elements, data traveling, and it's hierarchical memory and they achieve 
4.5-20 times speedup compared with different kind of processors. Barker et al. [13] employed 
Sweep3D as a case study to exploit Roadrunner’s hybrid architecture. Roadrunner is the first 
heterogeneous supercomputer to run Linpack at a sustained speed in excess of one Pflops. The 
most impressive thing in their work is that the ported Sweep3D performs on preproduction Roa-
drunner at full scale. Lubeck et al [21] implemented Sweep3D on the double precision perform-
ance improved CELL (PowerXCell8i) using an intra-chip message passing model that mini-
mizes data movement. The advantages and disadvantages of this programming model with a 
previous implementation using a master-worker threading strategy are compared. A micro archi-
tecture performance model was applied to predict overall CPI (cycles per instruction), and gives 
a detailed breakdown of processor stalls. We [22] presented multidimensional optimization me-
thods for Sweep3D, which can be implemented on the fine-grained parallel architecture of the 
GPU. The multi-dimensional optimization methods include thread level parallelism, more 
threads and repeated computing, and using on-chip shared memory, etc. 

Because the representation of Sweep3D and the potential computing performance of the new 
GPU platform for particle transport, we accelerated Sweep3D on GPU. This is an extended pa-
per on the previous implementation of Sweep3D [22]. In this paper we describe our experiences 
of developing Sweep3D implementation for the CUDA platform, and we analyze the bottleneck 
of our GPU execution. Our GPU version is based on the Single Instruction Multiple Data (SIMD) 
and uses the massive thread level parallelism of GPU. Efficiently using registers and thread lev-
el parallelism can improve performance. We use the repeated computing and shared memory to 
schedule 64 times more threads, which improves performance with a 64n-cubed problem size. Our 
GPU version achieves 4.38 times speedup as compared to the original single CPU core version. 

The remainder of this paper is organized as follows: in the next section, the overview of 
Sweep3D is presented. The architecture of GT200 GPU and programming model CUDA are 
described in Section 3. In Section 4 we present the multi-dimensional optimization methods. In 
Section 5 we present the experimental results and analysis. Finally we give the conclusion and 
plans for the future in Section 6. 

 
 

2. AN OVERVIEW OF SWEEP3D 
Sweep3D [11] solves a three-dimensional neutron transport problem from a scattering source. 
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The basis of neutron transport simulation is the time-independent, multi-group, inhomogeneous 
Boltzmann transport equation. The numerical solution to the transport equation involves the 
discrete ordinates (Sn) method and the procedure of source iteration. In the Sn method, where N 
represents the number of angular ordinates used, the angular-direction is discretized into a set of 
quadrature points. In Cartesian geometries (XYZ), each octant of angles has a different sweep 
direction through the mesh, and all angles in a given octant sweep the same way. The sweep of 
the Sn method generically is named, “wavefront” [14]. The solution involves two steps: the 
streaming operator is solved by sweeps and the scattering operator is solved iteratively.  

A Sn sweep for a given angle proceeds as follows: every grid cell has 4 equations with 7 un-
knowns (6 faces plus 1 central) and boundary conditions complete the system of equations. The 
solution is by a direct ordered solve known as a, “sweep.” Three known inflows allow the cell 
center and 3 outflows to be solved. Each cell’s solution then provides inflows to 3 adjoining 
cells (I, J, and K directions). This represents a wavefront evaluation with recursion dependence 
in all 3 grid directions. Sweep3D exploits parallelism via a wavefront process. First, a 2D spatial 
domain decomposition onto a 2D array of processors in the I and J-directions is used. Second, 
the sweeps of the next octant pair start before the previous wavefront is completed; the octant 
order required for reflective boundary conditions limits this overlap to two octant pairs at a time. 
The overall combination is sufficient to give good theoretical parallel utilization. The resulting 
diagonal wavefront is depicted in Fig. 1 just as the wavefront starts in the 4th octant and heads 
toward the 6th octant [14, 15]. 

On single core, there is no communication in Sweep3D. The Sweep() subroutine, computa-
tional core of Sweep3D, takes about 97.70% of the whole runtime. The structure of the Sweep() 
subroutine is listed in Fig. 2. The jkm loop (line 7 - line 22) in the Sweep() subroutine takes 
99.05 % of the subroutine runtime. The major computation of each cell includes reading the 
source from spherical harmonics (Pn) moments, solving Sn equation recursively, updating flux 
from Pn moments, and updating diffusion synthetic acceleration (DSA) face currents.  

A complete wavefront from a corner to its opposite corner is an iteration. The I-lines that is 
the jkm loop in the iteration can be solved in parallel on each diagonal. As showed in Fig. 1, the 
number of concurrent threads is 1, 3, 6 and 10. The relationship between maximum concurrent 
threads ( )(nMCT ) and problem size n -cubed ( +∈ zn ) shows in (1): 

 
lim

( ) 6MCT n n
n

=
→ ∞

                           (1) 

 
Similarly, the relationship between average concurrent threads ( )(nACT ) and problem size 

n -cubed shows in (2): 

 
Fig. 1.  Wavefront parallelism in 3D geometry 
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lim

( ) 3ACT n n
n

=
→ ∞

                           (2) 

 
 

3. ARCHITECTURE OF NVIDIA GT200 AND CUDA 
3.1 Architecture of Nvidia GT200 

The architecture of GPU is optimized for rendering real-time graphics, a computation and 
memory access intensive problem domain with enormous inherent parallelism. Unlike CPU, a 
much larger portion of a GPU’s resources are devoted to data processing rather than to caching 
or controlling flow. 

The NVIDIA GT200 chip (Fig. 3) contains 240 Streaming-Processor (SP) cores running at 

 
Fig. 2.  Structure of Sweep() subroutine 

 
Fig. 3.  Architecture of GT200 GPU 
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1.44 GHz. Eight SPs form one Streaming Multiprocessors (SMs or Multiprocessors) and each 
SP run in a SIMD manner. There are ten independent processing units called, “Thread Process-
ing Clusters” (TPC) and each TPC contains a geometry controller, a SM controller, three SMs, 
and a texture unit. Multiprocessors creates, manages, and executes concurrent threads in hard-
ware with near zero scheduling overheads and can implement barrier synchronization. The Sin-
gle Instruction Multiple Thread (SIMT) unit, which is akin to SIMD vector organizations, cre-
ates, manages, schedules, and executes threads in groups of 32 parallel threads called warps [4, 
19].  

The particular and useful specifications of Tesla S1070 and M2050 are listed in Table 1. The 
ideal peak performance depends on how many operations can be performed per cycle. One 
stream processor technically supports one MAD (multiply-add) and one MUL (multiply) per 
cycle, which would correspond to 1.04 Tflops per GPU. There is only one double-precision unit 
in a SM and the peak double-precision floating-point performance is about 78 Gflops per GPU. 
There are 4 GPUs in a Tesla S1070. So the peak single- and double-precision floating-point 
performances are 3.73 to 4.14 Tflops and 311 to 345 Gflops [19]. 

The application performance on the GPU is directly associated with Maximum Thread Blocks 
(MTB) per Multiprocessor. Most compute capability 1.3 run eight thread blocks (MTBwarp) be-
cause of the restriction of warp. As listed in Table 1, the shared memory and registers also limits 
maximum thread blocks. For example, the maximum thread blocks limited by registers (MTBreg) 
is shown in (3):  

 
Total number of registers available per block
(Threads per block)*(Registers per thread)regMTB =                  (3) 

 
 

3.2 Programming Model and Software 

The programming model is a bridge between hardware and application. As a scalable parallel 
programming model, CUDA [4] does not abstract the whole computing system in an ideal level. 
The hybrid system is separated into host and device. CUDA uses the kernel function, which is a 
SPMD (Single Program Multiple Data) computation with a potentially large number of parallel 
threads, to run efficiently on hardware. The concept of thread block in thread hierarchy makes 
the CUDA programming model independent of the number of a GPU’s SMs.  

Table 1.  Technical specifications of a Tesla S1070 and M2050 GPU 

GPU model S1070 M2050 
CUDA compute capability 1.3 2.0 

Total amount of global memory 4G 2.8G 
Number of multiprocessors (SM) 30 14 

Number of CUDA cores (SP) 240 448 
Total amount of constant memory 64 KB 64 KB 

Total amount of shared memory per block 16 KB 48 KB 
Total number of registers available per block 16 KB 32 KB 

Warp size 32 32 
Clock rate 1.44 GHz 1.15 GHz 
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CUDA exposes the Multiprocessors on the GPU for general purpose computation through a 
minimal set of extensions to C programming language. Compute intensive components of a pro-
gram can run as kernel function. Kernel functions are executed many times with different input 
data. The software managed on chip cache or shared memory in each SIMD core and barrier 
synchronization mechanism let local data sharing and synchronization in a thread block become 
a reality. 

 
 

4. MULTI-DIMENSIONAL OPTIMIZATION METHODS 
Although there is no data send and receive on a single GPU through MPI, we still keep the 

process level parallelism as Fig. 2 shows. This will guarantee the portability of the existing 
software. As mentioned in Section 2, the jkm loop takes the most runtime. So the strategy for the 
implementation on this hybrid system is GPU-centric. That is to say, we have the compute in-
tensive part run on GPU and CPU do little computation. The architecture optimization of hybrid 
computing of this application can be seen in Fig. 4. 

 

 
 
 

4.1 Stage 1: Thread Level Parallelization 

Fig. 2 indicates that there are two levels of parallelism of the subroutine Sweep(). One is the 
I-lines on JK-diagonals with MMI pipelining (the jkm loop, line 7 - line 20) that can be proc-
essed in parallel, without any data dependency. The other one is the inner loop in the jkm loop, 
including reading the source from Pn moments (line 8, 9), updating the flux of Pn moments (line 
17, 18) and DSA face currents (line 19, 20). There are two reasons for why we don’t choose 
exploiting the parallelism of the most inner loop. First, the inner loop is limited by the X dimen-
sion size of the space geometry (the value of ‘it’). Another shortcoming of parallelizing the most 
inner loop is that CPU calls kernel functions a lot more times and keeps too much temp local 
data. So, exploiting the parallelism of the jkm loop becomes the suitable choice. 

In the jkm loop, there are two main branches: .NOT.do_fixups or do_fixups (line 10) and the 
variable of data-dependent loops increases or decreases (line 11, 14). The branches don’t affect 

 
Fig. 4.  Architecture of hybrid CPU-GPU computing 
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the performance of the kernel’s execution, but they make the whole kernel too big to program 
and debug on GPU. So we divide the jkm loop into four different kernels (jkmKernelNotFixUp, 
jkmKernelNotFixDown, jkmKernelFixUp, jkmKernelFixDown) and let CPU deal with the 
branches. Each time CPU invokes “ndiag” threads, which are divided into 1 to 
⎡ ⎤BlockSize 1.0/threadndiag ⋅  thread blocks. The structure of every kernel is the same as line 8 - 
line 20 except for two branches.  

The runtime of 64 times-cubed problem size on both CPU and GPU are listed in Table 2. 
When the problem size is 128-cubed, the runtime of the Sweep3D on GPU is 41.51 seconds, 
which is slower than running on CPU. The following parts in Section 4 illustrate how to acceler-
ate Sweep3D on Tesla S1070. 

 
4.2 Stage 2: More Threads and Repeated Computing 

Although we achieve 1.35 times speedup on problem size 192-cubed, the performance of 128-
cubed and 256-cubed is relatively poor. Taking 192-cubed as an example, the average number of 
concurrent threads )192(ACT  is about 576. The jkmKernelNotFixUp and jkmKernelNot-
FixDown use 41 registers per thread while jkmKernelFixUp and jkmKernelFixDown use 52 
registers per thread. According to (3), we have ⎣ ⎦ 641)16KB/(64 =⋅  and ⎣ ⎦ 452)16KB/(64 =⋅ . That is 
to say, six or four blocks can concurrently run on every multiprocessor. However, unfortunately, 
there are only 576 threads and 9 total blocks that cannot make full use of 30 multiprocessors in 
256-cubed problem size, let alone a smaller problem size. 

There is no data-dependence in the loops from the reading source from Pn moments, updating 
the flux and DSA face currents. We use 64 times more threads to do the same work that one 
thread does in stage 1. As mentioned in Section 2, the average number of concurrent threads in 
n-cubed is about 3n in stage 1. Here, invocating a kernel has 3n thread blocks with 64 threads in 

Table 2.  Runtime on CPU and GPU (seconds) 

Size (cubed) 64 128 192 256 
CPU 2.43 28.72 107.85 254.33 

Stage1 4.44 41.51 79.79 426.20 

 
Fig. 5.  Performance improvement using more threads and repeated computing on S1070 
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each block. 
It’s efficient to use the global memory bandwidth when the simultaneous memory accesses by 

threads in a half-warp can be coalesced into a single memory transaction of 128 bytes. However, 
the data-dependent Sn loop must be executed by one thread, so there are two barrier synchroni-
zations before and after the Sn loop. The performance improvement is depicted in Fig. 5. 

 
4.3 Stage 3: Using Shared Memory 

The shared memory is on-chip and software managed cache can reduce the memory access 
time of the reusing data. However, most computations in the program lack data reuse. It is im-
portant to exploit data reuse. We found that the results of the computing source from Pn mo-
ments are reused in the Sn loop and medial results in the Sn loop are reused in the updating flux 
of Pn moments and DSA face currents. We utilize the shared memory to store the corresponding 
reusable vectors instead of accessing the global memory. 

A multiprocessor takes 4 clock cycles to issue one memory instruction for a warp. When ac-
cessing local or global memory, there is an additional 400 to 600 clock cycles of memory la-
tency [4]. A multiprocessor takes 6 cycles per warp instead of the usual 4 to access the shared 
memory [20]. There are three reasons why using the shared memory cannot run up to 100 times 
faster than using global memory. First, because of the double data type, there exists two ways of 
bank conflicts in shared memory [4]. Second, the global memory access is coalesced and thread 
blocks scheduling can hide latency. Third, the real memory access operations are more compli-
cated than theory analysis. The performance improvement is depicted in Fig. 6. 

 

 
 

4.4 Stage 4: Other Methods 

Other methods include more work on GPU, communication overlapping computation, auto-
tunner in the running time, and the using of texture memory. More work on GPU can avoid data 
movement between CPU and GPU. Communication overlapping computation can hide some 
time that is spent on communication. Autotunner is valuable when ndiag is very small. Texture 
memory has a high-speed cache that can reduce the memory access time of the neighboring data. 
All the methods above reduce the runtime of 256-cubed by 5.69 seconds. 

 
Fig. 6.  Performance improvement by using shared memory on S1070 
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5. PERFORMANCE RESULTS AND ANALYSIS 
In this section, we compare the runtime of our GPU and CPU implementations from a wide 

range of problem sizes and present speedup and precision errors. 
The platform consists of Intel(R) Core(TM)2 Quad CPU Q6600 2.40 GHz processors, 5 GB 

of main memory, and the Red Hat Enterprise Linux Server release 5.2 operating system. The 
Tesla S1070 high performance computing platform consists of 4 GTX200 GPU, clock rate 1.44 
GHz, with 4 GB frame buffer memory each, making a total GPU memory of 16GB. 

For the purpose of comparison, we measure the speedup provided by one GTX200 GPU and 
compare it to a serial code running on the CPU (consequently only one core). Both codes run on 
double-precision floating-point arithmetic, and are compiled using the GNU gfortran compiler 
version 4.1.2, and the nvcc compiler provided by CUDA version 3.1. In both cases, level two 
optimization has been performed. Sweep3D runs 4 iterations, half with flux fix-ups, and half 
without.  

The performance improvement of each optimization stage on S1070 is illustrated in Fig. 7. 
Stage 1 ports kernel part of Sweep3D to GPU and uses thread level parallelism. Stage 2 does 
some repeated computing and uses 64 times more threads to access global memory. Stage 3 uses 
shared memory to store local array. Stage 4 mainly puts additional work on GPU. Sweep3D runs 
2.25 times faster on S1070 than on the single core of Q6600. The performance comparisons 
between different experimental platforms are shown in Fig. 8. The new GPU M2050 performs 2 
times better than the S1070. And the peak performance improvement of Sweep3D on M2050 
than on the single core of Q6600 is up to 4.38.  

There are mainly four procedures in each cell’s computation. The four procedures are the 
reading source from Pn moments named “source”; solving the Sn equation recursively, which is 
named “Sn”; updating the flux from Pn moments named, “flux”; and updating DSA face currents 
named, “face”. Except for these four procedures, the additional computation and control are 
named “other” procedure. The percentage of each procedure in the whole runtime is shown in 
Fig. 9. Their quotient on GPU and GPU are absolutely different. The flux holds up to 32.29% of 
the whole runtime on Q6600; and the Sn procedure holds 83.24% to 86.68% of the whole run-
time. It is obvious that the Sn procedure is the bottleneck for Sweep3D on the GPU.  

 
Fig. 7.  Speedup of whole Sweep3D application on S1070 
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Some double precision mathematical operations on GTX200 are IEEE-754 round-to-nearest- 
even, or even worse. This kind of system error cannot be avoided. The maximum error of 4 it-
erations at problem size 128-cubed is smaller than 10-13, which is acceptable. 

Petrini got that the CELL BE is approximately 4.5 and 5.5 times faster than the 1.9 GHz Pow-
er5 and 2.6 GHz AMD Opteron on 50-cubed problem size. The optimized runtime is 1.33 sec-
onds on CELL BE without knowing how many iterations there are. Consequently the runtime of 
Power5 and Opteron are 5.985 seconds and 7.315 seconds. The runtime of Intel Q6600 2.40 
GHz is 3.10 seconds with 12 iterations, which is the default on 50-cubed input size. So the 
CELL BE is about 2.33 times faster than Intel Q6600 processors. If the proportion can scale to a 
192-cubed input size then the Sweep3D on M2050 is 1.88 times faster than on CELL BE. How-
ever, Lubeck’s implementation on PowerXCell8i (a double precision improved CELL) is much 
faster than Petrini’s implementation [21]. The runtime of 10 iterations with fixups and dsa off 
for cubed-50 problem size is 0.19 seconds. The according runtime on Q6600 is 2.31 seconds. 
The speedup of Swee3D on PowerXCell8i is up to 12.16. Subsequently, the CELL performs 
much better than GPU at present implementation. So, the accelerated GPU implementation 
needs further optimization.  

 
Fig. 8.  Performance comparisons between different experimental platforms 

 
Fig. 9.  Percentage of each procedure in the whole runtime 
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6. CONCLUSION 
An optimized GPU based implementation of Sweep3D has been presented and up to 4.38 

times speedup has been achieved compared to its CPU implementation. The implementation 
efficiently uses the features of a hybrid system and explores its multi-dimension optimizations. 
To the best of our knowledge, our work has revealed a new implementation of neutron transport 
simulation problems and wavefront processes of parallelism on GPU. Other similar and complex 
wavefront algorithms or applications are also likely to benefit from our experience with the 
CPU-GPU hybrid system.  

After careful comparison, the bottleneck for Sweep3D on the GPU is distinguished. The bot-
tleneck consumes more the 80% of the total runtime. Obviously, breaking this bottleneck must 
be a part of the future work. Furthermore, the scalability and performance issues on heterogene-
ous CPU-GPU clusters will be investigated also.  
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