

Journal of Information Processing Systems, Vol.6, No.4, December 2010 DOI : 10.3745/JIPS.2010.6.4.481

481

Distributed and Scalable Intrusion Detection
System Based on Agents and Intelligent

Techniques

Aly M. El-Semary* and Mostafa Gadal-Haqq M. Mostafa**

Abstract—The Internet explosion and the increase in crucial web applications such as e-
banking and e-commerce, make essential the need for network security tools. One of
such tools is an Intrusion detection system which can be classified based on detection
approachs as being signature-based or anomaly-based. Even though intrusion detection
systems are well defined, their cooperation with each other to detect attacks needs to be
addressed. Consequently, a new architecture that allows them to cooperate in detecting
attacks is proposed. The architecture uses Software Agents to provide scalability and
distributability. It works in two modes: learning and detection. During learning mode, it
generates a profile for each individual system using a fuzzy data mining algorithm. During
detection mode, each system uses the FuzzyJess to match network traffic against its
profile. The architecture was tested against a standard data set produced by MIT's
Lincoln Laboratory and the primary results show its efficiency and capability to detect
attacks. Finally, two new methods, the memory-window and memoryless-window, were
developed for extracting useful parameters from raw packets. The parameters are used
as detection metrics.

Keywords—Data-Mining, Fuzzy Logic, IDS, Intelligent Techniques, Network Security,
Software Agents

1. INTRODUCTION
Intrusion Detection Systems (IDSs) are software systems that monitor computers or networks

to detect attacks. After they were introduced by Anderson in 1980 [1] and formalized by
Denning in 1987 [2], intrusion detection systems have become an active area of research. They
are evaluated according to their ability to minimize false negatives and false positives. False
negatives occur when an IDS fails to detect attacks. On the other hand, false positives occur
when benign activities are classified as attacks. IDSs are classified according to how attacks are
detected into two main approaches: signature-based and anomaly-based detections. Signature-
based intrusion detection systems (also known as misuse or pattern matching) employ general
pattern matching models based on attack signatures, such as rules, state-modeling and string
matching. NIDES [3] and Snort [4] use rules to define attack signatures. USTAT [5] uses state

※ This work is supported by the Deanship of Scientific Research, Taibah University, KSA.
Manuscript received May 10, 2010; first revision August 27, 2010; accepted September 8, 2010.
Corresponding Author: Aly M. El-Semary
* Dept. of Systems and Computer Engineering, Faculty of Engineering, Al-Azhar University, Cairo, Egypt (alyelse-

mary@azhar.edu.eg, alyelsemary@ieee.org, aelsemary@taibahu.edu.sa, aly2semary@yahoo.com)
** Dept. of Computer Science, Faculty of Computer and Information Science, Ain Shams University, Cairo, Egypt

(mgmostafa@asu.edu.eg)

Copyright ⓒ 2010 KIPS (ISSN 1976-913X)

Distributed and Scalable Intrusion Detection System Based on Agents and Intelligent Techniques

482

transition diagrams to detect access control violations; IDIOT [6] uses colored Petri nets to
represent attacks. Signature-based IDSs are vulnerable to novel attacks for which signatures
have not yet been created. Therefore, they have elevated false negative rates. On the other hand,
anomaly-based intrusion detection systems involve identifying activities that deviate from what
is considered normal system use; attacks are viewed as deviations from normal activities.
Anomaly-based systems employ various techniques including artificial intelligence [3],
statistical analysis [2], machine learning [7] and data mining [8, 9]. Recently, fuzzy logic
together with data mining IDSs [10-16] have been successfully used to identify anomalies.
Anomaly detection systems are capable of detecting attacks for which well-defined patterns do
not exist (such as new attacks or variations of existing attacks). However, defining and
maintaining “normal” profiles are not easy tasks.

Intrusion Detection Systems can be further classified as host-based or network-based. Host-
based intrusion detection involves detecting malicious activity within a single system. A host-
based intrusion detection system uses log information, system activity, process accounting
information (e.g., processor time, memory, disk usage), and file integrity to determine whether
or not a host is the target of an attack. A host-based system may be stand-alone or a part of a
distributed intrusion detection system. Denning [2] was the first to propose a real-time, general-
purpose expert system for detecting attacks; the system modeled normal system behavior using
audit records, and monitored the system audit records to detect abnormal activities. Lee [9]
developed a model that uses data mining of audit data records to create normal system profiles.
A network-based intrusion detection system monitors network traffic to detect malicious
activities, such as denial-of-service attacks, port scans, pings of death, or attempts to break into a
system. For example, a large number of TCP connection requests to a very large number of
different ports could indicate a “port scan” reconnaissance probe. Researchers have developed
various network-based intrusion detection models. Roesch [4] developed Snort, a network
misuse detection system employing a rule base. Qin [17] used data mining to profile normal
network behavior. Bridges and Vaughn [18], Dickerson et al. [10, 11], Luo and Bridges [16]
used fuzzy logic and data mining to model normal network behavior, and Elsemary et al [13-15]
use fuzzy association rules to model both network behavior and attack signature but their model
is neither scalable nor distributed. Last, but not least, Ming-Yang Su [19] uses the frequency
episode rules implemented by finite state machines to design a real-time network-based
intrusion prevention system for Probe/Exploit intrusion.

In this paper, we propose not only a new architecture for intrusion detection systems but also
two new methods for analyzing useful parameters to be used as detectiom metrics. The
architecture is based on agents and intelligent techniques and it is scalable and distributed. The
rest of this paper is organized as follows: Section 2 presents the general research methodolgy.
Section 3 introduces the proposed system architecture and its details; Section 4 presents data
analysis methods that are used to extract useful parameters for detection metrics. Section 5
analyzes the simulation results and finally Section 6 concludes the paper and future work.

2. GENERAL RESEARCH METHODOLOGY
Fig. 1 describes the general research methodology. It continually collects raw data from the

underlying network and then extracts useful parameters that are used as detection metrics. Next,

Aly M. El-Semary and Mostafa Gadal-Haqq M. Mostafa

483

if network profiles (sets of rules) are not contracted yet, they should be built first. Otherwise, the
parameters are compared against the network profiles and if there is an attack, it should be
announced. The network profiles are contracted offline from training data while the detection is
online.

3. PROPOSED SYSTEM ARCHITECTURE
The proposed novel intrusion detection system, according to our knowledge, embodies a

modular design that involves seven stages: 1) Data capturing, 2) packets queuing, 3) data
analysis, 4) data mining, 5) network profiling, 6) attacks detection, and 7) attacks fusion. These
stages provide functional separation and enable developers to incorporate new elements into the
system (Fig. 2). In addition, this architecture enables the system to be either on one machine or
distributed all over a private network. It works in two modes of operation: learning mode and
detection mode. In the learning mode, the system inspects network traffic and uses a fuzzy data
mining algorithm to produce a set of fuzzy rules which represent the network behavior or profile.
In the detection mode, the system matches the current network behavior against the network
profiles produced during the learning mode. In other words, the system uses the network profile
to decide whether or not an intrusion has occurred.

3.1 Data Capturing

In this stage, capture agents are responsible for capturing raw packets from the private
network that needs to be protected. It passes the raw packets to the packet queuing stage which
in turn holds them in specific queues. This stage comprises several agents that can be run either
on one machine or distributed on more than one machine at different places in the network. Each
agent has the ability to be configured to capture specific types of network packets such as TCP
packets and ICMP packets.

Fig. 1. General research methodology flowchart

Distributed and Scalable Intrusion Detection System Based on Agents and Intelligent Techniques

484

3.2 Packets Queuing

In this stage, the raw packets captured by captured agents are queued into buffers. This stage
contains a number of queues equal to the number of captured agents; each queue is associated
with one agent as shown in Fig. 2. The association is represented by a labeled arrow from an
agent to its corresponding queue. The label on the arrow shows the types of packets captured by
the agent. E.g., the TCP capture agent captures TCP packets and puts them into the TCP queue.
Therefore, the arrow between them is labeled ‘TCP packets’.

P riva te N etw o rk

T C P
C ap tu re A g en t

T C P -IC M P
C ap tu re A g en t

IC M P
C ap tu re A g en t

TC
P

Q
ue

ue

D
at

a
C

ap
tu

ri
ng

. . .

Pa
ck

et
 Q

ue
ui

ng

. . .

TC
P-

IC
M

P
 Q

ue
ue

T C P
F ea tu res E x tractio n

T C P -IC M P F eatu res
E x trac tio n

IC M P
F eatu res E x trac tio n

D
at

a
A

na
ly

si
s

. . .

 p
a ck

e ts

 p
ac

ke
ts p acke ts

T C P
D ata_ m in in g

E n g in e

T C P -IC M P
D ata_ m in in g

E n g in e

IC M P
D ata_m in in g

E ng ineD
at

a
M

in
in

g

. . .

N
et

w
or

k
 P

ro
fil

in
g

. . .T C P P ro file
T C P -IC M P

P ro file T C P P ro file

T C P A ttack s
D etec tio n A g en t

T C P -IC M P A ttacks
D etectio n A g en t

IC M P A ttack s
D etec tion A g en tA

tt
ac

ks

D
et

ec
tio

n

. . .

A ttack F u sion

TC
P

A
tta

ck
s

IC
M

P
A

tta
ck

s

. .
 .

. .
 .

 T
C

P-
IC

M
P

Pa
ck

et
s

TC

P
Pa

ck
et

s

 IC
M

P
Pa

ck
et

s

 T
C

P-
IC

M
P

Pa
ck

et
s

 T

C
P

P a
ck

e t
s

 IC
M

P
Pa

ck
et

s

 T
C

P-
IC

M
P

 F
ea

tu
re

s

 T
C

P
Fe

at
ur

es

 IC
M

P
Fe

at
ur

es

 T
C

P-
IC

M
P

 R
ul

es

 T

C
P

R
ul

es

 IC

M
P

R
ul

es

 T
C

P-
IC

M
P

 R
ul

es

 T

C
P

R
ul

es

 IC

M
P

R
ul

es

TC
P

Fe
at

ur
es

 d
ur

in
g

th
e

de
te

ct
io

n
ph

as
e

 T

C
P-

IC
M

P
Fe

at
ur

es
 d

ur
in

g
th

e
de

te
ct

io
n

ph
as

e

IC
M

P
Fe

at
ur

es
 d

ur
in

g
th

e
de

te
ct

io
n

ph
as

e

 T
C

P-
IC

M
P

 A
tta

ck
s

IC
M

P
 Q

ue
ue

. .
 .

Fig. 2. Novel IDS architecture

Aly M. El-Semary and Mostafa Gadal-Haqq M. Mostafa

485

3.3 Data Analysis

The Data Analysis stage is responsible for extracting features from the packets kept in the
packet queues. This stage passes the extracted features to either the Data mining engines or at-
tack detection agents depending on the mode of operation. During the learning mode, the ex-
tracted features are passed to the Data mining engines while during the detection mode, they are
passed to the attack detection agents (Fig. 2). Each data analysis module in this stage is associ-
ated with a specific packet queue in the previous stage to get its inputs. It extracts features from
the raw packets using either one of two analysis methods: the memory-window or memoryless-
window. These two methods are described in more detail in Section 4.

3.4 Data Mining

The data mining stage, which is active only during the learning mode, consists of a set of
separate data mining modules. Each module works independently to extract a set of fuzzy rules
from the analyzed data received from the corresponding module in the features extraction stage.
It passes the extracted fuzzy rules to the corresponding module in the network profiling stage.
For example, the TCP data mining module receives its input from the TCP features extraction
module and passes its output-- fuzzy rules, to the TCP profiling (Fig. 2). The extracted fuzzy
rules describe either the normal behavior of the underlying network if the system is used for
anomaly detection or the attack behavior or signatures if the system is used for signature based
detection. The first step for extracting the rules is to describe the associated attributes. Each at-
tribute or feature is characterized by a fuzzy variable that is defined by three trapezoidal func-
tions: L (Low), M (Medium), and H (High). Before defining each function, four statistical pa-
rameters called Q1 (1st Quarter), median, Q3 (3rd Quarter), and xmax, are calculated from the data
associated with each attribute. The value xmax is the maximum value received from attribute x.
Next, each parameter is divided by 1.1xmax to normalize it to a value between 0 and 1 (Fig. 3)

After defining the membership functions for each attribute, each data mining engine (agent) in
the data mining stage is used to extract a set of fuzzy rules from the data. Each engine deploys a
fuzzy association rule algorithm that is used to discover the hidden relationships among attrib-
utes and represent these relationships in a form of fuzzy association rules. The fuzzy data- min-
ing algorithm used to extract rules takes the data associated with each attribute and two thresh-

Fig. 3. Fuzzy sets defining term functions of an attribute x

Distributed and Scalable Intrusion Detection System Based on Agents and Intelligent Techniques

486

olds called smin and cmin as an input, where smin represents the minimum support while cmin repre-
sents the minimum confidence. These thresholds enable the algorithm to exclude rules that have
support and confidence values less than smin and cmin, respectively. The algorithm produces fuzzy
rules as an output. Each fuzzy rule will be in the form:

p → q: s, c;

Where p and q are fuzzy predicates in conjunctive form and are called the rule antecedent and

rule consequent, respectively; while s and c are the rule support and confidence, respectively.
Specifically,

p has the form: (a1 is t1) ∧ (a2 is t2) ∧ … ∧ (am is tm), and
q has the form: (am+1 is tm+1) ∧ (am+2 is tm+2) ∧ … ∧ (an is tn).

Each rule satisfies the following conditions: ai ∈ set of attributes A, ti ∈ terms of attribute ai,

{a1, a2, …, am} ∩ {am+1, am+2, …, an} = φ, and smin ≤ s ≤ 1, and cmin ≤ c ≤ 1.

For more details about this algorithm refer to [13].

3.5 Network Profiling

Network profiling consists of a number of databases equal to the number of capture agents in
the data capturing stage. Each database is used to keep the network behavior or attack signatures
extracted from the raw packets captured by the corresponding capture agent during the learning
mode. That is, the TCP Profile database is used to keep rules extracted from raw packets cap-
tured by the TCP capture agent during the learning mode. The rules in this stage are used by the
attack detection agent stage during the detection mode to check whether or not an attack occurs.
This stage provides an interface to query the rules of each profile.

3.6 Attack Detection

The Attack detection stage consists of a number of attack detection agents equal to the num-
ber of captured agents in the first stage. Agents of this stage are active only during the detection
mode. Each agent discovers attacks by matching data received from its associated feature extrac-
tion module in the data analysis stage against the fuzzy rules in the corresponding network pro-
file produced during the learning mode. For example, the TCP attack detection agent receives
data from the TCP features extraction module and matches it against the rules stored in the TCP
profile (Fig. 2). The data is represented in a record structure produced either by the memory-
window method (Fig. 7) or memoryless-window method (Fig. 11). The rest of this section de-
scribes in more detail the TCP attack detection agent as an example. The TCP matching algo-
rithm is implemented with FuzzyJess [20]. FuzzyJess is a fuzzy inference engine or specifically,
a rule-based expert system shell that integrates the fuzzy capabilities of the FuzzyJ Toolkit with
Jess, a Java version of CLIPS [21].

The algorithm works as follows: It receives the facts or data from its corresponding feature
extraction module in the data analysis stage and then sets up a counter i with a value of 1 to keep

Aly M. El-Semary and Mostafa Gadal-Haqq M. Mostafa

487

track of the rules. Next, it gets the rule number i from the TCP profile and evaluates its antece-
dent that is denoted by pi. If pi has a fuzzy match, the firing strength fp of pi is computed and
then evaluates the consequent part qi of the rule. If qi has a fuzzy match, the firing strength fq of
qi is computed. Next, the overall firing strength, f, of the rule equals the minimum value of fp and
fq multiplied by the confidence, ci, of the rule. If qi does not have a fuzzy match, f is computed as
the value of fp multiplied by the support, si, of the rule.

After computing the value of f of the underlying rule, it is compared against a threshold t1

get (pi, qi, si, ci)

fuzzy_match (pi) ?

f = 0

fq = firing_strength (qi)

fuzzy_match (qi) ?

f = m in (fp, fq) * ci

f = t1

fp = firing_strength (pi)

total = total + 1

i = i + 1

i < n ?

Announce attack Attack free

TCP Profile
(rules)

facts

yes

yes

yes

yes

yes

no

no

no

no

no

i = 1
 total = 0

(total/n) < t2 &
normal network profile?

Fig. 4. Attacks detection algorithm

Distributed and Scalable Intrusion Detection System Based on Agents and Intelligent Techniques

488

which is a value between zero and one. If the value of f is greater than or equal to t1, the variable
total should be incremented. The variable total is used to count the number of rules that have
firing strength greater than or equal t1. Next, the value of i should be checked against the value
of the variable n, which refers to the number of rules in the corresponding network profile. If the
last rule is not reached, i should be incremented and the process is repeated until the last rule is
reached. Otherwise, the value of total is compared to a threshold t2, where t2 has a value between
zero and one, too. If the value of total is less than the value of t2, it means that the underlying
facts do not match the predefined behavior. If the predefined behavior is the normal behavior of
the network under consideration, the corresponding detection agent will announce the existence
of an attack. Otherwise, the predefined behavior is the behavior of possible attacks and in this
case, the agent will consider the facts as a benign activity. On the other hand, if the value of total
is greater than or equal to the value of t2, the detection agent will announce the opposite result to
the first case. i.e., if the predefined behavior represents the network behavior, the facts are con-
sidered as normal traffic. If it represents attack behavior, the agent considers the facts as an at-
tack activity. In case there is an attack, the detection engine conveys the attack to the attacks
fusion in the next stage. Also, it may convey the attack to the other detection agents in its stage
to guard against a cooperative attack being undertaken. As attacks can be cooperative, these
detection agents can cooperate to detect these kinds of attacks.

3.7 Attacks Fusion

In this stage, the attacks fusion agent collects or receives the decisions from the detection
stage and displays the events (connections) that are classified as attacks; it displays the outside
IP addresses that were used to attack the network and the inside IP addresses that are under at-
tack. These addresses can be used for further processing, for example, it can be used in the In-
trusion Prevention Systems (IPS) to cut the connections with these addresses and to prevent
them from connecting to the network again.

4. DATA ANALYSIS METHODS
This section focuses on analyzing collected data or raw packets to extract parameters that are

used to measure underlying network activities. Two methods for this purpose are introduced, the
memory-window and memoryless-window analysis methods. The structure of the trees used by
the memory-window and memoryless-window is depicted in Figs. 5a and 5b, respectively. Each
tree is organized into six levels: L0, L1, L2, L3, L4, and L5. L0 is the root node that defines a win-
dow. L1 represents the outside IP addresses (i.e., IP addresses that do not belong to the private
network). Each IP address is considered a child (e.g., OutIP1, OutIP2, …, or OutIPm) of the root
node. L2 represents the outside ports that are currently connected with the private network. The
ports are organized as follows: if outside ports (e.g., OutP1, OutP2, …, and OutPn) are associated
with the IP address OutIP2, then these ports will be the children of the OutIP2. Level L3 of the
tree consists of the inside IP addresses that are currently connected with the outside IP addresses.
The IP addresses in this level will be arranged as follows: suppose that the IP address OutIP2 in
L1 is connected to the inside IP addresses; InIP1, InIP2, ..., and InIPx through the outside port
OutPn. In this case, these IP addresses will be the children of OutPn. In this level, an inside IP
can be repeated with different ports in L2.

Aly M. El-Semary and Mostafa Gadal-Haqq M. Mostafa

489

Level L4 includes the inside ports that currently connect inside IP addresses with outside IP
addresses. These ports are arranged as pictorially described in Fig. 5. Suppose that the IP ad-
dress OutIP2 in L1 is connected through the port OutPn in L2 to different inside ports in L4 (e.g.,
InP1, InP2, …, and InPy) on the IP address InIP1 in L3. In this case, the ports InP1, InP2, …, and
InPy will be the children of InIP1. A path from the root node to a node in L4 represents a unique
TCP connection. Finally, the two trees will differ only in Level L5 which represents the tree
leaves that contain variables by which the values of the parameters used in both methods, mem-
ory-window and memoryless-window, can be measured.

4.1 Memory-Window Analysis

In the memory-window analysis method, a window of size n (expressed in seconds) is moved
over raw packets in non overlapping order. Features or parameters from the set of raw packets
within the window are extracted. Some of these parameters memorize information from previ-
ous windows, hence the name memory-window. After measuring values of the parameters, the
window is moved by n and then the new values of the parameters are calculated and so on. Fif-
teen crucial parameters are carefully selected to feature the network behavior. These parameters
and their descriptions are listed in Table 1. The memory-window method uses three different
modules to measure the values of these parameters: 1) tree construction, 2) feature extraction,
and 3) tree pruning. For each window, these three modules are executed sequentially.

L 0 : R o ot
 N o de

L 1: O utside
IP ’s

L 2: O utside
 P orts

L 3: In sid e
 IP s

L 4: Inside
 P orts

L 5 : Lea f
 N od es

 -1 InSyn flag
 -2 O utSyn flag
 -3 C onD ir f lag
 -4 D uration
 -5 C _ O utInSyn
 -6 C _ O utInA ck
 -7 C _ O utInF in
 -8 InO utPackets
 -9 O utInPackets

 -10 A ction flag
 -11 noA ction
 -12 InF in flag
 -13 O utF in flag

O utP 2O utP 1 O utP n

O utIP mO utIP 2O utIP 1

In IP 1 In IP 2 In IP x

InP yInP 2InP 1

a) T ree s truc tu re o f m em ory -w indow m ethod .

. . .

. . .

. . .

. . .

. . .

.
 .
.

.
 .
.

.
 .
.

.
 .
.

.
 .
.

L 0 : R o ot
 N od e

L 1 : O u tsid e
IP ’s

L 2 : O u tsid e
 P orts

L 3 : Inside
 IP s

L 4 : In sid e
 P o rts

L 5: L ea f
 N odes

O utP 2O utP 1 O utP n

O utIP mO utIP 2O utIP 1

In IP 1 InIP 2 In IP x

InP yInP 2InP 1

b) T ree structure o f m em ory L ess-w indow m ethod .

. . .

. . .

. . .

. . .

. . .

.
 .
.

.
 .
.

.
 .
.

.
 .
.

.
 .
.

 1 - C _O utIn Sy n
 2 - C _O utIn A ck
 3 - C _O utIn F in
 4 - InO u tPackets
 5 - O u tIn Packets

Fig. 5. Construction of trees used in data analysis methods

Distributed and Scalable Intrusion Detection System Based on Agents and Intelligent Techniques

490

Tree Construction Module
The tree construction module is responsible to construct or update a tree structure based on

the received raw packets during a window size. The tree structure used in the memory-window
method is shown in Fig. 5a. Each leaf node includes variables discussed in Table 2. This module

Table 1. Parameters used in memory-window

Parameters Descriptions
C_OutIPs It holds the number of outside IPs that is currently connected to the network.

C_Max_OutPs_OutIP It holds the number of currently connected ports associated with an outside IP
that has the maximum number of connections.

C_InIPs It holds the number of unique-inside IP addresses that are currently connected
with outside IP addresses.

C_Max_InPs_InIP It holds the number of currently connected ports associated with an inside IP that
has the maximum number of connections.

C_Full_Con It holds the number of TCP connections that are currently established.

N_Full_Con It holds the number of new TCP connections established during the current win-
dow.

Max_Con_Duration
It holds duration time of the TCP connection that has the maximum duration.
The time is expressed as the number of windows during which the connection is
still connected.

Half_Con It holds the number of half-open connections that are not turned into full-
connections until the current window.

Illegal_Con It holds the number of illegal connections (i.e., connections that do not follow 3-
way handshake) during the current window.

C_Max_OutSyn_InIP It holds the number of Syn packets received by an inside IP and receives the
highest number of such packets until the current window.

C_Max_OutAck_InIP It holds the number of Ack packets received by an inside IP and receives the
highest number of such packets until the current window.

C_Max_OutFin_InIP It holds the number of Fin packets received by an inside IP and receives the
highest number of such packets until the current window.

C_InOutPackets_IPs It holds the total number of packets sent from the network (inside) to outside
until the current window.

C_OutInPackets_IPs It holds the total number of packets received by the network (inside) from out-
side until the current window.

N_Max_Illegal_Packets It holds the number of illegal TCP packets received by an inside IP with the
maximum number of such packets until the current window.

Table 2. Leaf variables used in memory-window method

Variables Descriptions
InSyn a flag which is set when a syn packet is sent from inside to outside.
OutSyn a flag which is set when a syn packet is sent from outside to inside.
ConDir a flag which is set when a connection is initiated from inside
Duration holds the number of windows while the connection lasts.
C_OutInSyn holds the number of Syn packets sent from outside into inside.
C_OutInAck holds the number of Ack packets sent from outside into inside.
C_OutInFin holds the number of Fin packets sent from outside into inside.
InOutPackets holds the number of packets sent from inside to outside.
OutInPackets holds the number of packets sent from outside to inside.

Action a flag which is set when a connection does not receive or send at least
one packet during the current window. Otherwise, it will be reset.

NoAction holds the number of windows in which a full connection is ideal.
InFin a flag which is set when a fin packet is sent from inside into outside.
OutFin A flag which is set when a fin packet is sent from outside into inside.

Aly M. El-Semary and Mostafa Gadal-Haqq M. Mostafa

491

reads a set of raw packets within the current window and then updates the tree according to the
given structure. Each packet is represented in a record structure depicted in Fig. 6. When the
module finishes updating the tree, it calls the features extraction module.

Features Extraction Module
After the tree is updated for the current window, the features extraction module is called to

extract the fifteen features discussed in Table 1. The module takes as an input the tree resulting
from the tree construction module and outputs the features represented in a record structure like
the one depicted in Fig. 8. Next, the tree pruning module is called. This will be demonstrated
through a complete example after introducing the tree pruning module.

Tree Pruning Module
The tree pruning module is responsible for pruning the tree by removing the useless connec-

tions, which might be one of the following (Fig. 5a):

1. Terminated connections. That is, when InFin =1 and OutFin =1.
2. Illegal connections. That is, when InFin = 0 and OutFin = 0.
3. Half-open connections that last for a specific number of windows w. That is, if either InSyn

or OutSyn are set and Duration ≥ w.
4. Full connections that have no packets sent from either sides for a specific number of win-

dows z, That is, if InSyn = 1, OutSyn = 1, Action=1, and NoAction ≥ z).

This module checks all the connections in the tree and removes any of the connections de-

scribed above. Then the window is moved by its size and again the tree construction module is
called. The rest of this section is devoted to a complete numerical example to demonstrate the
memory-window analysis method in more detail.

Suppose the set of raw packets shown in Fig. 6 is received. The necessary information about
each packet is described in a record. Each record includes the attributes: Captured time, SIP,

Fig. 6. Set of raw packets

Distributed and Scalable Intrusion Detection System Based on Agents and Intelligent Techniques

492

Sport, DIP, DPort, Syn, Ack, and Fin. The captured time measured in milliseconds is the time at
which the packet is captured. The SIP and DIP are the source and destination IP addresses while
the Sports and Dports are the source and destination ports, respectively. Finally, the Syn, Ack,
and Fin represent the TCP flags.

Let the size of the window be 20 ms. Therefore, the first window, w1, will start from the first
packet captured at 898171251150 ms and ends 20 ms later (i.e., at 898171251170 ms). When the
tree construction module is executed over w1, it produces the tree shown in Fig. 7a. The tree has
four different connections. The first and the fourth connections are full connections because the
InSyn and OutSyn flags in each connection are sets. Also, they are initiated from inside (i.e., the
private network which has the class “A” address 172) because the ConDir flags of each connec-
tion are set. The second connection is illegal because the InSyn and OutSyn are reset. The third
connection is a half-open connection since the InSyn is reset and OutSyn is set. The second and
third connections are initiated from outside because their ConDir flags are reset. Only the first
connection received a final packet from each side. Therefore, InFin and OutFin flags are set.
Finally, the Duration variable of each connection is equal to zero, which denotes that all these
connections are started in this window, w1.

Next, the features extraction module is called to measure the desired parameters. Since each
window produces one record of features, w1 produces the first record shown in Fig. 8. The
C_OutIPs comes from the first level which contains three outside IP addresses (i.e., C_OutIPs =
3). The IP address 193.73.150.45 has two connections through the ports 1030 and 1033. Since it
has the maximum number of ports, C_Max_OutPs_OutIP takes the value 2. C_InIPs comes
from the third level which has four IP addresses: 172.16.114.169, 172.73.151.25, 172.73.151.20,
and 172.16.114.169 but the 1st and 4th ones are the same. Therefore, C_InIPs takes the value 3.
The 172.16.114.169 has two ports: 1025 in the 1st connection and 1026 in the 4th connection.
The other IP addresses have only one port each. In this case, C_Max_InPs_InIP takes the value
2. The tree shows that there are only two full connections, the 1st and 4th connections, because
their InSyn and OutSyn flags are sets. As a result, the feature C_Full_Con takes on the value 2.
The feature N_Full_Con is equal to the number of full connections that have the Duration value
zero. In this case, it takes on the value 2. Since all connections have equal durations which equal
zero, the feature Max_Con_Duration takes on the value 0. Only one connection is a half connec-
tion, which is the 3rd connection because InSyn is 0 and OutSyn is 1. As a result, Half_Con is
equal to 1. Also, there is only one illegal connection, which is the 2nd connection since both flags
InSyn and OutSyn are equal 0 (i.e., Illegal_Con= 1).

The IP address 172.16.114.169 is the address that received the highest number of syn packets
from outside. It received one through the 1st connection and the other one through the 4th con-
nection. Therefore, the value 2 is given to the feature C_Max_OutSyn_InIP. Also, the same IP
address is the address that received the highest number of outside Acknowledge packets and
final packets through the 1st and 4th connections. Accordingly, values 7 (5+2) and 1(1+0) are
assigned to the parameters C_Max_OutAck_InIP and C_Max_OutFin_InIP, respectively. The
total number of packets sent from and received at the private network by all connections are 7
and 9, respectively. Therefore, the parameters C_InOutPackets_IPs is equal to 7 and
C_OutInPackets_IPs is equal to 9. Finally, only one illegal packet is received through the 2nd
connection for which the value of 1 is devoted to the parameter N_Max_Illegal_Packets.

After extracting the features associated with w1, the tree pruning module is called to remove
the unwanted connections. The constructed tree in Fig. 7a resulting from w1 has two unwanted

Aly M. El-Semary and Mostafa Gadal-Haqq M. Mostafa

493

connections, the 1st and 2nd , that need to be removed. The 1st connection is terminated, since
InFin = 1 and OutFin = 1. The 2nd connection is illegal because InSyn = 0 and OutSyn = 0. Con-
sequently, the program will increment the duration of the remaining connections. Afterwards,

Fig. 7. Produced trees based on the memory-window method

Distributed and Scalable Intrusion Detection System Based on Agents and Intelligent Techniques

494

the window is moved by its size over the next set of packets; the new window is called w2 as
shown in Fig. 6. Finally, the tree construction module is called again and the whole process is
repeated. As a result, the new tree is produced as depicted in Fig. 7b.

After creating the tree in Fig. 7b from w2, the feature extraction module is called to produce
the 2nd record in Fig. 8 associated with w2. Then, the tree pruning module is called to remove the
unwanted connections. In the tree in Fig. 7b, there are two connections which need to be re-
moved. The 1st one is a half open connection but its duration is equal to 1 (say the threshold is 1).
The 2nd one is terminated so it is removed as in w1 and the duration of the remaining connection
is incremented. The window is then moved over the next set of packets (where no more packets
exist in our example). However, the tree in Fig. 7c is produced because there is still memorized
information from previous windows. In the same way, the feature extraction module produces
the features associated with w3 in the 3rd record in Fig. 8. Next, the tree pruning module removes
this connection because it is a full connection and at the same time, it has no interaction with
one window (say the value of 1 is the threshold) as Action=1 and NoAction = 1.

4.2 Memoryless-Window Analysis

Unlike the memory-window method, the memoryless-window method does not memorize any
information from the previous windows. It depends only on the information contained in the raw
packets within the current window. Therefore, the same features are used in the memoryless-
window method except for the features that depend on information from the previous windows.
In this case, the features that will be used in the underlying method include:

1.C_OutIPs
2.C_Max_OutPs_OutIP
3.C_InIPs
4.C_Max_InPs_InIP
5.C_Con
6.C_Max_OutSyn_InIP
7.C_Max_OutAck_InIP
8.C_Max_OutFin_InIP
9.C_InOutPackets_IPs

Fig. 8. Features produced by the memory-window method

Aly M. El-Semary and Mostafa Gadal-Haqq M. Mostafa

495

10.C_OutInPackets_IPs

These features, except C_Con, have the same definitions and computations as in the memory-

window method. The C_Con denotes the total number of connections which can be full, half, or
illegal connections.

The memoryless-window method has only two modules: the tree construction module and the
features extraction module. The tree construction module is the same as in the memory-window
method but it constructs the tree from scratch for each window. Therefore, the tree pruning
module is not needed. Also, the features extraction module calculates the features in the same
way as in the memory-window method except for the feature C_Con. The value of C_Con is
calculated as the number of connections in the current window. After measuring the values of
these features, the tree of the current window is deleted and a new one is created for the next
window. The tree structure used in the memoryless-window method is shown in Fig. 5b. It is the
same structure used in the memory-window method except the last level, L5. It contains only the
variables whose values depend only on the current window. The rest of this section applies the
memoryless-window method to the same set of raw packets depicted in Fig. 6.

Using this method, only two trees are produced. The first tree shown in Fig. 9a resulted from
the tree construction module after processing the set of packets within the window w1. Then the
features extraction module is called which in turn, produces the features depicted in the first
record of Fig. 10. After it extracts the features of the window w1, the tree is deleted and the win-
dow is moved by 20 ms over the next set of packets. The new window is labeled with w2 as
shown in Fig. 6. Then the second tree shown in Fig. 9b is produced when the tree construction
module is called again. Finally the feature extraction module is called to measure the features
associated with this tree. It produces values described in the second record of Fig. 10.

195 .73 .151 .50 194 .73 .248 .153

25

172 .16 .114 .169 172 .16 .114 .169

25

1025 1026

 1 - C _O utInSyn = 1
 2 - C _O utInA ck = 5
 3 - C _O utInF in = 1
 4 - InO u tP ackets= 5
 5 - O utInP ackets= 5

193 .73 .150 .45

1030 1033

172 .73 .151 .25 172 .73 .151 .20

80 80

1 2 3 4

 1 - C _O utInS yn = 0
 2 - C _O utInA ck = 1
 3 - C _O utInF in = 0
 4 - InO u tPackets= 0
 5 - O u tInPackets= 1

 1 - C _O utInS yn = 1
 2 - C _O utInA ck = 0
 3 - C _O utInF in = 0
 4 - InO u tPackets= 0
 5 - O u tInPackets= 1

 1 - C _O utInS yn = 1
 2 - C _O utInA ck = 2
 3 - C _O utInF in = 0
 4 - InO u tP ackets= 2
 5 - O u tInP ackets= 2

194 .73 .248 .153

172 .16 .114 .169

25

1026

207 .200 .73 .34

1027

172 .16 .113 .105

80

1 2

b)T ree resu lted from w 2 .

 1- O utInSyn = 0
 2 - C _ O utInA ck = 2
 3- O utInF in = 1
 4- InO u tPackets = 2

 5 - O utInPackets = 2

 1- O utInS yn = 1
 2 - C _O utInA ck = 2
 3- O utInF in = 0
 4- InO u tP ackets = 2

 5 - O utInP ackets = 3

a)T ree resu lted from w 1.

Fig. 9. Trees produced based on the memoryless-window method

Distributed and Scalable Intrusion Detection System Based on Agents and Intelligent Techniques

496

5. RESULTS

This section presents the experimental results that we obtained from implementing the
underlying intrusion detection system. The results were based on a standard data set provided by
MIT's LincolnLaboratory [22].

5.1 Data Set

A subset of the DARPA intrusion detection data set from MIT's Lincoln Laboratory was used
to train and test the underlying architecture. We decided to use this data set because it is a stan-
dard and well known data set for testing intrusion detection systems. The original data set con-
tains network traffic captured in 1998 and 1999 [22]. 1998's data was captured over the course
of seven weeks and 1999's data was captured over the course of three weeks. Network traffic
corresponding to the first hour of Thursday of the first week of 1999's data was used for training
all four intrusion detection systems.

5.2 Experiment Design

We have implemented the present system to analyze the TCP and the IP data packets in the
underlying data set. The underlying system architecture composes four different anomaly intru-
sion detection systems, namely: TCP-MW, TCP-MLW, IP-MW, and IP-MLW. The TCP-MW
and TCP-MLW work only on TCP raw packets while IP-MW and IP-MLW work on IP raw
packets. The TCP-MW and IP-MW use the memory-window method while the TCP-MLW and
IP-MLW use the memoryless-window method. Finally, the agents of the four intrusion detection
systems implemented in the underlying architecture are configured to run on the same machine.

The system was tested with two data subsets which combine both normal and attack traffic.
The first data set includes the Neptune attack while the second data set includes the Smurf attack.
The normal traffic is extracted from 1999's data; specifically, the first thirty minutes of traffic
captured from the second hour of Thursday of the first week. This traffic is divided into two
files: the first fifteen minutes of the traffic is saved into a tcpdump file called “normal-1” while
the second fifteen minutes of the traffic is saved into another tcpdump file called “normal-2.”
The Neptune attack is a SYN flood denial of service on one or more ports. This attack is ex-
tracted from 1999's data; specifically, it starts at 11:04:16 on Thursday of the second week and it
lasts for about five minutes. It is saved into a tcpdump file called “neptuneAttack.” The Smurf

Fig. 10. Features produced by the memoryless window method

Aly M. El-Semary and Mostafa Gadal-Haqq M. Mostafa

497

attack is a denial of service ICMP echo reply flood. This attack is extracted from 1998's data;
specifically, it starts at 8:16:59 on Thursday of the fifth week and it lasts for about five minutes.
This attack is saved into a tcpdump file called “smurfAttack.” The first data set called testData-
Set1 is formed by concatenating the traffic in the tcpdump files: “normal-1,” “neptuneAttack,”
and “normal-2,” respectively. The second data set called testDataSet2 is formed in the same way
but the “neptuneAttack” file is replaced with the “smurfAttack” file.

5.3 Experimental Results

The four intrusion detection systems implemented in the underlying architecture are trained
with a support of 0.85 and confidence of 0.85 except the IP-MLW which uses the values of 0.7
and 0.65 for support and confidence, respectively. Different values for the support and confi-
dence are used but the assigned values showed better results. Also, during the detection phase,
the threshold t1 is set to the value of 0.1 for all systems while the threshold t2 is set to the values
0.3 for the IP-MLW and to the value of 0.4 for the other systems.

TCP Results
The two systems, TCP-MW and TCP-MLW that depend on TCP traffic are tested with test-

DataSet1. The results of the TCP-MW and TCP-MLW are shown in Fig. 15a and Fig.15b, re-
spectively. The x-axis represents the records extracted from the traffic and the y-axis represents
the percentage of rules that have firing strength greater than or equal to the threshold t1. Since
the testDataSet1 is formed from normal traffic injected with the Neptune attack, TCP-MW de-
tected the Neptune attack which started at window 142 and lasted until window 193 as shown in
Fig. 11a. Also, the TCP-MLW detected the Neptune attack which started at window 134 and
lasted until window 185 as shown in Fig. 11b. Since the memoryLess-window produces fewer
windows than the memory-window, the Neptune attack was detected at the window.

IP Results
In the same way, the IP-MW and IP-MLW that depend on IP traffic were tested using test-

DataSet2 which includes the Smurf attack. The results of the IP-MW and IP-MLW are described
in Fig. 12a and Fig. 12b, respectively. Also, the x-axis represents the records extracted from the
traffic and the y-axis represents the percentage of rules that have firing strength greater than or

(a) TCP-MW (b) TCP-MLW

Fig. 11. Test results using the Neptune attack data

Distributed and Scalable Intrusion Detection System Based on Agents and Intelligent Techniques

498

equal to the threshold t1. The IP-MW detected the Smurf attack at the window or record 167 and
lasted until window 250 while the IP-MLW detected it at window 154 and lasted until window
215.

The results described in Fig. 11 and Fig. 12 show that there is no false negative and false posi-
tive associated with the underlying attacks. This shows the efficiency and capability of our pro-
posed architecture and the two developed methods for extracting metrics parameters to detect
attacks.

6. CONCLUSION AND FUTURE WORK
In this paper, we proposed a new scalable and distributed architecture for network intrusion

detection systems. The architecture enables different or the same types of intrusion detection
systems to cooperate in detecting attacks. It combined different intelligent techniques such as
fuzzy logic and data-mining together with software agents to make up the overall architecture.
Also, two data analysis methods: memory-window and memoryless-window were introduced to
extract the features used as detection metrics. The memory-window method memorizes informa-
tion from previous windows while the memoryless-window considers the information associated
with the current window. The window is expressed in milliseconds and it is moved over the re-
ceived set of processed network packets. The proposed architecture together with the data analy-
sis methods was tested using the standard DARPA IDS data set produced by MIT's Lincoln La-
boratory. The primary results showed that it is able and efficient to detect network attacks.

In future projects, we plan to extend the novel data representation developed in this work to a
system of network visualization that can allow system administrators to interactively manage
their networks. Also, even though the developed architecture allows detection models to cooper-
ate, the language that allows them to talk together is not implemented, this too shall be consid-
ered for future work.

REFERENCES
[1] J. Anderson. Computer security threat monitoring and surveillance. Technical Report, James P.

Anderson Company, Fort Washington, Pennsylvania, 1980.

(a) TP-MW (b) IP-MLW

Fig. 12. Test results using the Smurf attack data

Aly M. El-Semary and Mostafa Gadal-Haqq M. Mostafa

499

[2] D. Denning. An intrusion detection model. IEEE Transactions on Software Engineering, 13(2):222-
232, 1987.

[3] D. Anderson, T. Frivold, and A. Valdes. Next-generation intrusion detection expert system (NIDES).
Technical Report SRI-CSL-95-07, SRI International, Computer Science Laboratory, Menlo Park,
California, 1995.

[4] M. Roesch. Snort−lightweight intrusion detection for networks. In Proceedings of the 13th Systems
Administration Conference, Seattle, Washington, 1999, pp.229-238.

[5] K. Ilgun, R. Kemmerer, and P. Porras. State transition analysis: A rule-based Intrusion detection ap-
proach. IEEE Transactions on Software Engineering, 21(3):181-199, 1995.

[6] S. Kumar and E. Spafford. Software architecture to support misuse intrusion detection. Technical
Report, The COAST Project, Department of Computer Science, Purdue University, West Lafayette,
Indiana, 1995.

[7] T. Lane. Machine Learning Techniques for Computer Security. Ph.D. Dissertation, Purdue University,
West Lafayette, Indiana, 2000.

[8] W. Lee and S. Stolfo. Data mining approaches for intrusion detection. In Proceedings of the 7th
USENIX Security Symposium, San Antonio, Texas, 1998.

[9] W. Lee, S. Stolfo, and K. Mok. A data mining framework for building intrusion detection model. In
Proceedings of the IEEE Symposium on Security and Privacy, Oakland, California, 1999.

[10] J. E. Dickerson and J. A. Dickerson. Fuzzy network profiling for intrusion detection. In Proceedings
of the North American Fuzzy Information Processing Society, Atlanta, Georgia, 2000, pp.301-306.

[11] J. E. Dickerson, J. Juslin, J. A. Dickerson, and O. Koukousoula. Fuzzy intrusion detection. In Pro-
ceedings of North American Fuzzy Information Processing Society 2001, Vancouver, Canada, 2001.

[12] G. Florez, S. Bridges, and R. Vaughn. An improved algorithm for fuzzy data mining for intrusion
detection. In North American Fuzzy Information Processing Society Conference (NAFIPS 2002),
(New Orleans, Louisiana), June, 2002.

[13] Aly El-Semary, J. Edmonds, J. Gonzalez, and M. Papa. Framework for hybrid fuzzy logic intrusion
detection systems. In Proceedings of the 2005 IEEE International Conference on Fuzzy Systems,
Reno, Nevada, May 22-25, 2005, pp.325-330.

[14] Aly El-Semary, J. Edmonds, J Gonzalez, and M. Papa. Implementation of a hybrid intrusion detection
system using FuzzyJess. In Proceedings of the 7th International Conference on Enterprise Information
Systems, Miami, Florida, 2005, pp.390- 393.

[15] Aly El-Semary, J. Edmonds, J. Gonzalez and M. Papa. Applying data mining of fuzzy association
rules to network intrusion detection. In Proceedings of the 7th Annual IEEE Information Assurance
Workshop, United States Military Academy, West Point, NY, 2006, pp.100-107.

[16] J. Luo and S. Bridges. Mining fuzzy association rules and fuzzy frequency episodes for intrusion
detection. International Journal of Intelligent Systems, 15(8):687-703, 2000.

[17] M. Qin and K. Hwang. Frequent episode rules for intrusive anomaly detection With Internet data
mining. In Proceedings of the 13th USENIX Security Symposium, 2004.

[18] S. Bridges and R. Vaughn. Fuzzy data mining and genetic algorithms applied to intrusion detection.
In Proceedings of the 23rd National Information Systems Security Conference, Baltimore, Maryland,
2000.

[19] Ming-Yang Su. Discovery and prevention of attack episodes by frequent episodes mining and finite
state machines. Journal of Network and Computer Applications, Vol.33, Issue 2, March, 2010,
pp.156-167.

[20] The FuzzyJess toolkit. http://www.cs.vu.nl/~ksprac/2002/doc/fuzzyJDocs/FuzzyJess.html.
[21] The C Language Integrated Production System (CLIPS). http://clipsrules.sourceforge.net/.
[22] DARPA Intrusion Detection Data Set. http://www.ll.mit.edu/ mission/communications/ist/corpora/

ideval/data/index.html,

Distributed and Scalable Intrusion Detection System Based on Agents and Intelligent Techniques

500

Aly M. El-Semary
He received his B.S. degree in Systems and Computer Engineering from Al-
Azhar University, Cairo, Egypt in 1992, and M.S. and Ph.D. degrees in Computer
Science from Tulsa University, USA in 2001 and 2004, respectively. He works for
the Department of Systems and Computer Engineering, Faculty of Engineering,
Al-Azhar University, where he is currently an assistant Professor. However, he is
currently working as a visitor for Computer Science and Engineering College,
Taibah University, Saudi Arabia. His current interests include network and com-

puter security, sensor networks, fuzzy logic, data-mining, and neural networks.

Mostafa Gadal-Haqq M. Mostafa
He received his B.Sc. (Honor) in 1984, M.Sc. in 1989, and Ph.D. in 1996, all from the Faculty ofScience,
Ain Shams University, Cairo, Egypt. He is now a professor of computer Science at the Faculty of Com-
puter and Information Sciences. Prior to joining the Faculty of Computer and Information Science, he
was with the Faculty of Science, Ain Shams University. He also joined the College of Computer Sci-
ence and Engineering, Taibah University, Madinah, K.S.A., from 2001 to 2009. He has several publica-
tions in pattern recognition letter, CVPR, ICIP and other respected journals and conferences. His re-
search interests include pattern recognition, computer vision, image processing, speech processing,
and computer security.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

