

Journal of Information Processing Systems, Vol.6, No.2, June 2010 DOI : 10.3745/JIPS.2010.6.2.163

163

IMTAR: Incremental Mining of General Temporal
Association Rules

Anour F.A. Dafa-Alla*, Ho Sun Shon*, Khalid E.K. Saeed*, Minghao Piao*,
Un-il Yun**, Kyung Joo Cheoi** and Keun Ho Ryu*

Abstract—Nowadays due to the rapid advances in the field of information systems,
transactional databases are being updated regularly and/or periodically. The knowledge
discovered from these databases has to be maintained, and an incremental updating
technique needs to be developed for maintaining the discovered association rules from
these databases. The concept of Temporal Association Rules has been introduced to
solve the problem of handling time series by including time expressions into association
rules. In this paper we introduce a novel algorithm for Incremental Mining of General
Temporal Association Rules (IMTAR) using an extended TFP-tree. The main benefits
introduced by our algorithm are that it offers significant advantages in terms of storage
and running time and it can handle the problem of mining general temporal association
rules in incremental databases by building TFP-trees incrementally. It can be utilized and
applied to real life application domains. We demonstrate our algorithm and its advantages
in this paper.

Keywords—Incremental Mining of General Temporal Association Rules, Incremental
TFP-Tree

1. INTRODUCTION

In the field of data mining, association rules play an important role and have been applicable
in many areas. The problem of mining association rules can be divided into two sub-problems 1)
finding frequent itemsets. 2) Using those itemsets to generate the rules. After the frequent item-
sets have been recognized, the corresponding rules may be derived easily.

Agrawal’s pioneering work [1] has led to many proposals of mining association rules such as
incremental mining approaches [2], updating approaches [8], tree based approaches such as [9],
[10] and [11] and various formations of rule patterns such as temporal patterns [3, 4]. In general,
due to the recent developments in information science, most transactional databases accumulate
a small size of incremental databases and are being appended into the main database regularly.
Thus, designing efficient incremental mining algorithms is becoming particularly urgent.

※ This research was supported by the Maritime Affairs and by the Ministry of Education, Science Technology (MEST)
and Korea Industrial Technology Foundation (KOTEF) through the Human Resource Training Project for Regional
Innovation, and by the grant of the Korean Ministry of Education, Science and Technology (The Regional Core Re-
search Program / Chungbuk BIT Research-Oriented University Consortium).

Manuscript received February 2, 2010; accepted April 6, 2010.
Corresponding Author: Ho Sun Shon
* Database/Bioinformatics Lab., Chungbuk National University, Cheongju, South Korea {anwarking, abolkog,

bluemhp, khryu}@dblab.chungbuk.ac.kr
** School of Electrical & Computer Engineering, Chungbuk National University, Cheongju, South Korea

Copyright ⓒ 2010 KIPS (ISSN 1976-913X)

IMTAR: Incremental Mining of General Temporal Association Rules

164

In this paper we introduce a new algorithm for mining general temporal association rules in
publication databases called IMTAR (Incremental Mining of Temporal Association Rules). A
publication database is a transactional database where each item involves an individual exhibi-
tion period [5]. Consider the publication database in Fig. 1, items A, B and C are exhibited from
1996 to 2004. However, item F is exhibited from 2002 to 2004. Traditional mining techniques
tend to ignore the exhibition period of each item and instead opt to use a unique minimum sup-
port threshold which is unfair for newly added transactions.

General temporal association rules are of the form (X⇒ Y)t,n, where t denotes the starting ex-
hibition period of both items X and Y, and n denotes the end of publication database. An asso-
ciation rule (X⇒Y) is said to be a frequent general temporal association rule (X⇒Y)t,n, if and
only if its probability is larger than the minimum support required, i.e., P(Xt.n U Yt.n) > min_sup,
and the conditional probability is larger than the minimum confidence i.e., P(Xt.n | Yt.n) >
min_conf. Using the absolute minimum support threshold can be unfair for some items in the
publication database as shown in Fig. 1. Instead a relative minimum support is used, min_supR =
|DX| × min_sup where |DX| denotes the amount of partial transactions in the exhibition period of
itemset X. This is provided to deal with the mining of temporal association rules.

F. Conen et al. introduced a new technique for mining association rules using TFP-trees (To-
tal from Partial tree) [6]. We extended the structure of the TFP-tree to handle the problem of
mining general temporal association rules. Our proposed algorithm inherits the significant ad-
vantages of the TFP-tree and introduces new important capabilities of handling temporal asso-
ciation rules incrementally.

The rest of this paper is organized as follows: Section 2 introduces some of the related work
on incremental mining of association rules. Section 3 describes the proposed algorithm IMTAR.
Conclusions and future work are discussed in section 4.

2. RELATED WORK
D.W Cheung introduced a new algorithm called the Fast Update algorithm (FUP) [2], for ef-

ficient maintenance of discovered association rules when new transactions are added. It’s similar
in its frame work to that of Apriori [1] and Direct Hash and Pruning DHP [12]. It contains a
number of iterations starting at size-one itemsets; at each iteration, all the large itemsets of the
same size are founded. The candidate sets at each iteration are generated based on the large
itemsets founded in the previous iteration.

Fig. 1. An Example of a publication database

Anour F.A. Dafa-Alla, Ho Sun Shon, Khalid E.K. Saeed, Minghao Piao, Un-il Yun, Kyung Joo Cheoi and Keun Ho Ryu

165

FUP introduces the following feature to handle the incremental database and to update the
discovered rules. At each iteration the support of size-k frequent itemsets are updated against the
incremental database to filter out the loser (i.e., those that are not longer frequent in the updated
database). Only the incremental database has to be scanned to do this filtering. While scanning
the incremental database, a set of candidates is extracted along with their support from the in-
cremental database.

Lemma 1: A k-itemset not in the original large k-itemset can become a winner in the updated

database if, and only if, its support is greater than or equal to the minimum support threshold in
the incremental database.

The proof to this lemma is shown in [2]. According to this lemma, many sets can be pruned

away simply by checking their support against the incremental database before the update
against the original database. The size of the updated database is reduced at each iteration by
pruning away some itemsets from some transactions in the updated database. Fig. 2 shows the
first iteration of an FUP algorithm. Due to the limited length of this paper, we will show only
the first iteration, the second iteration and beyond can be thought of as a generalization of the
first iteration.

3. INCREMENTAL MINING OF GENERAL TEMPORAL
ASSOCIATION RULES

In this section we will describe our proposed algorithm IMTAR (Incremental Mining of Gen-
eral Temporal Association Rules) inspired by Apriori-TFP [6], a successful structure to mine
frequent patterns. We use a tree structure called the TFP-tree as the basis for our method. A
TFP-tree is a set enumeration tree structure [7], storing the quantitative information about item-
sets. The TFP-tree in its current structure is not suitable for mining temporal frequent itemsets;
therefore we extended and modified the tree structure to suit the need of mining temporal fre-
quent itemsets. We will now describe the major modifications to the P-tree and T-tree of the
Apriori TFP-method to make it suitable for mining temporal patterns. Some of the notations
used in the rest of this paper are shown in Table 1.

The partial support tree (P-tree) is a compressed set enumeration tree which is used to store

DBdb

Lk
Frequent K-itemset

Looser Looser

Scan DBScan db

Winner

?)(sup.
?sup.

dDsX
dsX

UD

d

+≥
•≥ ?)(sup. dDsX UD +≥

Candidate set

Winner

DBdb

Lk
Frequent K-itemset

Looser Looser

Scan DBScan db

Winner

?)(sup.
?sup.

dDsX
dsX

UD

d

+≥
•≥

?)(sup.
?sup.

dDsX
dsX

UD

d

+≥
•≥ ?)(sup. dDsX UD +≥ ?)(sup. dDsX UD +≥

Candidate set

Winner

Fig. 2. The first iteration of FUP

IMTAR: Incremental Mining of General Temporal Association Rules

166

partial support for itemsets. The top level is comprised of an array of nodes, each index describ-
ing 1-itemset, with child reference to P-tree nodes. The top nodes consist of a support field for
the itemset and a child node link to a sub node, we extended one more fields to handle these at
which time this node starts to appear i.e., at the start of the exhibition period.

The P-tree node contains support fields – an array of short integers- for the itemset that the
node represents and a child and a sibling link to further sub nodes and one field to store at which
time the item represented by this node starts to appear. The modified P-tree is shown in Fig. 3.

The total support tree (T-tree) is a set enumeration tree for storing itemsets information. Lev-
els in each sub-branch of the tree are defined using arrays. This thus permits indexing at all lev-
els and consequently offers computational advantages. To assist this indexing the tree is built in
“reverse.” Each branch is founded on the last element of the frequent sets to be stored. This al-
lows direct indexing by attribute number rather than first applying some offset. The same modi-
fication done to the P-tree was applied to the T-tree to handle temporal association rules. This is

Table 1. Notations description

Notation Description
DB Original database
db Incremental database
UD Updated database

TFP-TreeDB TFP-Tree of the original database
TFP-Treedb TFP-Tree of the incremental database
TFP-treeUD TFP-Tree of the updated database
X.suppDB Support count of item X in the original database
X.suppdb Support count of item X in the incremental database
X.suppUD Support count of item X in the updated database

Fig. 3. P-tree structure for mining general temporal association rules

Anour F.A. Dafa-Alla, Ho Sun Shon, Khalid E.K. Saeed, Minghao Piao, Un-il Yun, Kyung Joo Cheoi and Keun Ho Ryu

167

represented in the modified T-tree shown in Fig. 4.
Now we will present the details of our proposed algorithm for mining general temporal asso-

ciation rules. To better illustrate our algorithm, consider the data presented in Fig. 5 and assume
that the given minimum support threshold is 30%. This figure shows an example of a publica-
tion database where each item is associated with a publication date. The Date field corresponds
to the start of the publication date for the itemset, and the TID is the transaction id that contains
the set of items.

We start by partitioning the publication database according to time interval into three parti-
tions namely, P1, P2 and P3, as shown in Fig. 5, and processing each partition one at a time. Par-

Fig. 4. T-tree structure for mining general temporal association rules

Fig. 5. P-tree structure for mining general temporal association rules

IMTAR: Incremental Mining of General Temporal Association Rules

168

tition one can be traded as the original database and each successive partition (P2 & P3) can be
thought of as the incremental part that will be appended to the first partition P1. Considering the
first partition p1, we construct a TFP-tree for this partition TFP-treeDB , ignoring the pruning step
as per the original Apriori-TFP. Ignoring the pruning step is essential – as we will see later – in
the incremental mining procedure for finding frequent itemsets.

If we follow the original algorithm some of the items which were not frequent but can be fre-
quent later after adding the incremental database will be lost. The first step in constructing the
TFP-treeDB is to construct a P-treeDB of the first partition p1. The P-treeDB prior to start is shown
in Fig. 6.a, and after adding the first transaction {2, 4} is shown in Fig. 6.b, where the two num-
bers below the node denote the support count and the starting exhibition period respectively
{support, starting exhibition period}, for example if we look at node 2 we will see that its sup-
port count is 1 and starting exhibition period is 1 {1, 1}, note that the parent node is also incre-
mented by one.

After storing the first transaction in the P-treeDB, we now process the next transactions and
add them to the P-treeDB in a manner similar to adding the first transaction. Fig. 7, shows the
final P-treeDB after processing partition one. Note that nothing is lost if we don’t store part of
any particular node code which is duplicated in the parent code.

On completion of the generation process, the P-treeDB itself is thrown away and stored in a P-
treeDB table. The advantages offered by the P-tree table are: 1) Reduced storage requirements
(Particularly where the data set contained duplicated rows). 2) Faster run time because the de-

Fig. 6. Constructing a P-treeDB for partition one, P1

Fig. 7. P-treeDB after processing partition one, P1

Anour F.A. Dafa-Alla, Ho Sun Shon, Khalid E.K. Saeed, Minghao Piao, Un-il Yun, Kyung Joo Cheoi and Keun Ho Ryu

169

sired total support counts had already been partially calculated. Fig. 8, shows the P-treeDB table
for partition one.

The T-treeDB is then constructed from the P-treeDB table shown in Fig. 8, by processing the P-
tree table level by level. Each level in the P-tree table represents the set cardinality for the item-
sets i.e., level l represents size 1-itemsets, level 2 represents size 2-itemsets and so on.

The T-treeDB construction is as follows: Starting with an empty top level T-treeDB, passing
through the P-treeDB table level by level, starting at level 1, updating the top level of the T-treeDB
according to the hierarchical nature of the P-treeDB table. The first level in the P-tree table has
two records, representing nodes {1} and {2}, thus we updated the support count and the starting
exhibition period for elements 1 and 2 in the top level of the T-treeDB as shown in Fig. 9.

We now pass down to the second level in the P-treeDB table (index 2), which represents dou-
bles (set cardinality =2). There are three records at this level; the first one has parent node {1}
and node code 4. The contribution of this node to element 1 (the parent node) in the T-treeDB has
already been considered. Thus, as before we only consider the node code and update the support
and the starting exhibition period for element 4 in the T-treeDB. The second one has parent node
{2}, and node code {4}, so as before we only update element 4. The last record has parent node
{2} and node code {3} thus we update element 3 in the T-treeDB.

Then we drop down to level 3 in the P-treeDB table, there is one record in this level , this has
the node code of {4} and parent node code {2,3}, like before we only consider the node code
and thus we update element 4 in the T-treeDB. Figure 10 shows the T-treeDB after the first pass of

Fig. 8. P-treeDB table for partition one

Fig. 9. T-treeDB generation process, passing through P-treeDB table level 1

IMTAR: Incremental Mining of General Temporal Association Rules

170

the P-treeDB.
We have now completed one pass of the P-treeDB and we can remove the singles from the P-

treeDB table i.e., index 1, and generate the next T-treeDB level as shown in Fig. 11.
Continuing on to level two in the T-treeDB, we start from set cardinality 2 in the P-treeDB table.

There are three cardinality nodes at this level in the table; the first one has parent node {1} and
node code {4}. Therefore we search the T-treeDB branches emerging from element {4} only (the
node code) and do not consider the branches emerging from element {1} (the parent code). Thus
we pass down branch {4} to the second level and attempt to update elements {1} and {4} if
necessary.

The second record encountered has node code {4} and parent node code {2}, so we also search
the branch emerging from element 4 and drop down to the appropriate level, and attempt to up-
date element {2,4} if necessary. The last record has parent node {2} and node code {3} so we
search the branch emerging from element 3 , dropping down to level two and try to update ele-
ment {2,3} if necessary.

We then move to the cardinality 3 nodes of the P-treeDB table, there is only one record in this
level, this has parent node {2,3} and node code {4}, like before we search the branches emerg-
ing from element {4} and attempt to update elements {2},{3} and {4} if necessary. After finish-

Fig. 10. T-treeDB generation process, passing through P-treeDB table level 2 and level 3

Fig. 11. T-treeDB generation, level 2 prior to start

Fig. 12. T-treeDB after processing the first partition, p1

Anour F.A. Dafa-Alla, Ho Sun Shon, Khalid E.K. Saeed, Minghao Piao, Un-il Yun, Kyung Joo Cheoi and Keun Ho Ryu

171

ing this pass we can remove the set cardinality 2 (i.e., index 2) from the P-treeDB table and gen-
erate the next level in the T-treeDB. Similarly, updates take place for the third level of the P-
treeDB table. Fig. 12 shows the final T-treeDB after processing partition one p1.

After processing the first partition p1, for each remaining partition, we try to find the frequent
items in that partition following the original construction of the TFP-tree. According to Lemma
1 introduced earlier in section two, an itemset can be frequent in the updated database if and
only if it is frequent in the incremental database. So by pruning the non-frequent itemsets, we
can reduce the size of the incremental part before appending to the original database. After proc-
essing the current partition we have a compressed T-Treedb due to the pruning technique, we try
to add the new T-Treedb to the tree constructed from the first partition T-treeDB. For each item in
the T-TreeDB we update its support count, X.suppUD = X.suppdb + X.suppDB. This process is iter-
ated for each remaining partition. After we found the frequent items from all partitions and
combined them with the tree constructed from the first partition we ended up having the tree for
the whole updated database, T-treeUD, then we pruned the T-treeUD to filter out the items that
were inadequately supported. Fig. 13.a shows the tree of the incremented database db con-
structed from partition p2. The tree from updated database UD after combining T-treedb to it is
shown in Fig. 13.b.

After all partitions have been processed we attempt now to prune the tree to filter out those
items that are inadequately supported. Fig. 14 shows the final T-treeUD after the pruning step for

Fig. 13. (a) T-tree, partition 2 (b) updated T-tree: combined trees from partition 1 and 2

Fig. 14. The final T-treeUD

IMTAR: Incremental Mining of General Temporal Association Rules

172

the itemset along with their appearing times.
After all partitions have been processed we attempt now to prune the tree to filter out those

items that are inadequately supported. Fig. 14 shows the final T-treeUD after the pruning step for
the itemset along with their appearing times.

Algorithm 1 shows the proposed algorithm IMTAR for incremental mining of temporal asso-
ciation rule.

4. EXPERIMENTAL RESULTS
Our experiments were conducted on a personal computer Pentium 4, 2.4 MHz with 2GB

RAM, and we implemented the proposed algorithm using java programming language.
To evaluate the proposed algorithm we conducted several experiments using synthetic data

generated in a manner similar to [1, 5], and a real life dataset obtained from Korea Electrical
Power Research Institute (KEPRI). This data contains 11,228 transactions obtained in a time
interval of 15 min for one day. We generalized this time interval and used a window of 12 hours
(half a day) to represent the original transaction and the incremental and thus we have two parti-
tions in our data. Fig. 15 shows the running time performance of IMTAR using both the real life
dataset and the synthetic data. Since the power load data is from the real world, it is conse-
quently more complicated than the synthetic data. Therefore, when the given support is small,
the number of frequent patterns from the power load data is much higher than from the synthetic
data set. Because of this, the running cost of IMTAR on power load data will be significantly
higher than tests on synthetic data when the support is small. However, the cost will equalize as
the support is increased.

We also compare the number of frequent patterns generated by our algorithm IMTAR against
FP-growth, as can be seen in Fig. 16. Since IMTAR ignores some patterns that are possibly fre-
quent when combining the db and DB, the number of mined frequent patterns is smaller than the

Table 2. Pseudo code for the IMTAR algorithm

Input: Set of temporal transactions, Minimum Support threshold. Output: General frequent patterns.
1 Partition the database DB into Pi partitions according to time interval.
2 Scan partition P1 and construct T-treeDB without pruning
3 For each remaining partition Pi :
4 Construct T-treedb for Pi following the original TFP with pruning
5 // Combine the T-treeDB and T-treedb to get the updated T-treeUD :
6 T-treeUD = T-treeDB + T-reedb.
7 if (current item exists in T-treeDB) //update its support
8 X.suppUD = X.suppDB + X.suppdb;
9 else //i.e., new item
10 add the item to the tree, update its support and start time
11 End
12 Prune T-treeUD to filter outer inadequately supported items.
13 Return T-treeUD.
14 END

Anour F.A. Dafa-Alla, Ho Sun Shon, Khalid E.K. Saeed, Minghao Piao, Un-il Yun, Kyung Joo Cheoi and Keun Ho Ryu

173

result from the FP-growth algorithm.
For our last experiment, we evaluated the scale-up performance of the proposed algorithm

IMTAR. In this experiment we used a different transactional dataset as shown in Fig. 17, where
DX denotes the size of the dataset considered, we changed the support threshold value from 1%
to 4%. As we can see in Fig. 17, the execution time slightly increases as the size of the data in-
crease, showing good scalability of the proposed algorithm IMTAR.

Fig. 15. Performance of IMTAR using real life dataset and synthetic dataset

Comparison of Performance

23986

9756

6653

3750

11999

24261

6712
3955

0

5000

10000

15000

20000

25000

30000

5% 10% 15% 20%

Given Support

N
u
m

b
e
r

o
f

P
a
tt
e
rn

s IMTAR FP-Growth

Fig. 16. Number of frequent patterns

Fig. 17. Number of frequent patterns

IMTAR: Incremental Mining of General Temporal Association Rules

174

5. CONCLUSION
Rapid advances in the field of information science have led to large size databases. Databases

are now frequently and periodically updated. This brings about the need for algorithms to handle
and maintain the information obtained from these databases. The concept of Temporal Associa-
tion Rule was introduced to handle time series in association rules.

In this paper we introduced a new algorithm called, IMTAR for mining general temporal asso-
ciation rules in publication databases based on the TFP-Apriori tree. Our algorithm has the ad-
vantage of building the tree incrementally from the incremental databases without the need to
rescan the original database. Furthermore our proposed algorithm extends the structure of the
TFP-tree so that it can handle general temporal association rules. Our experiments showed that
the proposed algorithm IMTAR has good performance with synthetic data and real life data as
well as good scalability.

We conclude that IMTAR is an efficient algorithm for incremental mining of general tempo-
ral association rules, and it can be utilized within real life application domains.

REFERENCES
[1] R. Agrawal, T. Imielinski, A. Swan, “Mining Association Rules Between Set of Items in Large Data-

bases”, In ACM SIGMOD International Conference on Management of Data, pp.207-216, 1995.
[2] D. W., Cheung, J. Han, V. Neg, Y. Wong, “Maintenance of Discovered Association Rules in Large

Databases: An Incremental Updating Technique”, In the International Conference on Data Engineer-
ing, pp.106-114, 1996.

[3] W. Wang, Y. Yang, R. Muntz, “Temporal Association Rules with Numeric Attribute”, In NCLA CSD
Technical Report. 1999.

[4] W. Wang, Y. Yang, R. Muntz, R., “Temporal Association Rules on Evolving Numerical Attribute”,
In the 17th International Conference on Data Engineering, pp.283-292, 2001.

[5] C.H. Lee, M.S. Chen, C.R. Lin, C, R., “Progressive Partition Miner: An Efficient Algorithm for Min-
ing General Temporal Association Rules”, In IEEE Transaction on Knowledge Engineering, pp.1004-
1017, 2003.

[6] F. Conen, P. Leng, S. Ahmed, “Data Structure for Association Rules Mining: T-tree and P-tree”, In
IEEE Transaction on Knowledge Engineering, pp.774-778, 2004.

[7] R. Rymon, “Searching through systematic set enumeration”, In the 3rd International Conference on
Principles of Knowledge and Reasoning, 1993.

[8] C. Zheng, “An Incremental updating technique for mining indirect association rules,” Proceedings of
the Seventh International Conference on Machine Learning and Cybernetics, Kunming, pp.217-221,
2008.

[9] X. Li, Z.H. Deng and S. Twang, “A Fast Algorithm for Maintenance of Association Rules in Incre-
mental Databases” Adnaced Data Mining and Application, pp.56-63, 2006.

[10] M. Adnan, R. Alhajj, and K. Barker “Constructing Complete FP-Tree for Incremental Mining of
Frequent Patterns in Dynamic Databases”, Advances in Applied Artificial Intelligence, 19th Interna-
tional Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems,
IEA/AIE, pp.363-372, 2006.

[11] W. Cheung, and O. R. Zaiane, “Incremental Mining of Frequent Patterns without Candidate Generation
or Support Constraint”, in Proc. IDEAS’03, 2003, vol. 1098-8068/03, p.111.

[12] J. S. Park, M. S. Chen and P.S. Yu, “An Effective Hashed-Based Algorithm for Mining Association
Rules”, in proc. 1995 ACM-SIGMOD Int. Conf. Management of Data, San Joe, CA. May, 1995.

Anour F.A. Dafa-Alla, Ho Sun Shon, Khalid E.K. Saeed, Minghao Piao, Un-il Yun, Kyung Joo Cheoi and Keun Ho Ryu

175

Anour F.A. Dafa-Alla
He received a Bsc. From the Arab Academy for Science and Technology, Egypt
in 2003. And he obtained his MS Degree in Computer Science from Chungbuk
National University, South Korea in 2006. Currently he is a PhD candidate at the
same school focusing on problems of privacy preserving data mining, data pub-
lishing among other areas of database related issues.

Ho Sun Shon
She received a Bsc. in Statistics from the Sung Shin Women University of Nature
Science, South Korea in 1986. And she obtained her MS Degree in Statistics
from Sung Shin Women University, South Korea in 1992. And she obtained her
PhD Degree in Computer Science from Chungbuk National University, South
Korea in 2010. Her research interests are in the area of bioinformatics, data min-
ing and pattern recognition.

Khalid E.K. Saeed
He received his BS in Computer Science on October 6 from the University of
Egypt in 2008 and he obtained his MS Degree in Computer Science from
Chungbuk National University, South Korea in 2010. His research interests are in
the area of Data Mining, he has been focusing on the problems of Classification
and Association Rule mining. Including topics such as Emerging Patterns Based
Classifiers, Incremental Classification and Association Rules techniques.

Minghao Piao
He received a Bsc. in Computer Science from the Yanbian University of Science
and technology, China in 2007. And he obtained his MS Degree in Bio Informat-
ics from Chungbuk National University, South Korea in 2009. Currently he is a
PhD candidate of Computer Science at the same school. His research interests
are in the area of incremental frequent patterns mining, incremental decision tree
induction and temporal patterns mining.

IMTAR: Incremental Mining of General Temporal Association Rules

176

Un-il Yun
He received an MS degree in Computer Science and Engineering from Korea
University, Republic of Korea, in 1997, and a PhD degree in Computer Science
from Texas A&M University, Texas, USA, in 2005. He worked at the Multimedia
Laboratory, Korea Telecom, from 1997 to 2002. After receiving a PhD degree, he
worked as a post-doctoral associate for almost I year at the Computer Science
Department of Texas A&M University. Afterwards, he worked as a senior re-
searcher at the Electronics and Telecommunications Research Institute (ETRI).

Currently, he is an assistant professor at the School of Electrical & Computer Engineering, Chungbuk
National University. His research interests include data mining, database systems, information retrieval,
artificial intelligence, and digital libraries.

Kyung Joo Cheoi
She received an MS degree in Computer Science from Yonsei University, Re-
public of Korea, in 1998, and a PhD degree in Computer Science from Yonsei
University, Republic of Korea, in 2002. After receiving the PhD degree, she
worked as a research engineer at the LG CNS, from 2002 to 2005. Afterwards,
she worked as full-time lecturer at Chungbuk National University, from 2005 to
2006. Now, she is an assistant professor at the School of Electrical & Computer
Engineering, Chungbuk National University. Her research interests include com-

puter vision, image processing, pattern recognition, brain science, cognitive science and biometrics.

Keun Ho Ryu
Keun Ho Ryu is a professor at Chungbuk National University and a leader of
database and bioinformatics laboratory in Rep. of Korea. He received the Ph.D
degree from Yonsei University, Rep. of Korea, in 1988. He served Korean Army
as ROTC. He worked not only at University of Arizona as Post-doc and research
scientist in U.S.A but also at Electronics& Telecommunications Research Insti-
tute in Rep. of Korea. He has served on numerous program committees includ-
ing a demonstration co-chair of the VLDB, a panel and tutorial co-chair, a co-

chair of the ADMA conference, the PC committee member of APWeb, the AINA, and so on. His re-
search interests are included in temporal databases, spatiotemporal database, temporal GIS, ubiqui-
tous computing and stream data processing, knowledgebase information retrieval, database security,
data mining, bioinformatics and biomedical. He is a member of the IEEE as well as a member of the
ACM since 1983

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

