

Journal of Information Processing Systems, Vol.6, No.4, December 2010 DOI : 10.3745/JIPS.2010.6.4.537

537

An Optimized Approach of Fault Distribution for
Debugging in Parallel

Maneesha Srivasatav*, Yogesh Singh** and Durg Singh Chauhan***

Abstract—Software Debugging is the most time consuming and costly process in the
software development process. Many techniques have been proposed to isolate different
faults in a program thereby creating separate sets of failing program statements.
Debugging in parallel is a technique which proposes distribution of a single faulty program
segment into many fault focused program slices to be debugged simultaneously by
multiple debuggers. In this paper we propose a new technique called Faulty Slice
Distribution (FSD) to make parallel debugging more efficient by measuring the time and
labor associated with a slice. Using this measure we then distribute these faulty slices
evenly among debuggers. For this we propose an algorithm that estimates an optimized
group of faulty slices using as a parameter the priority assigned to each slice as
computed by value of their complexity. This helps in the efficient merging of two or more
slices for distribution among debuggers so that debugging can be performed in parallel.
To validate the effectiveness of this proposed technique we explain the process using
example.

Keywords—Clustering, Debugging, Fault Localization, Optimization, Software Testing

1. INTRODUCTION
Debugging is the most expensive, time consuming and dominantly manual process for soft-

ware developers. The cost related to debugging is measured mostly on two parameters: (a) man-
ual labor and (b) time required to discover and correct bugs to produce a failure free program.
The primary reason for the high cost of debugging is the manual effort required to localize and
remove faults and the time consumed in producing failure free software. For an efficient debug-
ging process developers always try to find a good trade-off between the two. Among all debug-
ging activities, fault localization is among the most expensive [1].

When software fails it is usually due to more than one cause. At the time of failure debuggers
are not aware of the number of causes one failure might have. Thus, usually a one-bug-at-a-time
debugging approach is carried out in a sequential manner to locate a fault and then to fix it. In
this approach the debugger might utilize data from failed test cases and apply a fault localization
technique where one bug is targeted at a time. After localizing and fixing the fault the program
is retested, which might lead to another failure causing the cycle to be repeated until the pro-
gram becomes failure free.

Manuscript received August 20, 2010; first revision November 4, 2010; accepted November 18, 2010.
Corresponding Author: Maneesha Srivastav
* Dept. of Computer Science and Engineering/Information Technology, Jaypee Institute of Information Technology,

Noida, India (ek.maneesha@gmail.com)
** University School of Information Technology, Guru Gobind Singh Indraprastha, University, Kashmere gate, Delhi,

India (ys66@rediffmail.com)
*** Uttarakhand Technical University, Dehradun, India (pdschauhan@gmail.com)

Copyright ⓒ 2010 KIPS (ISSN 1976-913X)

An Optimized Approach of Fault Distribution for Debugging in Parallel

538

However, when there are multiple debuggers available for the debugging task we can create
more specialized test suites based on fault focusing clusters and then distribute debugging tasks.
By distributing debugging tasks we can save time and hence make the debugging activity less
expensive. [2] Have presented a new mode of debugging technique that provides a way for mul-
tiple developers to simultaneously debug a program of multiple faults by automatically produc-
ing specialized test suites that target individual faults. This technique has been termed ‘parallel
debugging’. Debugging in parallel reduces the time required to debug multiple faults in a pro-
gram. It involves distributing the program into many executable faulty slices which can be de-
bugged independently. Multiple debuggers are then allocated these individual slices for inde-
pendent debugging.

In this research we propose a new debugging technique called faulty slice distribution which
will help in minimizing the cost related to debugging as measured by two parameters, namely
(a) manual labor - as we are seeking to minimizing costs related to debugging by necessitating
the minimum amount of debuggers and (b) the time required to discover and correct bugs - as
our algorithm will select code based on the complexity estimation approach presented in [3] to
efficiently distribute tasks among debuggers. This way debugging can be performed in parallel
(i.e. simultaneously) with respect to other debuggers. The main contribution of this work is:

·A method to group related faulty slices for minimum redundancy in the debugging process

for parallel debugging.
·A method to calculate the required number of debuggers for the minimum time spent in the

debugging process.
·A method to create the required number of groups of faulty slices when the number of de-

buggers is limited.

2. RELATED WORK
Much of the recent work in debugging has been focused on fault localization as it is one of

most expensive parts of the debugging practice. There are various coverage-based fault localiza-
tion techniques aiming at identifying executing program elements. Among them some use cov-
erage information provided by test suites to locate faults. Such techniques [4-7] typically im-
plement and execute programs with test suites in order to gather runtime information. Other
faults localization techniques are: χSlice [8] which collects coverage from failed test runs and
passed test runs and then uses the set of statements executed only from the failed test run to be
reported as likely faulty statements, Nearest Neighborhood (NN) [9] is an extension of [8] which
features an extra step of passed test run selection. Tarantula [10] defines a color scheme to
measure correlations i.e. it searches for those statements whose coverage has a relatively strong
(but not necessarily strict) correlation with program failures. The empirical comparison of [11]
compares Tarantula with χSlice and NN and their results show that Tarantula performs best
among them. Statistical debugging [12, 13] implements predicates in the program and locates
faults by comparing evaluation results from the predicates in failed test runs with those in all test
runs whereas Delta debugging [14, 15] grafts values from a failed test run to a passed test run.
However the cost of repeating trials can be expensive [16] but it has been shown to be useful in
revealing many real world faults. The results [11] show that when multiple test runs are avail-

Maneesha Srivasatav, Yogesh Singh and Durg Singh Chauhan

539

able, the performance of Coverage Based Fault Localization (CBFL) is better than that of delta
debugging.

3. BASIC TERMINOLOGY AND OUR PROPOSED APPROACH
Locating a fault and debugging it not an easy task. It is costly as well as time consuming. The

primary reason for the high cost of debugging is the manual effort required to localize and re-
move faults and the time consumed in producing failure free software. We here present an ap-
proach that will help in minimizing the cost related to debugging by allowing concurrent debug-
ging of each faulty slice. This will in turn minimize the time required to discover and correct
bugs, thus achieving an improvement in the two most troublesome aspects of debugging - cost
and time. The whole process of work distribution is divided into a 4-stage distribution hierarchy
as shown in Fig 1.

The process starts with the Fault localization stage. In order to distribute tasks efficiently, we
use [10] a fault localization technique to generate different faulty slices focused around individ-
ual faults. The second stage considers the results of stage 1 and combines these faulty slices to
generate different clusters that are to be debugged in parallel using [2]. The third stage uses the
clusters generated in stage 2 and computes an estimation of the complexity of each slice using
[3]. This estimation will be helpful in distributing the debugging tasks among debuggers. We
propose this method for efficiently distributing debugging tasks such that every debugger gets
approximately an equal amount of work; this is done in stage 4. A brief overview of each stage
is presented below:

3.1 Stage 1: Fault Localization

Developers all over the world have been using a number of fault localization techniques for
effective and efficient fault localization. One such technique is the coverage based fault localiza-
tion technique (CBFL).It usually executes program (after its implementation) using a test suite
to gather information at runtime. With every test case the implemented program records (a) pro-
gram entities which were executed and (b) whether test cases passed or failed. Based on this
information suspiciousness of every entity is generated which is then used to sort the entities
into a decreasing order of suspiciousness. This sorted list is then used to generate ranks of all
entities, which can further be used by developers as guidance to find faulty code. For this re-
search we use [17] to localize faults using the following formula:

 Fault Localization

Clustering

Complexity Estimation

Faulty Slice Distribution
Fig. 1. 4-Stage Distribution Hierarchy

An Optimized Approach of Fault Distribution for Debugging in Parallel

540

()()
 (() ())

failed ssuspiciousness s
tot failed x failed s passed s

=
+ (1)

This technique utilizes TARANTULA to calculate suspiciousness of a statement. This suspi-

ciousness is calculated using the given formula where failed(s) is a function which returns the
number of test cases which executed this statement and failed and similarly passed(s) indicates
the number of test cases which passed. The intuition behind this approach is that a statement
which manifests more in failing cases is more likely to be faulty.

A number of metrics have been proposed and utilized but we chose this one as it is indicated
in [17] that the similarity coefficient Ochaia used in microbiology was found to be most efficient
in [18]. In this formula, the total number of failing test cases is indicated by totfailed, failing test
cases which cover statement s are called failed(s), and passing test cases covering s are called
passed(s).

3.2 Stage 2: Clustering Technique

To group faulty slices we use clustering technique [2] which uses the Jaccard similarity metric
to compute pairwise similarities among rankings generated in stage 1. It then clusters pairs
which are marked as similar by taking their closure. The Jaccard similarity metric uses the fol-
lowing formula to compute similarity between two sets, A and B, such that:

A B

Similarity
A B

= ∩
∪ (2)

To calculate similarity between two slices we first find the most important faulty statements

to be compared, this requires a threshold value
This clustering technique helps to combine similar faulty slices into one slice to minimize re-

dundancy in debugging. Once this similarity is calculated we can decide a threshold value e.g.
0.6 or 0.8 for determining similarity, all the slices which are similar by more than the threshold
are then combined in one cluster. Consider the examples given in Appendix 1 and 2; we have
given the clusters generated by combining individual slices. For the program in Fig 5(a) the
clusters generated are in 5(b),(c) and (d) and for the program in Fig. 6(a) the clusters generated
are in Fig 6(b),(c),(d) and (e).

3.3 Stage 3: Complexity Estimation

In our previous work [3] we showed a technique to compute the complexity of a faulty slice.
In that work the complexity of a faulty slice P was calculated by using suspiciousness of state-
ments (Si) using the following formula

1

() ()
n

i
i

Complexity P Suspicousness s
=

= ∑ (3)

For an example, the programs given in Appendix 1 and 2 corresponding complexities are

shown in the last row of each table.

Maneesha Srivasatav, Yogesh Singh and Durg Singh Chauhan

541

3.4 Stage 4: Faulty Slice Distribution

In this stage our algorithm will distribute slices obtained from stage 3 for equal distribution
among debuggers. It works on the principle of first selecting the slice of highest complexity so
that the volume of each queue (bucket) can be estimated. This will help in distributing an equal
amount of work among debuggers for parallel debugging.

Faulty slice distribution is a technique which enables multiple debuggers to debug a single
program simultaneously as well as independently. This is accomplished by creating different
faulty slices of a program and distributing these slices among debuggers. Since the individual
faulty slices will be debugged simultaneously by these debuggers their work load should be
comparable for the maximum efficiency and utilization of the debuggers’ time and effort. So
before distributing these faulty slices we will calculate the complexity of each faulty slice and
then distribute these slices equally among the debuggers.

The whole process of estimating complexity, assignment of volume to each queue, estimation
of the number of debuggers required and distribution of tasks is explained in section 5. Next we
explain the framework adopted for our approach followed by the data collection performed by
our faulty slice distribution algorithm to distribute tasks among debuggers. The experimental
study and result analysis is presented in section 6 followed by an application of the presented
approach and then the conclusion.

4. PROCESS MODEL
The framework for our proposed approach is presented in Fig. 2 and a description of its vari-

ous components is given below.

(a) Test case generator: This module generates test suites for exhaustive testing such that

every path of the program is tested. It takes a program as an input and generates a list of
failed and successful test cases as output.

(b) Program Slicer: It reads the output of the test case generator and separates faulty test
cases from correct ones. These faulty test cases are then stored as individual slices.

(c) Cluster Slices: It reads faulty slices from the program slicer and compares each slice to
others and generates a matrix for estimating similarities among them. Based on this data
it produces an optimized set of slices by combining all those slices whose statements
overlap with other slices by more than the given threshold so that redundancy can be
minimized.

(d) Complexity Evaluator: It calculates the complexity of each slice by calculating the sus-
piciousness of statements using our approach as presented in [3].

(e) Optimum Debuggers: In this phase slices are distributed among debuggers by analyzing
the complexity estimations generated from the previous step. Since these slices are from
the same program there are bound to be some dependence and similarities between them.
Thus it will be helpful in estimating the total time required to debug a particular slice.
This information can be used to calculate the minimum time required to debug an entire
set in parallel which in turn can be used to calculate the minimum number of debuggers
required to do the job. Hence, depending on criterions highlighted by the user (i.e., Num-
ber of debuggers, Amount of time) we can generate a chart to estimate the overall time

An Optimized Approach of Fault Distribution for Debugging in Parallel

542

required for debugging and the number of debuggers needed.
(f) Group Slices: Depending upon the time calculated from the previous step for processing

a slice(s) we can further combine two or more slices if the time required to process a slice
is not distributed equally. In that case we will club two or more slices where the length of
a slice will be the time required to process the longest slices in order to utilize time opti-
mally.

5. FAULTY SLICE DISTRIBUTION
To distribute clustered faulty slices our algorithm first stores the estimated complexities of

these slices and their respective priorities in ascending order in a database. It then analyzes on a
priority basis the complexity of each faulty slice and selects the one with highest complexity, MC
from the table maintained in database similar to Table 1. This slice with MC complexity is then
taken and stored in a queue. This will help in defining a maximum limit or volume of queue M,
where a queue with a capacity M means that it can hold faulty slices whose complexity sum
does not exceed M. For subsequent queues we analyze Table 1 in the complexity base for the
next higher priority such that:

()a b cH H M+ <= (4)

Where Ha is complexity of the next slice with second highest priority (highest MC) and Hb is

the one with lowest complexity in the database. We propose the following rules to fill up
queues:

Test case generator

Program Slicer

Cluster Slices

Complexity Evaluator

Optimum Debuggers

Group Slices

Test Cases

Slices

Slice Cluster

Slice Complexity
Slice Clusters

No. of Debuggers
Slice Cluster

Slice Complexity

Slice

Clustered
 Slices

Program

Debugger 1
Debugger 2 ….. Debugger n

Fig. 2. Process Model

Maneesha Srivasatav, Yogesh Singh and Durg Singh Chauhan

543

·The slices are arranged in decreasing order of their complexity to enable fast and efficient
selection.

·If the sum of (Ha + Hb) is less than MC then these two slices will be stored in the next queue.
·If there is more than one slice which satisfies the above criteria then we select the slice

which has maximum similarity with Ha.

The selection is done in such a manner that clusters added to a queue do not exceed its limit.

This will help in optimizing the number of queues thereby minimizing the number of debuggers.
This process of creating queues will be repeated until there are no more clusters to be allocated.
The total number of queues thus formed is in fact the number of debuggers required to debug the
program in minimum time.

5.1 Tool Proposed for Faulty Slice Distribution

We considered the issue of providing tool support for our proposed approach. The nature of
this support is sketched in Fig. 3. As illustrated the database consists of two parts, the clustered
slice base and the complexity slice base. These two bases are interlinked. Thus, it is possible to
move to the complexity base where the complexity and priority assigned to each clustered faulty

Table 1. View of Complexity base

Priority Complexity
P1 H1
P2 H2
P3 H3
… …
… …
Pn Hn

Fig. 3. Faulty Slice Distribution Tool Sketch

An Optimized Approach of Fault Distribution for Debugging in Parallel

544

slice is stored and also to the clustered base for analyzing the actual slice for debugging. The
information is stored in the form of a table as shown below (Table 1).

The Query Facility is to be used by a software engineer who can be a debugger or a leader of
a team in order to navigate through these two bases for distribution of tasks among debuggers.
The results of query are displayed in graphical form. This form is edited to locate a fault and
debug it. For updating slices and their respective complexities we use another database to store
this information. The reason for using another database is to store historic information of sys-
tems for future use (re-use). The two bases namely, the corrected faulty slices and new com-
plexities are then populated with information about debugged slices. The software engineer can
at any time access this information for analysis.

5.2 Algorithm

We propose the following algorithm to distribute faulty slices among debuggers. Firstly this
algorithm finds maximum complexity among the set of faulty slices given (in steps 1 to 6). Max-
imum complexity thus attained is taken to be the approximate capacity of a queue of debugging
tasks to be given to a debugger. Then it creates a queue of all faulty slices to be allocated to de-
buggers (steps 7 and 8).

The next step is to allocate these faulty slices. We take one faulty slice at a time and allocate it
to a queue depending on its similarity to the contents of that queue and the space available in the
queue (step 11 to 27). When there are no more faulty slices to be allocated to the queue we cre-
ate one more queue (step 28 and 29) and start filling it with the remaining faulty slices. Finally
this allocation stops once all the faulty slices are allocated.

The algorithm presented in Fig. 4 takes as an input the complexities of faulty slices generated

Fig. 4. Algorithm to distribute debugging tasks among debuggers to minimize time

Maneesha Srivasatav, Yogesh Singh and Durg Singh Chauhan

545

as a result of complexity estimation. Then by utilizing the complexity estimation of each faulty
slice it finally divides the set of faulty slices among debuggers. This algorithm is used in the
fourth stage of the hierarchy defined in section 3. For the first, second and third stages of this
method we have referred to the techniques used in [2, 3] and [17] as mentioned in the respective
sections.

The execution time of the above algorithm depends on the number of faulty slices created and
the maximum complexity of those faulty slices. For an average case one faulty slice will be vis-
ited a maximum of one time and hence if there are (n) faulty slices then this algorithm would
take approximately O(n) order time. However, in cases where many slices have similar com-
plexities this algorithm might take O (n2) time, but such a case would be unique and very
unlikely.

6. EXAMPLE AND DATA OBSERVATION FOR RESULT ANALYSIS
This section describes empirical data collected for analysis using the proposed strategy. The

data is collected for the programs given in Appendix 1 and 2. From these codes respectively
three and four clusters of faulty slices were generated. The details regarding the line of code and
complexity of each slice is given in Table 2 below.

In [2] M. J. Harrold et.al have introduced the idea of debugging in parallel. They have elabo-
rated on why debugging in parallel would be a better approach than sequential debugging. In our
previous work [3] we had defined a method to estimate the amount of debugging work related to
a given slice.

However, in all the papers listed in the literature no one addresses the problem of equally dis-
tributing debugging tasks among debuggers. Our approach defines a four-stage hierarchy that
enables us to divide one program into several sets of faulty slices, then to estimate the complex-
ity of each slice thereby estimating the amount of work to be done on each slice and then finally
to distribute these slices among debuggers equally. This will minimize time required to debug a
particular program, also each debugger gets a simpler task which is more focused on a single

Table 2. Complexity estimation of each slice in two examples

 Example 1 Example 2
 Slice 1 Slice 2 Slice 3 Slice 1 Slice 2 Slice 3 Slice 4

Line of code 8 13 5 6 27 8 21
Complexity 2.92 5.56 1.45 4.98 17.9 4.81 15

Sum of complexities 9.93 42.69
Highest Complexity (MC) 5.56 17.9

Table 3. Efficient data distribution

 Example 1 Example 2
 Debugger 1 Debugger 2 Debugger 1 Debugger 2 Debugger 3
 Slice 1 Slice 2 Slice 1 Slice 2 Slice 4
 Slice 3 -- Slice 3

Complexity 4.37 5.56 9.82 17.9 15

An Optimized Approach of Fault Distribution for Debugging in Parallel

546

fault hence it simplifies the debugging process for a debugger. The above example successfully
presents the advantage of task distribution, unlike other existing debugging techniques.

7. CONCLUSION
In this paper we have presented an efficient approach for distributing tasks among debuggers.

The entire process is divided into three stages. It first extracts faulty slices which are fault fo-
cused using [10] and then clusters these slices using a Jaccard similarity matrix [2]. In the next
step it measures the complexity of each clustered slice to estimate time and labor required to
debug them. This is done using our complexity estimation technique of [3]. Once the complexity
of each slice is calculated certain priority is given to these slices having been calculated using
the values of their complexity. Based on this data slices are grouped together with the maximum
capacity of a group being equal to the highest complexity of a slice.

REFERENCE
[1] I. Vessey, “Expertise in Debugging Computer Programs,” International Journal of Man-Machine

Studies: A process analysis, Vol.23(5), 1985, pp.459-494.
[2] James A. Jones, James F. Bowring and Mary Jean Harrold, “Debugging in Parallel,” Proc. ACM.

International Symposium on Software Testing and Analysis (ISSTA 07), July, 2007.
[3] M. Srivastav, Y. Singh, C. Gupta, D.S. Chauhan, “Complexity Estimation Approach for Debugging

in Parallel”, Proceedings of IEEE - 2010 Second International Conference on Computer Research and
Development, Kuala Lumpur, Malaysia, May, 2010.

[4] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the Accuracy of Spectrum-Based Fault Local-
ization,” Proc. Testing: Academic & Industrial Conference Practice And Research Techniques (TAIC
PART-MUTATION 07), IEEE Computer Society, September, 2007, pp.89-98.

[5] J. A. Jones and M. J. Harrold, “Empirical Evaluation of the Tarantula Automatic Fault-Localization
Technique,” Proc. IEEE/ACM International Conference on Automated Software Engineering (ASE
05), November, 2005.

[6] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of Test Information to Assist Fault Localiza-
tion,” Proc. ACM International Conference on Software Engineering (ASE 02), May, 2002.

[7] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable Statistical Bug Isolation,”
Proc. ACM SIGPLAN. Programming Language Design and Implementation (PLDI 05), June, 2005.

[8] H. Agrawal, J. Horgan, S., Lodon, and W. Wong, “Fault Localization using Execution Slices and
Dataflow Tests,” Proc. IEEE International Symposium on Software Reliability Engineering (ISSRE
95), October, 1995.

[9] M. Renieris, and S. Reiss, “Fault Localization with Nearest Neighbor Queries,” Proc. IEEE Interna-
tional Conference on Software Engineering (ASE 03), October, 2003.

[10] J.A. Jones, M.J. Harrold, and J. Stasko, “Fault Localization using Visualization of Test Information,”
Proc. International Conference on Software Engineering (ICSE 04), IEEE Computer Society. May,
2004.

[11] J.A. Jones, and M.J. Harrold, “Empircal Evaluation of the Tarantula Automatic Fault-Localization
Technique,” Proc. ACM International Conference on Software Engineering (ASE 05), November,
2005.

[12] B. Liblit, A. Aiken, A.X. Zheng, and M. I. Jordan, “Bug Isolation via Remote Program Sampling,”
Proc. ACM SIGPLAN. Conference on Programming Language Design and Implementation (PLDI
03), June, 2003, pp.141-154.

Maneesha Srivasatav, Yogesh Singh and Durg Singh Chauhan

547

[13] C. Liu, L. Fei, X.F. Yan, J.W. Han, and S. Midkiff, “Statistical Debugging: a Hypothesis Testing-
Based Approach,” IEEE Transactions on Software Engineering, Vol.32(10), 2006, pp.1-17.

[14] H. Cleve, and A. Zeller, “Locating Causes of Program Failures,” Proc. International Conference on
Software Engineering (ICSE 05), IEEE Computer Society. May, 2005.

[15] A. Zeller, “Isolating Cause-Effect Chains from Computer Programs,” Proc. ACM SIGSOFT. Fast
Software Encryption (FSE 02), November, 2002, pp.1-10.

[16] X.Y. Zhang, S. Tallam, N. Gupta and R. Gupta, “Towards Locating Execution Omission Errors,”
Proc. ACM SIGPLAN. Programming Language Design and Implementation (PLDI 07), June, 2007,
pp.415-424.

[17] R. Santelices, J.A. Jones, Y. Yu, and M.J. Harrold, “Lightweight Fault-Localization Using Multiple
Coverage Types” Proc. International Conference on Software Engineering (ICSE 09), IEEE Com-
puter Society. May, 2009.

[18] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. “On the accuracy of spectrum-based fault localiza-
tion” Proc. Of TAIC-PART ’07, September, 2007, pp.89-98.

Maneesha Srivastav
She is a Senior lecturer at Jaypee Institute of Information Technology, India. She
holds a Masters of Technology and Bachelor’s of Information Science degrees in
Computer Science and Engineering. Her areas of interest are Software Engi-
neering, Software Debugging, Software Project Management, Data Structures
and Algorithms. She has published papers in international journals and confer-
ences as well. Currently she is pursuing her Ph.D. in Software Debugging.

Yogesh Singh
He received his master’s degree and Ph.D. degree in Computer Engineering
from the National Institute of Technology, Kurukeshtra, India. He is a professor at
University School of Information Technology (USIT), Guru Gobind Singh Indra-
prastha University, Delhi, India. His research interests include software engineer-
ing focusing on the area of Software project planning, Testing, Metrics, Data
Structures, Computer Architecture, Parallel Processing and Neural
Networks. He is also a Controller of Examinations with the Guru Gobind Singh

Indraprastha University. He was founder Head and dean of the University School of Information Tech-
nology of Guru Gobind Singh Indraprastha University. He is co-author of a book on software engineer-
ing, and is a Fellow of IETE and member of IEEE. He has more than 200 publications in international
and national journals and conferences.

An Optimized Approach of Fault Distribution for Debugging in Parallel

548

Durg Singh Chauhan
He received his Ph.D. degree from Indian Institute of Technology (IIT) Delhi in
1986, India and did his post doctoral work at Goddard space Flight Centre,
Greenbelf Maryland. USA (1988-91). He is a Vice-Chancellor of Uttarakhand
Technical University, Dehradun, India. Prior to this he had also served as Vice-
Chancellor in three other universities in India. He has been a member of the
University Grant Commission (UGC), National Board of Accreditation (NBA) –
executive, All India Council for Technical Education (AICTE), Council for Ad-

vancement of People's Action and Rural Technology (CAPART), National Accreditation Board for Test-
ing and Calibration Laboratories (NABL) - Department of Science and Technology (DST) executive and
member, National expert Committee for IIT- (National Institute of Technology) NIT research grants. He
has authored two books and published and presented more than 115 research papers in international
journals and international conferences and wrote more than 20 articles on various topics in national
magazines. He has delivered hundreds of lectures in U.S. and Canadian universities.

Maneesha Srivasatav, Yogesh Singh and Durg Singh Chauhan

549

APPENDIX 1, EXAMPLE 1

Fig. 5. (a) Program to perform three calculating tasks

An Optimized Approach of Fault Distribution for Debugging in Parallel

550

Fig. 5. (b) Slice 1

Fig. 5. (c) Slice 2

Maneesha Srivasatav, Yogesh Singh and Durg Singh Chauhan

551

APPENDIX 2, EXAMPLE 2

Fig. 6. (a) Program to find a path from one point to another, indicates four clusters are formed

An Optimized Approach of Fault Distribution for Debugging in Parallel

552

Fig. 6. (b) Slice 1 Fig. 6. (c) Slice 3

Fig. 6. (d) Slice 2 Fig. 6. (e) Slice 4

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

