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Abstract—The present study investigates the difficulty of solving the mathematical 
problem, namely the DLP (Discrete Logarithm Problem) for ephemeral keys. The DLP is 
the basis for many public key cryptosystems. The ephemeral keys are used in such 
systems to ensure security. The DLP defined on a prime field pZ *  of random prime is 
considered in the present study. The most effective method to solve the DLP is the ICM 
(Index Calculus Method). In the present study, an efficient way of computing the DLP for 
ephemeral keys by using a new variant of the ICM when the factors of 1−p  are known 
and small is proposed. The ICM has two steps, a pre-computation and an individual 
logarithm computation. The pre-computation step is to compute the logarithms of a 
subset of a group and the individual logarithm step is to find the DLP using the pre-
computed logarithms. Since the ephemeral keys are dynamic and change for every 
session, once the logarithms of a subset of a group are known, the DLP for the 
ephemeral key can be obtained using the individual logarithm step. Therefore, an efficient 
way of solving the individual logarithm step based on the newly proposed pre-
computation method is presented and the performance is analyzed using a 
comprehensive set of experiments. The ephemeral keys are also solved by using other 
methods, which are efficient on random primes, such as the Pohlig-Hellman method, the 
Van Oorschot method and the traditional individual logarithm step. The results are 
compared with the newly proposed individual logarithm step of the ICM. Also, the DLP of 
ephemeral keys used in a popular password key exchange protocol known as Chang and 
Chang are computed and reported to launch key recovery attack. 

 
Keywords—Ephemeral Key, Pohlig-Hellman Method, Van-Oorschot Method, Index 
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1. INTRODUCTION 

This paper investigates the methods of solving the Discrete Logarithm Problem (DLP) for 
ephemeral keys. The ephemeral keys may be unique for each session or they may be reused for 
different sessions of the same party. For example, the ANSI X9.42 standard, which specifies 
several Diffie-Hellman protocols states that an ephemeral key is a private or public key that is 
unique for each execution of cryptographic schemes”. Other protocols do not place any restric-
tions on the reuse of ephemeral keys [9]. The ephemeral keys, which are unique for each session, 
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are considered in the present study. 
The ephemeral keys, which are used in the Discrete Logarithm based public key cryptosys-

tems, are to ensure the security of the systems. One way of retrieving this key is to solve the 
mathematically hard problems such as the Discrete Logarithm Problem (DLP). The ephemeral 
keys are dynamic and change for every session between Alice and Bob while the static keys 
remain the same and live longer. Since the life time of ephemeral keys is short, it is hard to re-
cover these keys within the short span of time by using the attacks with the target of solving the 
DLP. Thus the problem of solving the DLP for retrieving the ephemeral keys is formulated.  

Let a group (G, *) consists of a set G and a binary operation *. The order of an element, say 
a , of a finite group G is defined to be with the smallest value t such that 1=ta . Some of the 
well known groups used in the cryptography are the set pZ *  with multiplication mod p ( p is a 
prime ), the multiplication group of the field mF

2  and the addition group formed by the collec-
tion of points defined by an elliptic curve over the finite field. For a given prime p , a generator 

*
pZg∈ and an element *

pZy∈ , the problem of finding x , in the range of 20 −≤≤ px , such 
that )(mod pyg x = , is known as the DLP. Some of the attacks on the DLP are discussed below. 

The methods to solve the DLP on PZ *  can be divided into two types-- the general-purpose 
and special-purpose methods. The general purpose algorithms include, Shanks baby step - giant 
step, the Pollard family of algorithms and the Index Calculus Methods. The following para-
graphs describe the general-purpose methods. Apart from the exhaustive search to solve the 
DLP a well known deterministic algorithm is Shank’s baby step- giant step algorithm. It requires 

)( no  group operations and space [7]. The Pollard Rho method, which is a probabilistic one, 
has similar square root running time but avoids large space requirements [11]. 

The DLP can be computed in sub exponential time using the ICM, if there is more structure to 
the group beyond the set of elements and the group operation. Specifically, certain group ele-
ments can be labeled as smooth, when it can be factored into a product of group elements from 
some relatively small factor base. The ICM uses a fixed small set called the factor base B and 
tries to write elements as a product of members of the factor base B [8]. The base consists of 
objects which are small and irreducible. In a prime field PF , where we identify the field ele-
ments with integers in 0, 1, · · · , p − 1, a factor base consists of all prime numbers less than 
some prescribed bound. In a field of characteristic 2, nF

2  , where we write field elements as 
polynomials of degree < n, a factor base consists of all irreducible polynomials of degree less 
than some prescribed bound. 

The analysis of ICM is studied extensively. The efficient way of solving the DLP using the ICM 
was first presented by Coppersmith and Odlyzko [3]. Another variant of the ICM is the number 
sieve field and it has an heuristic running time of the form 3/23/1 )log(log)))(log1(exp(( ppoc + [6, 
14, 17, 18]. Introduction of the ICM on an elliptic curve group is a well known open problem 
[13]. Recently, the ICM was introduced in the DLP for hyper elliptic curves [2]. 

The special-purpose algorithms need some additional information apart from g and y 
to solve the DLP. The attacks that are developed based on the information other than g and y 

are one way of solving the DLP through trap doors. One of the popular attacks of this kind, 
namely, the Pohlig-Hellman method [12] solves the DLP, when the factors of p − 1 are small. 
This method reduces the DLP in a field to small subgroups. For example, if p − 1 is a product of 
small factors, namely iq , which are relatively prime to each other, then the method reduces the 
discrete logarithm px mod  to ii qx mod  , computes ii qx mod in each iq and finally combines 
the results using the Chinese Remainder Theorem. Similarly Van Oorschot and Wiener [16] 
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presented the difficulty of computing the DLP, which is known to be short on a random prime 
with the factors of p − 1 consists of small factors along with one large factor (q). 

In the present study, a variant of the ICM is proposed to solve the DLP for ephemeral keys. 
The problem is formulated as follows: Once the logarithms of a subset of group elements are 
known, the logarithms of the ephemeral keys can be solved by using the individual logarithm 

phase. Therefore, an efficient way of performing the individual logarithm step based on pre-
computation step is proposed. The newly proposed algorithms for the ICM are analyzed experi-
mentally. The DLP of ephemeral keys is solved by using other methods, which are efficient on 
random primes, such as the Pohlig-Hellman method, the traditional individual logarithm step of 
the ICM and the Van Oorschot method. The results are compared with the newly proposed indi-
vidual logarithm step of the ICM. Also, the DLP of ephemeral keys used in the Chang and 
Chang password key exchange protocol are solved. The rest of the paper is organized as follows: 
The following section presents the Pohlig- Hellman, the ICM and Van Oorschot methods. Sec-
tion 2 discusses the variant of the ICM and the experimental analysis. Also, the other methods to 
solve the DLP for ephemeral keys are addressed. Section 3 reviews the Chang and Chang key 
exchange protocol. Section 4 presents the key recovery from the Chang and Chang password 
key exchange protocol and section 5 is the conclusion. 

 
1.1 General algorithm for the Pohlig-Hellman and the Index Calculus Method 

 
1.2 The Pohlig-Hellman Algorithm 

This is an algorithm introduced by Pohlig-Hellman. If the order of the group is known 
along with the complete factorization and the factors are relatively small then this attack is 
possible. 
Let ke
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The logarithms in the small subgroups are solved by using one of the popular square root al-

gorithms. Later the Chinese Remainder Method is used to combine the results ie
ii px mod  to 

retrieve px mod . 
 

1.3 The Index Calculus Method 

The Index Calculus Methods are the most prominent collection of algorithms that have suc-
cessfully used additional knowledge of the underlying groups to provide sub exponential algo-
rithms. The basic idea, which goes back to Kraitchik [8] is that if 

 



  
Solving the Discrete Logarithm Problem for Ephemeral Keys in Chang and ~ 

  

338 

∏∏
−−

=
n

j
j

m

i
i yx

11
                                 (1) 

 
for some elements of *)(qGF , then 
 

∑ ∑
− −

−=
m

i

n

j
jgig qyx

1 1
)1(modloglog                     (2) 

 
If we obtain many equations of the above form, and they do not involve too many xi and yi, 

then the system can be solved. 
The algorithm has two steps: 
 
•  A pre-computation step, where the logarithms of bglog of all members of the factor base 

are obtained where g is the generator and b  is the element in the factor base. 
•  A computation step, which tries enough yg a  until the result factors over the factor base, 

thus providing the requested logarithm yglog , where y  is the element for which the loga-
rithm is to be computed.[15]. 

 
The pre-computation step itself has two phases 
 
•  First phase: Find the linear relations relating to the logarithms of the primes in the factor 

base 
•  Second phase: Solve this linear system using techniques from linear algebra 
 
The general algorithm for the traditional ICM is described below [1]. 
 
1.3.1 General Algorithm for the ICM 
INPUT a generator g of a cyclic group G of order n i.e., 1−p  and an element y  
OUTPUT y

glog  
 
•  pre-computation step 

- Select a factor base { }tpppS ,..., 21= , which belongs to G such that a significant portion 
 of elements of G  can be efficiently expressed as products of elements from S . 
- Find a linear system using the procedure as given below 

 
* Select a random integer k , such that 10 −≤≤ nk and compute kg  
* Try to write kg  as a product of elements in S  as  
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*  Repeat the above steps to get the value of ct + equations.  
 
- The linear system is reduced into smaller size using a structured Gaussian method. This 

step is an optional one and is used when a large system is generated in the previous step. 
- Solve this linear system to obtain ig plog . 

 
• Computation step 

- Compute yglog  
 
* Select a random integer, ( )10, −≤≤ nkk  and compute kyg . 
* Try to write kyg  as a product of elements in S   
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for any k . Then, 
 

( )∑ −= = kpdy igi
t
ig loglog 1  mod n 

 
1.4 The Van Oorschot method 

Van Oorschot and Wiener [16] proposed an attack on short exponents with the combination of 
random prime. The algorithm is a combination of the Pohlig-Hellman and Pollard Lambda 
methods to solve the DLP with the above constraints and it works as follows: Let xgy =  be an 
element of a group G of order zQn = , where rBz = is the product of smooth factors, and has 
a bit length of approximately k. Compute V where zxV mod= , by a partial Pohlig-Hellman 
decomposition. Write VAzx += , where zV <≤0  with A as yet unknown. Then 

VAzx ggy +==  . Now CA 2,0[∈ ], where kuC −=  bits of x remain unknown after finding 
V . Computing Vg  and AAzV hggyy === /* , where zgh =  is known. Now V is to be 
computed from the lambda method. Since A and V are known, x can be calculated as x = Az + V . 

 
 

2. METHODS TO SOLVE THE DLP FOR EPHEMERAL KEYS 
In this section a variant of the ICM is proposed. The performance of newly proposed algo-

rithms for the ICM are analyzed and reported. The steps involved in the newly proposed ICM 
are as follows:- 

• A pre-computation step, where the logarithms of all subgroup elements are obtained. 
• A computation step, which computes the logarithm of y by combining the logarithms of 

subgroup elements by using the Chinese Remainder Method. 
 

2.1 Performance study and numerical results 

In this section the experimental analysis on the new variant of the ICM is presented. The 
problem is described as follows: First a data file is produced, which contains a list of tuples. A 
tuple is of the form (m, p, q, g, y) with the following properties:- m lies between 13 and 50 digits, 
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p is a prime, q is the list of factors of p − 1, g is the generator and y is an element of the prime 
field, such as xgy = , with x to be recovered from g and y. Having built up the data file, the 
algorithms (pre-computation and individual logarithm step) for a variant of the ICM are imple-
mented and verified on the data file. The selected list of problems and the running time to solve 
the DLP for y is reported in table 1. The DLP of ephemeral keys can be solved efficiently, once 
the logarithms of a subset of group are known. Assume the logarithms of a subset of a group i.e., 
the logarithms of subgroup elements, are computed by using Algorithm-1. Since the logarithms 
of subgroup elements are known, the DLP for the ephemeral keys can be obtained by using Al-
gorithm-2. This is possible due to the fact that the prime field and the generator are shared be-
tween the communicators before starting the sessions. The assumption is that the logarithms of 
subgroup elements are computed before starting the sessions. The DLP for ephemeral keys is to 
be computed once the session gets started. 

Apart from the proposed individual logarithm step of the ICM, the other methods, such as the 
traditional individual logarithm phase of the ICM, the conventional Pohlig-Hellman and Van 
Oorschot methods are used to solve the DLP for ephemeral keys. Since, the pre-computation 
step is related to the traditional ICM and a variant of the ICM proposed in the present study, the 
Pohlig-Hellman and the Van Oorschot methods are implemented without considering the pre-
computation step. The pre-computation step of the traditional individual logarithm step is the 
conventional pre-computation step of the ICM as mentioned in section 1.3.1. Finally, the expo-
nents (x) are assumed as short for the Van Oorschot method. 

Algorithm-1 To find the logarithm of all subgroup elements in the order of subgroups. 
INPUT Problem of size p and factors of p-1. 
OUTPUT Logarithm of all small subgroup elements in the order of subgroups. 
Known information is g : generator of pZ *  , and factors of p − 1. 
 
1: for every subgroup of order 

iP  do 

2: Assign iPPgG /1−=  
3: Assign 

iPA =  

4: for i in 1..A do 
5: Assign iGH =  
6: Assign 

ippih /1*log −=  

7: Store them in the list 
8: end for 
9: end for 
 
 
Algorithm-2 To find the logarithm of ephemeral key 
INPUT Problem of size p and factors of p − 1. 
OUTPUT Logarithm of ephemeral key. 
Known information is g : generator of :,* yZ P  element of PZ * and factors of p − 1. 
 
1: for every factor 

ip  of p − 1 do 

2: Assign 
iA as 1/1 ppy −  

3: Obtain the logarithm of 
iA from the pre-computed list 

4: end for 
5: Combine the results 

iA mod 
ip  by using the Chinese Remainder Method to obtain y mod p − 1 

6: The DLP of y (the ephemeral key) is obtained 
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The running time of the newly proposed individual logarithm step of the ICM is compared 
with the other methods. Table 2 reports the running time of the above methods. Since the expo-
nents (x) are assumed as short, the Van Oorschot method solves the problem in reduced time. 
The traditional individual logarithm step needs substantially more time due to the fact that the 
DLP is solved without considering the additional information such as the factors of p − 1. The 
Pohlig-Hellman method and the variant of the ICM work with the additional information regard-
ing the factors of p − 1 and their running time depends on the size of the factors of p − 1. The 
following section discusses the ephemeral key recovery on the Chang and Chang password key 
exchange protocol. 

 
 

3. REVIEW OF THE CHANG AND CHANG NOVEL THREE PARTY KEY 
EXCHANGE PROTOCOL 

The key exchange protocol is one of the most elegant ways of establishing secure communi-
cation between a pair of users by using a session key. The session key, which is exchanged be-
tween two users assures secure communication for later sessions. The first practical key ex-
change protocol was proposed by Diffie-Hellman [5]. Since the introduction of key exchange 

Table 1. Running time of a variant of the ICM 

Problem Running time in secs. 
4324122104434447665362908248086967822904859 
40500691568928903388503314943591776516203 
10548813247704246266317485054480132114947 
22750475822981512251147389834477659827887 
31023376122247516706110077047014990674391 
164838881183106336031117884004666831843 
29565696133579269116146450939411987039 
1756608222940319902160131316475990998066411 
116045117879379642828484543996278641093 
96834800300461810039999000830418556963 
40687382369048479475232114904989637283 
247747816765350307022689158418187059  
38174514779333277109099448511590627 

55 
88 
31 
29 
26 
6 
3 

203 
181 
651 
633 
171 
161 

 
Table 2. Running time to solve the DLP for ephemeral keys 

Problem size in 
digits 

Van Oorschot 
method 

Individual logarithm 
phase of the ICM 

Traditional individual loga-
rithm phase of the ICM 

Pohlig-Hellman 
method 

19 8 ms 6 ms 104 ms 22 ms 
20 5 ms 10 ms 300 ms 31 ms 
21 5 ms 173 ms 407 ms 103 ms 
22 9 ms 18 ms 605 ms 42 ms 
23 5 ms 8 ms 3s 54 ms 
24 4 ms 4 ms 4s 13 ms 
25 6 ms 16 ms 7s 54 ms 
26 6 ms 4 ms 37s 14 ms 
27 5 ms 400 ms 61s 51 ms 
28 10ms 5 ms 194s 16 ms 
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protocol by Diffie-Hellman, various versions and improvements in key exchange protocol have 
been developed. Recently Chang and Chang [4] proposed a novel three party encrypted key ex-
change protocol and claimed the protocol is secure, efficient and practical. 

This section briefly explains the Chang and Chang novel three party key exchange protocol. 
The notations used in this protocol are listed below: 

 
• A,B : two communication parties. 
• S: the trusted server. 
• SBA IDIDID ,, : the identities of A,B and S, respectively. 
• BA PWPW , : the passwords securely shared by A with S and B. 
• (.)PWE : a symmetric encryption scheme with a password PW. 
• BA rr , : the random numbers chosen by A and B, respectively. 
• p : a large prime. 
• g : a generator of order 1−p . 
• SBA RRR ,, : the random exponents chosen by A,B and S, respectively. 
• pgNPgNNN BA R

B
R

ABA mod,mod:, == . 
• (.)SF : the one-way trapdoor hash function (TDF) where only S knows the trapdoor. 
• (.)Kf : the pseudo-random hash function (PRF) indexed by a key K. 
• BSAS KK , : one time strong keys shared by A with S and B with S, respectively. 
 
The procedure followed in Chang-Chang is given below: 
 
Step 1: 
A →  B : )}(),(),(,,,{ AKASASAPWSBA NfrFNEIDIDID

A  User A chooses a random inte-
ger number Ar  and a random exponent PRA ZR ∈ , and then computes PgN AR

A mod=  
and AR

AS NK = . Then, A encrypts AN  by using his/her password APW  like 
)( APW NE

A  and computes two hash values )(),( AKASAS NfrF . Finally, A sends 
)}(),(),(,,,{ AKASASAPWSBA NfrFNEIDIDID

A  to B. 
 
Step2: 
B →  S: )}(),(),(),(),(),(,,,{ BKBSBSBPWAKASASAPWSBA NfrFNENfrFNEIDIDID

BA  User 
B chooses a random integer Br  and a random  

Exponent PRB ZR ∈ , and then computes pgN BR
B mod=  and BR

BS NK =  . Then, B en-
crypts BN  by using his/her password BPW  like )( BPWB NE  and computes two hash values 

)(),( BKBSBS NfrF . Finally,B sends ),(),(),(),(,,,{ BPWAKASASAPWSBA NENfrFNEIDIDID
BA   

)}(),( BKBSBS NfrF to S. 
 
Step3: 
S →  B: )},,,(,),,,,(,{ SSSS R

ABSBAKBS
R

A
R

BASBAKAS
R

B NKIDIDfNNKIDIDfN , Server S 
decrypts )( APW NE

A and )( BPWB NE by using BA PWPW ,  to get BA NN ,  respectively. 
Then, S gets Ar  and Br  from )( AS rF and )( BS rF  by using a trap door, respectively. To 
authenticate A and B, S computes AR

AS NK =  and BR
BS NK =  and then verifies 

)( AKAS Nf  and )( BKBS Nf , respectively. If successful, S chooses a random exponent 
PRS ZR ∈ and then computes SR

AN  and SR
BN , respectively. Finally, S computes two hash 

values ),,,(),,,,( SS R
ABSBAKBS

R
BASBAKAS NKIDIDfNKIDIDf  to B. 
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Step 4: 
B →  A: )},(),,,,( KIDfNKIDIDfN AK

R
BASBAKAS

R
A

SS .By using BR
BS NK =  , B authenti-

cates S by checking ),,,( SR
ABSBAKBS NKIDIDf . 

If successful, B computes the session key SBABS RRRRR
A gNK == )(  and hash value 

),( KIDf BK , and then sends )},(),,,,(,{ KIDfNKIDIDfN BK
R

BASBAKAS
R

B
SS to A. 

 
Step5: 
A →  B: ),( KIDf AK  By using AR

AS NK =  , A authenticates S by checking 
),,,( SR

BASBAKAS NKIDIDf . If successful A computes the session key SBAAS RRRRR
A gNK == )( , 

and authenticates B by checking ),( KIDf BK . If authenticates is passed, A computes and sends 
),( KIDf AK   

 
Step 6: 
B authenticates A by checking ),( KIDf AK . If successful, B confirms A’s knowledge of the 

session key SBA RRRgK = . 
 
 

4. A KEY RECOVERY ATTACK ON THE CHANG AND CHANG PROTOCOL 
In this section the key recovery attack on the Chang and Chang protocol proposed by 

R.Padmavathy and Chakravarthy Bhagvati is reviewed [10]. A malicious party B guesses the 
password of A using an undetectable password guessing attack as proposed by Yoon and Yoo 
[19]. B uses the password of A for obtaining the session key between A and C, when A and C 
want to communicate. The following procedure presents the attack in detail. 

 
Step 1: 
A →  C : )}(),(),(,,,{ AKASASAPWSBA NfrFNEIDIDID

A  User A chooses a random integer num-
ber Ar  and a random exponent PRA ZR ∈ , and then computes PgN AR

A mod=  and AR
AS NK =  . 

Then, A encrypts AN  by using his/her password APW  like )( APW NE
A  and computes two hash values 

)(),( AKASAS NfrF Finally, A sends )}(),(),(,,,{ AKASASAPWSBA NfrFNEIDIDID
A  to C. 

 
Step2:  
B gets )}(),(),(,,,{ AKASASAPWSBA NfrFNEIDIDID

A  and from )( APW NE
A decrypts AN  

since the password is known and solves the ephemeral key AR from AN  using the popular 
Pohlig-Hellman method or index calculus method as discussed above. This is achieved, since 
the order of the generator used in the protocol is 1−p . When the factorization of 1−p is 
known and small, the exponent can be solved in reduced time, even in polynomial time when the 
factors of 1−p  is in the form of mn p12 , where 1p is small and mn,  are very large. 

 
Step3: 
C →  S: )}(),(),(),(),(),(,,,{ CKCSCSCPWAKASASAPWSCA NfrFNENfrFNEIDIDID

CA  User 
C chooses a random integer Cr and a random exponent PRC ZR ∈  , and then computes 

pgN CR
C mod= and CR

CS NK = . Then, C encrypts CN  by using his/her password CPW  
like )( CPWC NE and computes two hash values )(),( CKCSCS NfrF . Finally, C sends 

)}(),(),(),(),(),(,,,{ CKCSCSCPWAKASASAPWSCA NfrFNENfrFNEIDIDID
CA  S. 
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Step4: 
S→  C: )},,,(,),,,,(,{ SSSS R

ACSCAKCS
R

A
R

CASCAKAS
R

C NKIDIDfNNKIDIDfN Server S de-
crypts )( APW NE

A  and )( CPW NE
C  by using CA PWPW ,  to get CA NN , , respectively. Then, 

S gets Ar  and Cr  from )( AS rF and )( CS rF  by using a trap door, respectively. To authenti-
cate A and B, S computes Ar

AS NK =  and Cr
CCS NK =  and then verifies )( AKAS Nf  and 

)( CKCS Nf , respectively. If successful, S chooses a random exponent PRS ZR ∈  and then com-
putes, SR

AN and, SR
CN , respectively. Finally, S computes two hash values ,,( BAKAS KIDIDf  

),,,(),, SS R
ACSCAKCS

R
BAS NKIDIDfNK and sends ,),,,,({ SSS R

A
R

CASCAKAS
R

C NNKIDIDfN  
)},,,( SR

ACSCAKCS NKIDIDf  to B.  
 
Step5: 
B gets )},,,(,),,,,({ SSSS R

ACSCAKCS
R

A
R

CASCAKAS
R

C NKIDIDfNNKIDIDfN  and from SR
CN  

he computes the session key BS RR
CNK )(=  is nothing but a session key between A and C 

SBA RRRg  
 
Step6: 
C →  A: )},(),,,,({ KIDfNKIDIDfN CK

R
CASCAKAS

R
C

SS  By using Cr
CCS NK = , C au-

thenticates S by checking ),,,( SR
ACSCAKCS NKIDIDf . If successful, C computes the session 

key BS RR
ANK )(= SBA RRRg=  and hash value ),( KIDf CK  and then sends 

)},(),,,,({ KIDfNKIDIDfN CK
R

CASCAKAS
R

C
SS  to A. 

 
Step7: 
A →  C: ),( KIDf AK By using Ar

AS NK = , A authenticates S by checking 
),,,( SR

CASCAKAS NKIDIDf . If successful A computes the session key AS RR
ANK )(=  

SBA RRRg= , and authenticates C by checking ),( KIDf CK . If authenticates is passed, A com-
putes and sends ),( KIDf AK   

 
Step8: 
C authenticates A by checking ),( KIDf AK . If successful, C confirms A’s knowledge of the 

session key SBA RRRgK =  . 
 

4.1 Solving the DLP for the ephemeral keys NA and NB 
From the discussion of the key recovery attack on the Chang-Chang protocol, it is observed 

that the computation of AR  from AN  is the key issue. This leads to recovery of the session 
key by the malicious party B. In this section the method of computing the key AR  form AN  
by solving the Discrete Logarithm Problem (DLP) is presented. The problem is described as 
follows: First a data file is produced, which contains a list of tuples. A tuple is of the form (m, p, 
q) with the following properties. m lies between 13 and 200 digits, p is a prime, q is the list of 
factors of p − 1. Having built up the data file the Chang-Chang password key exchange protocol 
is implemented and the DLP of the ephemeral keys ( AN  and BN ) are solved by using the me-
thods discussed in sections 1 and 2. The following table shows the selected list of problems and 
the running time to recover the session key using key recovery attack. On a similar line the table 
4 tabulates the selected list of problems and the running time to compute AN  and BN  from 
the Chang and Chang password key exchange protocol. 
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For example, a problem of given p = 123541382147232694035334852163320535246601109 
94963094785247378545048606590980187022168408637245590534058400097769951339145
17655221962730411575270239409171310618340555720351403579115867614746093751 is 
solved in a fraction of seconds. 

 
 

5. CONCLUSION 
This paper discussed a new approach to solve the DLP for ephemeral keys. A new variant of 

the ICM is presented and the performance is analyzed using a comprehensive set of experiments. 
The Pohlig-Hellman method is the best known method when the factors of p − 1 are small. The 
ICM is an efficient method for the general DLP. Through the experimental results it is shown 
that the individual logarithm step of the ICM outperforms the Pohlig-Hellman method for most 
of the cases. The other methods, which are efficient on random primes, such as the traditional 
ICM and the Van Oorschot method are also analyzed and compared with the newly proposed 
method for the ICM. It is also shown that the ephemeral keys of the Chang and Chang password 
key exchange protocols are solved by using the above methods to recover the session key ex-
changed between two communicators. The attack can be avoided by selecting the generators of 
large prime order and the computations are to be restricted to the prime order subgroup of p − 1. 

 

Table 3. Running time to recover the session key 

problem Running time to recover the session key 
4324122104434447665362908248086967822904859  
40500691568928903388503314943591776516203 
10548813247704246266317485054480132114947 
22750475822981512251147389834477659827887 
31023376122247516706110077047014990674391 
164838881183106336031117884004666831843 
29565696133579269116146450939411987039 

9ms 
14 ms 
8 ms 
8 ms 
9 ms 
5 ms 
5 ms 

 
Table 4. Running time to solve AN  or BN  

problem Running time to solve
AN  and 

BN  

191000990159365047378638140354882802383987027794868625
9673707683 
 
426927464819150521468225593921054541511202645719071417
269428709 
 
353059681895483759405836357027706058683452000000000000
000000000000000000000000000000000000000000022989481186
62442499371103438785908001117297699 
 
245505689811074246209897912132321429111654923220163565
643653125248997702398394700635645913133958043600871563
8751116 8667088725749006168938241077 
 
381433650162875350269924530881206967174557955208354469
402441808891292308580580746717399 
 
083544694024418088912923085805807467173997648396681212 
247460911159847224901457171 

10ms 
 
 

12ms 
 
 

14h10m3s 
 
 
 

16h5m2s 
 
 
 

12m11s 
 
 

14m11s 



  
Solving the Discrete Logarithm Problem for Ephemeral Keys in Chang and ~ 

  

346 

REFERENCES 
[1] J. Buchmann and D. Weber, “Discrete Logarithms:Recent Progress,” Technical report, no:T1-12/98. 
[2] H. Cohen, and G. Fery, ‘Handbook of Elliptic and Hyperelliptic Curve Cryptography,’ Discrete 

Mathematics and Applications, CRC Press, 2005. 
[3] D. Coppersmith, A. M Odlyzko, and R. Schroeppel, “Discrete logarithms in GF(p),” Algorithmica, v1, 

pp.1-15, 1986. 
[4] CC. Chang., YF. Chang, “A novel three party encrypted key exchange protocol,” Computer Stan-

dards and Interfaces, v26(5), pp.471-6, 2004. 
[5] W. Diffie, and M. Hellman, “New Directions in cryptography,” IEEE Transaction on Information 

The ory, v22(6), pp.644-54, 1976. 
[6] D. M Gordon, “Discrete logarithms in GF(p) using the number field sieve,” SIAM Journal of Discrete 

Mathematics, v6, pp.124-138, 1992. 
[7] D. E Knuth, The Art of computer programming,vol.3:Sorting and Searching, Addison-Wesley, 1973. 
[8] McCurely, “The Discrete logarithm problem,” Cryptology and computational number theory pro-

ceeding of symposia in Applied Mathematics, v42, pp.49-74. 
[9] A. Menezes, and U. Berkant, On Reusing Ephemeral Keys in Diffie-Hellman Key Agreement Proto-

cols, preprint, 2008. 
[10] R. Padmavathy, and Chakravarthy Bhagvati, “A Key Recovery Attack on Chang and Chang Password 

Key Exchange Protocol,” International Conference on Computer and Network Technology, 2009. 
[11] J. M Pollard, “Monte Carlo methods for index computation (mod p),” Mathematics of Computation., 

v32(143), pp.106-110, 1978. 
[12] S. Pohlig, and M. Hellman, “An improved algorithm for computing logarithms over GF(p) and its 

cryptographic significance,” IEEE Transaction on Information Theory, v24, pp.106-110, 1978. 
[13] J. Silverman, “The xedni calculus and the elliptic curve logarithm problem,” Design Codes and Cryp-

tography, v20, pp.5-40, 2000. 
[14] O. Schirokauer, D.Weber and T. Denny, “Discrete logarithms the effectiveness of the index calculus 

method,” Proceeding of ANTS II, LNCS v1122, pp.337-361, 1996. 
[15] C. Studholme, Discrete logarithm problem, Research paper requirement (milestone) of the PhD pro-

gram at the University of Toronto, June 21, 2002. 
[16] P. C, Van Oorschot and M. J, Wiener, “On Diffie-Hellman Key agreement with short Exponents,” 

Proceeding of Eurocrypt LNCS v1070, pp.332-343, 1996 
[17] D. Weber, “Computing Discrete logarithms with the general number field sieve,” Proceeding of 

ANTS II, LNCS v1122, pp.99-114, 1996. 
[18] D.Weber and T. Denny, The solution of McCurleys discrete log challenge, Proceeding of Crypto98, 

LNCS v1462, pp.458-471, 1998. 
[19] EJ. Yoon and KY. Yoo, “Improving the novel three-party encrypted key exchange protocol,” Com-

puter Standards and Interfaces, v30, pp.309-314, 2008. 
 

R. Padmavathy 
She received an M.tech degree from Andhra University and a Ph.D from the University of Hyderabad, 
India. At present she is working as a faculty member at the National Institute of Technology, Warangal. 
Her research interests include Information security, Cryptology and Network Security. 
 
Chakravarthy Bhagvati 
He received his Ph.D degree from RPI Newyork, USA . At present he is a professor at University of 
Hyderabad, Hyderabad, India. He published a number of papers in International Conferences and 
Journals. Recently he chaired the National Workshop on Cryptology organized by the CRSI-Cryptology 
Research Society of India and an International Workshop on Computer Vision organized by IIIT-
Hyderabad. His research interests include Image Processing, Computer Vision, Pattern Recognition, 
OCR for telugu and Cryptography. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Impact
    /LucidaConsole
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 1200
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


