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Abstract—The Internet explosion and the increase in crucial web applications such as e-
banking and e-commerce, make essential the need for network security tools. One of 
such tools is an Intrusion detection system which can be classified based on detection 
approachs as being signature-based or anomaly-based. Even though intrusion detection 
systems are well defined, their cooperation with each other to detect attacks needs to be 
addressed. Consequently, a new architecture that allows them to cooperate in detecting 
attacks is proposed. The architecture uses Software Agents to provide scalability and 
distributability. It works in two modes: learning and detection. During learning mode, it 
generates a profile for each individual system using a fuzzy data mining algorithm. During 
detection mode, each system uses the FuzzyJess to match network traffic against its 
profile. The architecture was tested against a standard data set produced by MIT's 
Lincoln Laboratory and the primary results show its efficiency and capability to detect 
attacks. Finally, two new methods, the memory-window and memoryless-window, were 
developed for extracting useful parameters from raw packets. The parameters are used 
as detection metrics. 

 
Keywords—Data-Mining, Fuzzy Logic, IDS, Intelligent Techniques, Network Security, 
Software Agents  

 
 

1. INTRODUCTION 
Intrusion Detection Systems (IDSs) are software systems that monitor computers or networks 

to detect attacks. After they were introduced by Anderson in 1980 [1] and formalized by 
Denning in 1987 [2], intrusion detection systems have become an active area of research. They 
are evaluated according to their ability to minimize false negatives and false positives. False 
negatives occur when an IDS fails to detect attacks. On the other hand, false positives occur 
when benign activities are classified as attacks. IDSs are classified according to how attacks are 
detected into two main approaches: signature-based and anomaly-based detections. Signature-
based intrusion detection systems (also known as misuse or pattern matching) employ general 
pattern matching models based on attack signatures, such as rules, state-modeling and string 
matching. NIDES [3] and Snort [4] use rules to define attack signatures. USTAT [5] uses state 
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transition diagrams to detect access control violations; IDIOT [6] uses colored Petri nets to 
represent attacks. Signature-based IDSs are vulnerable to novel attacks for which signatures 
have not yet been created. Therefore, they have elevated false negative rates. On the other hand, 
anomaly-based intrusion detection systems involve identifying activities that deviate from what 
is considered normal system use; attacks are viewed as deviations from normal activities. 
Anomaly-based systems employ various techniques including artificial intelligence [3], 
statistical analysis [2], machine learning [7] and data mining [8, 9]. Recently, fuzzy logic 
together with data mining IDSs [10-16] have been successfully used to identify anomalies. 
Anomaly detection systems are capable of detecting attacks for which well-defined patterns do 
not exist (such as new attacks or variations of existing attacks). However, defining and 
maintaining “normal” profiles are not easy tasks. 

Intrusion Detection Systems can be further classified as host-based or network-based. Host-
based intrusion detection involves detecting malicious activity within a single system. A host-
based intrusion detection system uses log information, system activity, process accounting 
information (e.g., processor time, memory, disk usage), and file integrity to determine whether 
or not a host is the target of an attack. A host-based system may be stand-alone or a part of a 
distributed intrusion detection system. Denning [2] was the first to propose a real-time, general-
purpose expert system for detecting attacks; the system modeled normal system behavior using 
audit records, and monitored the system audit records to detect abnormal activities. Lee [9] 
developed a model that uses data mining of audit data records to create normal system profiles. 
A network-based intrusion detection system monitors network traffic to detect malicious 
activities, such as denial-of-service attacks, port scans, pings of death, or attempts to break into a 
system. For example, a large number of TCP connection requests to a very large number of 
different ports could indicate a “port scan” reconnaissance probe. Researchers have developed 
various network-based intrusion detection models. Roesch [4] developed Snort, a network 
misuse detection system employing a rule base. Qin [17] used data mining to profile normal 
network behavior. Bridges and Vaughn [18], Dickerson et al. [10, 11], Luo and Bridges [16] 
used fuzzy logic and data mining to model normal network behavior, and Elsemary et al [13-15] 
use fuzzy association rules to model both network behavior and attack signature but their model 
is neither scalable nor distributed. Last, but not least, Ming-Yang Su [19] uses the frequency 
episode rules implemented by finite state machines to design a real-time network-based 
intrusion prevention system for Probe/Exploit intrusion. 

In this paper, we propose not only a new architecture for intrusion detection systems but also 
two new methods for analyzing useful parameters to be used as detectiom metrics. The 
architecture is based on agents and intelligent techniques and it is scalable and distributed. The 
rest of this paper is organized as follows: Section 2 presents the general research methodolgy. 
Section 3 introduces the proposed system architecture and its details; Section 4 presents data 
analysis methods that are used to extract useful parameters for detection metrics. Section 5 
analyzes the simulation results and finally Section 6 concludes the paper and future work. 

 
 

2. GENERAL RESEARCH METHODOLOGY 
Fig. 1 describes the general research methodology. It continually collects raw data from the 

underlying network and then extracts useful parameters that are used as detection metrics. Next, 
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if network profiles (sets of rules) are not contracted yet, they should be built first. Otherwise, the 
parameters are compared against the network profiles and if there is an attack, it should be 
announced. The network profiles are contracted offline from training data while the detection is 
online. 

 
 

3. PROPOSED SYSTEM ARCHITECTURE 
The proposed novel intrusion detection system, according to our knowledge, embodies a 

modular design that involves seven stages: 1) Data capturing, 2) packets queuing, 3) data 
analysis, 4) data mining, 5) network profiling, 6) attacks detection, and 7) attacks fusion. These 
stages provide functional separation and enable developers to incorporate new elements into the 
system (Fig. 2). In addition, this architecture enables the system to be either on one machine or 
distributed all over a private network. It works in two modes of operation: learning mode and 
detection mode. In the learning mode, the system inspects network traffic and uses a fuzzy data 
mining algorithm to produce a set of fuzzy rules which represent the network behavior or profile. 
In the detection mode, the system matches the current network behavior against the network 
profiles produced during the learning mode. In other words, the system uses the network profile 
to decide whether or not an intrusion has occurred.  

 
3.1 Data Capturing  

In this stage, capture agents are responsible for capturing raw packets from the private 
network that needs to be protected. It passes the raw packets to the packet queuing stage which 
in turn holds them in specific queues. This stage comprises several agents that can be run either 
on one machine or distributed on more than one machine at different places in the network. Each 
agent has the ability to be configured to capture specific types of network packets such as TCP 
packets and ICMP packets. 

 

 
Fig. 1.  General research methodology flowchart 
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3.2 Packets Queuing  

In this stage, the raw packets captured by captured agents are queued into buffers. This stage 
contains a number of queues equal to the number of captured agents; each queue is associated 
with one agent as shown in Fig. 2. The association is represented by a labeled arrow from an 
agent to its corresponding queue. The label on the arrow shows the types of packets captured by 
the agent. E.g., the TCP capture agent captures TCP packets and puts them into the TCP queue. 
Therefore, the arrow between them is labeled ‘TCP packets’. 
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Fig. 2.  Novel IDS architecture 
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3.3 Data Analysis 

The Data Analysis stage is responsible for extracting features from the packets kept in the 
packet queues. This stage passes the extracted features to either the Data mining engines or at-
tack detection agents depending on the mode of operation. During the learning mode, the ex-
tracted features are passed to the Data mining engines while during the detection mode, they are 
passed to the attack detection agents (Fig. 2). Each data analysis module in this stage is associ-
ated with a specific packet queue in the previous stage to get its inputs. It extracts features from 
the raw packets using either one of two analysis methods: the memory-window or memoryless-
window. These two methods are described in more detail in Section 4.  

 
3.4 Data Mining 

The data mining stage, which is active only during the learning mode, consists of a set of 
separate data mining modules. Each module works independently to extract a set of fuzzy rules 
from the analyzed data received from the corresponding module in the features extraction stage. 
It passes the extracted fuzzy rules to the corresponding module in the network profiling stage. 
For example, the TCP data mining module receives its input from the TCP features extraction 
module and passes its output-- fuzzy rules, to the TCP profiling (Fig. 2). The extracted fuzzy 
rules describe either the normal behavior of the underlying network if the system is used for 
anomaly detection or the attack behavior or signatures if the system is used for signature based 
detection. The first step for extracting the rules is to describe the associated attributes. Each at-
tribute or feature is characterized by a fuzzy variable that is defined by three trapezoidal func-
tions: L (Low), M (Medium), and H (High). Before defining each function, four statistical pa-
rameters called Q1 (1st Quarter), median, Q3 (3rd Quarter), and xmax, are calculated from the data 
associated with each attribute. The value xmax is the maximum value received from attribute x. 
Next, each parameter is divided by 1.1xmax to normalize it to a value between 0 and 1 (Fig. 3) 

After defining the membership functions for each attribute, each data mining engine (agent) in 
the data mining stage is used to extract a set of fuzzy rules from the data. Each engine deploys a 
fuzzy association rule algorithm that is used to discover the hidden relationships among attrib-
utes and represent these relationships in a form of fuzzy association rules. The fuzzy data- min-
ing algorithm used to extract rules takes the data associated with each attribute and two thresh-

 
Fig. 3.  Fuzzy sets defining term functions of an attribute x 
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olds called smin and cmin as an input, where smin represents the minimum support while cmin repre-
sents the minimum confidence. These thresholds enable the algorithm to exclude rules that have 
support and confidence values less than smin and cmin, respectively. The algorithm produces fuzzy 
rules as an output. Each fuzzy rule will be in the form:  

 
p → q: s, c; 

 
Where p and q are fuzzy predicates in conjunctive form and are called the rule antecedent and 

rule consequent, respectively; while s and c are the rule support and confidence, respectively. 
Specifically,  

 
p has the form: (a1 is t1) ∧ (a2 is t2) ∧ … ∧ (am is tm), and  
q has the form: (am+1 is tm+1) ∧ (am+2 is tm+2) ∧ … ∧ (an is tn).  

 
Each rule satisfies the following conditions: ai ∈ set of attributes A, ti ∈ terms of attribute ai, 
 

{a1, a2, …, am} ∩ {am+1, am+2, …, an} = φ, and smin ≤ s ≤ 1, and cmin ≤ c ≤ 1. 
 
For more details about this algorithm refer to [13]. 
 

3.5 Network Profiling 

Network profiling consists of a number of databases equal to the number of capture agents in 
the data capturing stage. Each database is used to keep the network behavior or attack signatures 
extracted from the raw packets captured by the corresponding capture agent during the learning 
mode. That is, the TCP Profile database is used to keep rules extracted from raw packets cap-
tured by the TCP capture agent during the learning mode. The rules in this stage are used by the 
attack detection agent stage during the detection mode to check whether or not an attack occurs. 
This stage provides an interface to query the rules of each profile. 

 
3.6 Attack Detection 

The Attack detection stage consists of a number of attack detection agents equal to the num-
ber of captured agents in the first stage. Agents of this stage are active only during the detection 
mode. Each agent discovers attacks by matching data received from its associated feature extrac-
tion module in the data analysis stage against the fuzzy rules in the corresponding network pro-
file produced during the learning mode. For example, the TCP attack detection agent receives 
data from the TCP features extraction module and matches it against the rules stored in the TCP 
profile (Fig. 2). The data is represented in a record structure produced either by the memory-
window method (Fig. 7) or memoryless-window method (Fig. 11). The rest of this section de-
scribes in more detail the TCP attack detection agent as an example. The TCP matching algo-
rithm is implemented with FuzzyJess [20]. FuzzyJess is a fuzzy inference engine or specifically, 
a rule-based expert system shell that integrates the fuzzy capabilities of the FuzzyJ Toolkit with 
Jess, a Java version of CLIPS [21]. 

The algorithm works as follows: It receives the facts or data from its corresponding feature 
extraction module in the data analysis stage and then sets up a counter i with a value of 1 to keep 
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track of the rules. Next, it gets the rule number i from the TCP profile and evaluates its antece-
dent that is denoted by pi. If pi has a fuzzy match, the firing strength fp of pi is computed and 
then evaluates the consequent part qi of the rule. If qi has a fuzzy match, the firing strength fq of 
qi is computed. Next, the overall firing strength, f, of the rule equals the minimum value of fp and 
fq multiplied by the confidence, ci, of the rule. If qi does not have a fuzzy match, f is computed as 
the value of fp multiplied by the support, si, of the rule.  

After computing the value of f of the underlying rule, it is compared against a threshold t1 

 

get (pi, qi, si, ci)

fuzzy_match (pi) ?

f = 0

fq = firing_strength (qi)

fuzzy_match (qi) ?

f = m in (fp, fq) * ci

f = t1

fp = firing_strength (pi)

total = total + 1

i = i + 1

i < n  ?

Announce attack Attack free 

TCP Profile 
(rules)

facts

yes

yes

yes

yes

yes

no

no

no

no

no

i = 1
 total = 0

(total/n) < t2 &
normal network profile?

 
Fig. 4.  Attacks detection algorithm 
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which is a value between zero and one. If the value of f is greater than or equal to t1, the variable 
total should be incremented. The variable total is used to count the number of rules that have 
firing strength greater than or equal t1. Next, the value of i should be checked against the value 
of the variable n, which refers to the number of rules in the corresponding network profile. If the 
last rule is not reached, i should be incremented and the process is repeated until the last rule is 
reached. Otherwise, the value of total is compared to a threshold t2, where t2 has a value between 
zero and one, too. If the value of total is less than the value of t2, it means that the underlying 
facts do not match the predefined behavior. If the predefined behavior is the normal behavior of 
the network under consideration, the corresponding detection agent will announce the existence 
of an attack. Otherwise, the predefined behavior is the behavior of possible attacks and in this 
case, the agent will consider the facts as a benign activity. On the other hand, if the value of total 
is greater than or equal to the value of t2, the detection agent will announce the opposite result to 
the first case. i.e., if the predefined behavior represents the network behavior, the facts are con-
sidered as normal traffic. If it represents attack behavior, the agent considers the facts as an at-
tack activity. In case there is an attack, the detection engine conveys the attack to the attacks 
fusion in the next stage. Also, it may convey the attack to the other detection agents in its stage 
to guard against a cooperative attack being undertaken. As attacks can be cooperative, these 
detection agents can cooperate to detect these kinds of attacks. 

 
3.7 Attacks Fusion 

In this stage, the attacks fusion agent collects or receives the decisions from the detection 
stage and displays the events (connections) that are classified as attacks; it displays the outside 
IP addresses that were used to attack the network and the inside IP addresses that are under at-
tack. These addresses can be used for further processing, for example, it can be used in the In-
trusion Prevention Systems (IPS) to cut the connections with these addresses and to prevent 
them from connecting to the network again.  

 
 

4. DATA ANALYSIS METHODS 
This section focuses on analyzing collected data or raw packets to extract parameters that are 

used to measure underlying network activities. Two methods for this purpose are introduced, the 
memory-window and memoryless-window analysis methods. The structure of the trees used by 
the memory-window and memoryless-window is depicted in Figs. 5a and 5b, respectively. Each 
tree is organized into six levels: L0, L1, L2, L3, L4, and L5. L0 is the root node that defines a win-
dow. L1 represents the outside IP addresses (i.e., IP addresses that do not belong to the private 
network). Each IP address is considered a child (e.g., OutIP1, OutIP2, …, or OutIPm) of the root 
node. L2 represents the outside ports that are currently connected with the private network. The 
ports are organized as follows: if outside ports (e.g., OutP1, OutP2, …, and OutPn) are associated 
with the IP address OutIP2, then these ports will be the children of the OutIP2. Level L3 of the 
tree consists of the inside IP addresses that are currently connected with the outside IP addresses. 
The IP addresses in this level will be arranged as follows: suppose that the IP address OutIP2 in 
L1 is connected to the inside IP addresses; InIP1, InIP2, ..., and InIPx through the outside port 
OutPn. In this case, these IP addresses will be the children of OutPn. In this level, an inside IP 
can be repeated with different ports in L2.  
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Level L4 includes the inside ports that currently connect inside IP addresses with outside IP 
addresses. These ports are arranged as pictorially described in Fig. 5. Suppose that the IP ad-
dress OutIP2 in L1 is connected through the port OutPn in L2 to different inside ports in L4 (e.g., 
InP1, InP2, …, and InPy) on the IP address InIP1 in L3. In this case, the ports InP1, InP2, …, and 
InPy will be the children of InIP1. A path from the root node to a node in L4 represents a unique 
TCP connection. Finally, the two trees will differ only in Level L5 which represents the tree 
leaves that contain variables by which the values of the parameters used in both methods, mem-
ory-window and memoryless-window, can be measured. 

 
4.1 Memory-Window Analysis 

In the memory-window analysis method, a window of size n (expressed in seconds) is moved 
over raw packets in non overlapping order. Features or parameters from the set of raw packets 
within the window are extracted. Some of these parameters memorize information from previ-
ous windows, hence the name memory-window. After measuring values of the parameters, the 
window is moved by n and then the new values of the parameters are calculated and so on. Fif-
teen crucial parameters are carefully selected to feature the network behavior. These parameters 
and their descriptions are listed in Table 1. The memory-window method uses three different 
modules to measure the values of these parameters: 1) tree construction, 2) feature extraction, 
and 3) tree pruning. For each window, these three modules are executed sequentially.  
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Tree Construction Module 
The tree construction module is responsible to construct or update a tree structure based on 

the received raw packets during a window size. The tree structure used in the memory-window 
method is shown in Fig. 5a. Each leaf node includes variables discussed in Table 2. This module 

Table 1.  Parameters used in memory-window 

Parameters Descriptions 
C_OutIPs It holds the number of outside IPs that is currently connected to the network. 

C_Max_OutPs_OutIP It holds the number of currently connected ports associated with an outside IP 
that has the maximum number of connections. 

C_InIPs It holds the number of unique-inside IP addresses that are currently connected 
with outside IP addresses. 

C_Max_InPs_InIP It holds the number of currently connected ports associated with an inside IP that 
has the maximum number of connections. 

C_Full_Con It holds the number of TCP connections that are currently established. 

N_Full_Con It holds the number of new TCP connections established during the current win-
dow. 

Max_Con_Duration 
It holds duration time of the TCP connection that has the maximum duration. 
The time is expressed as the number of windows during which the connection is 
still connected. 

Half_Con It holds the number of half-open connections that are not turned into full-
connections until the current window. 

Illegal_Con It holds the number of illegal connections (i.e., connections that do not follow 3-
way handshake) during the current window.  

C_Max_OutSyn_InIP It holds the number of Syn packets received by an inside IP and receives the 
highest number of such packets until the current window.  

C_Max_OutAck_InIP It holds the number of Ack packets received by an inside IP and receives the 
highest number of such packets until the current window. 

C_Max_OutFin_InIP It holds the number of Fin packets received by an inside IP and receives the 
highest number of such packets until the current window. 

C_InOutPackets_IPs It holds the total number of packets sent from the network (inside) to outside 
until the current window. 

C_OutInPackets_IPs It holds the total number of packets received by the network (inside) from out-
side until the current window.  

N_Max_Illegal_Packets It holds the number of illegal TCP packets received by an inside IP with the 
maximum number of such packets until the current window. 

Table 2.  Leaf variables used in memory-window method 

Variables Descriptions 
InSyn a flag which is set when a syn packet is sent from inside to outside. 
OutSyn a flag which is set when a syn packet is sent from outside to inside. 
ConDir a flag which is set when a connection is initiated from inside 
Duration holds the number of windows while the connection lasts. 
C_OutInSyn holds the number of Syn packets sent from outside into inside. 
C_OutInAck holds the number of Ack packets sent from outside into inside. 
C_OutInFin holds the number of Fin packets sent from outside into inside. 
InOutPackets holds the number of packets sent from inside to outside. 
OutInPackets holds the number of packets sent from outside to inside. 

Action a flag which is set when a connection does not receive or send at least  
one packet during the current window. Otherwise, it will be reset. 

NoAction  holds the number of windows in which a full connection is ideal. 
InFin a flag which is set when a fin packet is sent from inside into outside. 
OutFin A flag which is set when a fin packet is sent from outside into inside. 
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reads a set of raw packets within the current window and then updates the tree according to the 
given structure. Each packet is represented in a record structure depicted in Fig. 6. When the 
module finishes updating the tree, it calls the features extraction module. 

  
Features Extraction Module 
After the tree is updated for the current window, the features extraction module is called to 

extract the fifteen features discussed in Table 1. The module takes as an input the tree resulting 
from the tree construction module and outputs the features represented in a record structure like 
the one depicted in Fig. 8. Next, the tree pruning module is called. This will be demonstrated 
through a complete example after introducing the tree pruning module. 

 
Tree Pruning Module 
The tree pruning module is responsible for pruning the tree by removing the useless connec-

tions, which might be one of the following (Fig. 5a): 
 
1. Terminated connections. That is, when InFin =1 and OutFin =1.  
2. Illegal connections. That is, when InFin = 0 and OutFin = 0.  
3. Half-open connections that last for a specific number of windows w. That is, if either InSyn 

or OutSyn are set and Duration ≥ w. 
4. Full connections that have no packets sent from either sides for a specific number of win-

dows z, That is, if InSyn = 1, OutSyn = 1, Action=1, and NoAction ≥ z). 
 
This module checks all the connections in the tree and removes any of the connections de-

scribed above. Then the window is moved by its size and again the tree construction module is 
called. The rest of this section is devoted to a complete numerical example to demonstrate the 
memory-window analysis method in more detail.  

Suppose the set of raw packets shown in Fig. 6 is received. The necessary information about 
each packet is described in a record. Each record includes the attributes: Captured time, SIP, 

 

 
Fig. 6.  Set of raw packets 
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Sport, DIP, DPort, Syn, Ack, and Fin. The captured time measured in milliseconds is the time at 
which the packet is captured. The SIP and DIP are the source and destination IP addresses while 
the Sports and Dports are the source and destination ports, respectively. Finally, the Syn, Ack, 
and Fin represent the TCP flags. 

Let the size of the window be 20 ms. Therefore, the first window, w1, will start from the first 
packet captured at 898171251150 ms and ends 20 ms later (i.e., at 898171251170 ms). When the 
tree construction module is executed over w1, it produces the tree shown in Fig. 7a. The tree has 
four different connections. The first and the fourth connections are full connections because the 
InSyn and OutSyn flags in each connection are sets. Also, they are initiated from inside (i.e., the 
private network which has the class “A” address 172) because the ConDir flags of each connec-
tion are set. The second connection is illegal because the InSyn and OutSyn are reset. The third 
connection is a half-open connection since the InSyn is reset and OutSyn is set. The second and 
third connections are initiated from outside because their ConDir flags are reset. Only the first 
connection received a final packet from each side. Therefore, InFin and OutFin flags are set. 
Finally, the Duration variable of each connection is equal to zero, which denotes that all these 
connections are started in this window, w1. 

Next, the features extraction module is called to measure the desired parameters. Since each 
window produces one record of features, w1 produces the first record shown in Fig. 8. The 
C_OutIPs comes from the first level which contains three outside IP addresses (i.e., C_OutIPs = 
3). The IP address 193.73.150.45 has two connections through the ports 1030 and 1033. Since it 
has the maximum number of ports, C_Max_OutPs_OutIP takes the value 2. C_InIPs comes 
from the third level which has four IP addresses: 172.16.114.169, 172.73.151.25, 172.73.151.20, 
and 172.16.114.169 but the 1st and 4th ones are the same. Therefore, C_InIPs takes the value 3. 
The 172.16.114.169 has two ports: 1025 in the 1st connection and 1026 in the 4th connection. 
The other IP addresses have only one port each. In this case, C_Max_InPs_InIP takes the value 
2. The tree shows that there are only two full connections, the 1st and 4th connections, because 
their InSyn and OutSyn flags are sets. As a result, the feature C_Full_Con takes on the value 2. 
The feature N_Full_Con is equal to the number of full connections that have the Duration value 
zero. In this case, it takes on the value 2. Since all connections have equal durations which equal 
zero, the feature Max_Con_Duration takes on the value 0. Only one connection is a half connec-
tion, which is the 3rd connection because InSyn is 0 and OutSyn is 1. As a result, Half_Con is 
equal to 1. Also, there is only one illegal connection, which is the 2nd connection since both flags 
InSyn and OutSyn are equal 0 (i.e., Illegal_Con= 1). 

The IP address 172.16.114.169 is the address that received the highest number of syn packets 
from outside. It received one through the 1st connection and the other one through the 4th con-
nection. Therefore, the value 2 is given to the feature C_Max_OutSyn_InIP. Also, the same IP 
address is the address that received the highest number of outside Acknowledge packets and 
final packets through the 1st and 4th connections. Accordingly, values 7 (5+2) and 1(1+0) are 
assigned to the parameters C_Max_OutAck_InIP and C_Max_OutFin_InIP, respectively. The 
total number of packets sent from and received at the private network by all connections are 7 
and 9, respectively. Therefore, the parameters C_InOutPackets_IPs is equal to 7 and 
C_OutInPackets_IPs is equal to 9. Finally, only one illegal packet is received through the 2nd 
connection for which the value of 1 is devoted to the parameter N_Max_Illegal_Packets. 

After extracting the features associated with w1, the tree pruning module is called to remove 
the unwanted connections. The constructed tree in Fig. 7a resulting from w1 has two unwanted 
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connections, the 1st and 2nd , that need to be removed. The 1st connection is terminated, since 
InFin = 1 and OutFin = 1. The 2nd connection is illegal because InSyn = 0 and OutSyn = 0. Con-
sequently, the program will increment the duration of the remaining connections. Afterwards, 

 

 
Fig. 7.  Produced trees based on the memory-window method 
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the window is moved by its size over the next set of packets; the new window is called w2 as 
shown in Fig. 6. Finally, the tree construction module is called again and the whole process is 
repeated. As a result, the new tree is produced as depicted in Fig. 7b. 

After creating the tree in Fig. 7b from w2, the feature extraction module is called to produce 
the 2nd record in Fig. 8 associated with w2. Then, the tree pruning module is called to remove the 
unwanted connections. In the tree in Fig. 7b, there are two connections which need to be re-
moved. The 1st one is a half open connection but its duration is equal to 1 (say the threshold is 1). 
The 2nd one is terminated so it is removed as in w1 and the duration of the remaining connection 
is incremented. The window is then moved over the next set of packets (where no more packets 
exist in our example). However, the tree in Fig. 7c is produced because there is still memorized 
information from previous windows. In the same way, the feature extraction module produces 
the features associated with w3 in the 3rd record in Fig. 8. Next, the tree pruning module removes 
this connection because it is a full connection and at the same time, it has no interaction with 
one window (say the value of 1 is the threshold) as Action=1 and NoAction = 1.  

 
4.2 Memoryless-Window Analysis 

Unlike the memory-window method, the memoryless-window method does not memorize any 
information from the previous windows. It depends only on the information contained in the raw 
packets within the current window. Therefore, the same features are used in the memoryless-
window method except for the features that depend on information from the previous windows. 
In this case, the features that will be used in the underlying method include: 

 
1.C_OutIPs 
2.C_Max_OutPs_OutIP 
3.C_InIPs 
4.C_Max_InPs_InIP 
5.C_Con 
6.C_Max_OutSyn_InIP 
7.C_Max_OutAck_InIP 
8.C_Max_OutFin_InIP 
9.C_InOutPackets_IPs 

 

 
Fig. 8.  Features produced by the memory-window method 
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10.C_OutInPackets_IPs 
 
These features, except C_Con, have the same definitions and computations as in the memory-

window method. The C_Con denotes the total number of connections which can be full, half, or 
illegal connections.  

The memoryless-window method has only two modules: the tree construction module and the 
features extraction module. The tree construction module is the same as in the memory-window 
method but it constructs the tree from scratch for each window. Therefore, the tree pruning 
module is not needed. Also, the features extraction module calculates the features in the same 
way as in the memory-window method except for the feature C_Con. The value of C_Con is 
calculated as the number of connections in the current window. After measuring the values of 
these features, the tree of the current window is deleted and a new one is created for the next 
window. The tree structure used in the memoryless-window method is shown in Fig. 5b. It is the 
same structure used in the memory-window method except the last level, L5. It contains only the 
variables whose values depend only on the current window. The rest of this section applies the 
memoryless-window method to the same set of raw packets depicted in Fig. 6.  

Using this method, only two trees are produced. The first tree shown in Fig. 9a resulted from 
the tree construction module after processing the set of packets within the window w1. Then the 
features extraction module is called which in turn, produces the features depicted in the first 
record of Fig. 10. After it extracts the features of the window w1, the tree is deleted and the win-
dow is moved by 20 ms over the next set of packets. The new window is labeled with w2 as 
shown in Fig. 6. Then the second tree shown in Fig. 9b is produced when the tree construction 
module is called again. Finally the feature extraction module is called to measure the features 
associated with this tree. It produces values described in the second record of Fig. 10. 
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Fig. 9.  Trees produced based on the memoryless-window method 
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5. RESULTS 

This section presents the experimental results that we obtained from implementing the 
underlying intrusion detection system. The results were based on a standard data set provided by 
MIT's LincolnLaboratory [22].  

 
5.1 Data Set 

A subset of the DARPA intrusion detection data set from MIT's Lincoln Laboratory was used 
to train and test the underlying architecture. We decided to use this data set because it is a stan-
dard and well known data set for testing intrusion detection systems. The original data set con-
tains network traffic captured in 1998 and 1999 [22]. 1998's data was captured over the course 
of seven weeks and 1999's data was captured over the course of three weeks. Network traffic 
corresponding to the first hour of Thursday of the first week of 1999's data was used for training 
all four intrusion detection systems.  

 
5.2 Experiment Design 

We have implemented the present system to analyze the TCP and the IP data packets in the 
underlying data set. The underlying system architecture composes four different anomaly intru-
sion detection systems, namely: TCP-MW, TCP-MLW, IP-MW, and IP-MLW. The TCP-MW 
and TCP-MLW work only on TCP raw packets while IP-MW and IP-MLW work on IP raw 
packets. The TCP-MW and IP-MW use the memory-window method while the TCP-MLW and 
IP-MLW use the memoryless-window method. Finally, the agents of the four intrusion detection 
systems implemented in the underlying architecture are configured to run on the same machine.  

The system was tested with two data subsets which combine both normal and attack traffic. 
The first data set includes the Neptune attack while the second data set includes the Smurf attack. 
The normal traffic is extracted from 1999's data; specifically, the first thirty minutes of traffic 
captured from the second hour of Thursday of the first week. This traffic is divided into two 
files: the first fifteen minutes of the traffic is saved into a tcpdump file called “normal-1” while 
the second fifteen minutes of the traffic is saved into another tcpdump file called “normal-2.” 
The Neptune attack is a SYN flood denial of service on one or more ports. This attack is ex-
tracted from 1999's data; specifically, it starts at 11:04:16 on Thursday of the second week and it 
lasts for about five minutes. It is saved into a tcpdump file called “neptuneAttack.” The Smurf 

 
Fig. 10.  Features produced by the memoryless window method 
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attack is a denial of service ICMP echo reply flood. This attack is extracted from 1998's data; 
specifically, it starts at 8:16:59 on Thursday of the fifth week and it lasts for about five minutes. 
This attack is saved into a tcpdump file called “smurfAttack.” The first data set called testData-
Set1 is formed by concatenating the traffic in the tcpdump files: “normal-1,” “neptuneAttack,” 
and “normal-2,” respectively. The second data set called testDataSet2 is formed in the same way 
but the “neptuneAttack” file is replaced with the “smurfAttack” file. 

 
5.3 Experimental Results 

The four intrusion detection systems implemented in the underlying architecture are trained 
with a support of 0.85 and confidence of 0.85 except the IP-MLW which uses the values of 0.7 
and 0.65 for support and confidence, respectively. Different values for the support and confi-
dence are used but the assigned values showed better results. Also, during the detection phase, 
the threshold t1 is set to the value of 0.1 for all systems while the threshold t2 is set to the values 
0.3 for the IP-MLW and to the value of 0.4 for the other systems. 

 
TCP Results 
The two systems, TCP-MW and TCP-MLW that depend on TCP traffic are tested with test-

DataSet1. The results of the TCP-MW and TCP-MLW are shown in Fig. 15a and Fig.15b, re-
spectively. The x-axis represents the records extracted from the traffic and the y-axis represents 
the percentage of rules that have firing strength greater than or equal to the threshold t1. Since 
the testDataSet1 is formed from normal traffic injected with the Neptune attack, TCP-MW de-
tected the Neptune attack which started at window 142 and lasted until window 193 as shown in 
Fig. 11a. Also, the TCP-MLW detected the Neptune attack which started at window 134 and 
lasted until window 185 as shown in Fig. 11b. Since the memoryLess-window produces fewer 
windows than the memory-window, the Neptune attack was detected at the window.  

 
IP Results 
In the same way, the IP-MW and IP-MLW that depend on IP traffic were tested using test-

DataSet2 which includes the Smurf attack. The results of the IP-MW and IP-MLW are described 
in Fig. 12a and Fig. 12b, respectively. Also, the x-axis represents the records extracted from the 
traffic and the y-axis represents the percentage of rules that have firing strength greater than or 

 
(a) TCP-MW                                    (b) TCP-MLW 

 
Fig. 11.  Test results using the Neptune attack data 
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equal to the threshold t1. The IP-MW detected the Smurf attack at the window or record 167 and 
lasted until window 250 while the IP-MLW detected it at window 154 and lasted until window 
215.  

The results described in Fig. 11 and Fig. 12 show that there is no false negative and false posi-
tive associated with the underlying attacks. This shows the efficiency and capability of our pro-
posed architecture and the two developed methods for extracting metrics parameters to detect 
attacks. 

 
 

6. CONCLUSION AND FUTURE WORK  
In this paper, we proposed a new scalable and distributed architecture for network intrusion 

detection systems. The architecture enables different or the same types of intrusion detection 
systems to cooperate in detecting attacks. It combined different intelligent techniques such as 
fuzzy logic and data-mining together with software agents to make up the overall architecture. 
Also, two data analysis methods: memory-window and memoryless-window were introduced to 
extract the features used as detection metrics. The memory-window method memorizes informa-
tion from previous windows while the memoryless-window considers the information associated 
with the current window. The window is expressed in milliseconds and it is moved over the re-
ceived set of processed network packets. The proposed architecture together with the data analy-
sis methods was tested using the standard DARPA IDS data set produced by MIT's Lincoln La-
boratory. The primary results showed that it is able and efficient to detect network attacks.  

In future projects, we plan to extend the novel data representation developed in this work to a 
system of network visualization that can allow system administrators to interactively manage 
their networks. Also, even though the developed architecture allows detection models to cooper-
ate, the language that allows them to talk together is not implemented, this too shall be consid-
ered for future work. 
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