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Abstract: This research proposes a new strategy where documents are encoded into string vectors 
and modified version of KNN to be adaptable to string vectors for text categorization. Traditionally, 
when KNN are used for pattern classification, raw data should be encoded into numerical vectors. This 
encoding may be difficult, depending on a given application area of pattern classification. For example, 
in text categorization, encoding full texts given as raw data into numerical vectors leads to two main 
problems: huge dimensionality and sparse distribution. In this research, we encode full texts into string 
vectors, and modify the supervised learning algorithms adaptable to string vectors for text 
categorization. 
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1. Introduction 
 

Text categorization refers to the process of assigning one 
or some of predefined categories to each document. Before 
doing the task, a fixed number of categories should be 
defined. The task is necessary for arranging documents 
based on their contents automatically for administrating 
textual information systems. Techniques of automatic text 
categorization have their high demand for both academic 
and industrial world for managing documents easily and 
efficiently. The scope of this research is restricted to 
automatic text categorization and electronic documents 
given as target for the task. 

In 2002, Sebastiani stated that there are two classes of 
approaches to text categorization in his survey paper [16]. 
The first class of approaches is rule based ones given as 
heuristic ones. In this class of approaches, classification 
rules are defined manually in each category, in advance. 
This class of approaches was already applied to early text 
categorization systems [6]. However, this class of 
approaches requires prior knowledge to build classification 
rules; they have very good precision but poor recall with a 
lack of its flexibility. 

Machine learning based approaches belong to the second 
class of ones to text categorization. In this class of 
approaches, classification rules or equations are defined 
automatically using sample labeled documents. In the 
previous class, classification rules are given manually as the 
input while in this class sample labeled documents are given 
as the input. This class of approaches has its better flexibility 
than rule based ones; it has slightly less precision but its 

much higher recall than rule based ones. Therefore, in recent 
text categorization systems, rule based approaches tend to be 
replaced by machine learning based ones [16]. 

It is required to represent documents into numerical 
vectors for using machine learning based approaches for 
text categorization. The representation leads to two main 
problems: huge dimensionality and sparse distribution. The 
dimension of numerical vectors representing documents is 
usually several hundreds, in spite of feature selection. 
When training examples are given as largely dimensional 
numerical vectors, it costs very much time for processing 
them, and a large number of training examples is required 
to build sufficient constraints proportionally to the 
dimension. An excessive reduction of dimension leads to 
the information loss by which classification performance is 
degraded very much. 

The second problem in representing documents into 
numerical vectors is sparse distribution. It refers to the 
phenomena where each numerical vector has dominantly 
zero values as its elements. This problem indicates a poor 
discrimination among numerical vectors. It degrades 
classification performance very much. In order to mitigate 
this problem, a given text categorization is decomposed to 
binary classification problems in previous literatures 
[16][17]. 

The idea of this research is to propose an alternative 
strategy of encoding documents, in order to address the 
two problems. In the proposed strategy, documents are 
encoded into string vectors, and a string vector refers to a 
finite ordered set of words. When in a numerical vector, 
numerical values given as its elements are replaced by 
words, it becomes a string vector. The goal of this research 
is to address the two problems by representing documents 
into string vectors, instead of numerical vectors. An 
additional advantage of string vectors is that they are more 
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transparent than numerical vectors. 
In this research, KNN (K Nearest Neighbor) is adopted 

as targets for modification into their adaptable versions to 
string vectors. In other words, we propose their modified 
versions where string vectors are used as their input vectors, 
instead of numerical vectors. A process of computing a 
semantic similarity between two string vectors is defined in 
this research as an operation on string vectors. Before 
performing the operation, we must build a similarity matrix 
from a corpus. Therefore, the operation on string vectors is 
performed, depending strongly on the similarity matrix. 

However, there was a previous attempt to use the 
modified versions of SVM and KNN for text 
categorization. In the previous attempt, a restricted 
similarity matrix was used as a basis for the operation on 
string vectors. Once a similarity matrix is built from a 
corpus, it is easy and fast to perform the operation. 
However, it cost very much in terms of time and system 
resources to build the similarity matrix; if the numbers of 
words and documents in a corpus is N and M , respectively, 
the complexity for doing that becomes )( 22 NMO . If more 
than 10,000 words and 1,000 documents are given, it is 
almost impossible to build a full similarity matrix in our 
reality. 

In this attempt, we will use an inverted index as the basis 
for the operation on string vectors involved in the modified 
version. An inverted index refers to a list of words each of 
which is linked to a list of documents including it. The 
advantage of an inverted index over a similarity matrix is 
that it is cheaper to build an inverted index from a corpus 
than a similarity matrix. The complexity of doing that 
reduces to )(MNO . Therefore, since it is possible to build a 
full inverted index from a corpus, in this research, it is 
expected to avoid the information loss from using a 
restricted sized similarity matrix. 

This article consists of six sections including this section. 
In section 2, we will explore previous research on text 
categorization and an attempt to address the two problems. 
In section 3, we will describe two strategies of encoding 
documents for text categorization. In section 4, we will 
present architecture of text categorization systems and 
describe two versions of KNN. In section 5, we present 
experimental results of comparing the two versions of 
KNN with each other on two test beds and in section 6, 
mention the significance of this research and remaining 
tasks as the conclusion. 
 
 

2. Related Work 
 

In this section, we will explore previous research on text 
categorization and previous attempts to address the two 
problems in representing documents into numerical vectors. 

The scope of exploring approaches to text categorization is 
restricted to machine learning based ones, because they are 
more flexible than rule based ones. In this section, the four 
supervised learning algorithms, NB (Naïve Bayes), KNN, 
SVM, and Back Propagation, are covered as the popular 
and representative approaches to text categorization. In this 
section, we will describe briefly each of them and mention 
previous cases of applying it to text categorization. We will 
justify in detail why we select KNN and SVM as targets 
for the modification among the four approaches. 

The fist typical approach to text categorization is KNN. 
KNN is a supervised learning algorithm where objects are 
classified by voting target labels of their most similar 
samples. The supervised learning algorithm has its two 
properties. Its first property is that it does not learn any 
training example until an unseen example is given; it is 
called lazy based learning algorithm [13]. Its second 
property is that it classified unseen objects based on target 
labels of their similar samples; it is called example based 
learning algorithm [13]. 

Among the four supervised learning algorithms, KNN 
was applied earliest to text categorization. In 1992, 
Massand et al applied it for classifying news articles [12]. 
Since then, the KNN has been assigned as the traditional 
machine learning based approach. In successive literatures, 
the KNN has been compared with other approaches, and it 
has been insisted that their own approaches are better than 
KNN in text categorization [7] [16] [17] [18]. However, in 
1999, Yang recommended the KNN as a good approach 
when she compared more than ten approaches [18]. 

Another popular approach to text categorization is NB. 
NB refers to a variant of Bayes classifier where each 
example is classified based on posterior probabilities of 
categories given it. In this approach, elements of an object 
are assumed to be independent of each other, and a 
probability of the object given a category is given as the 
product of probabilities of its elements given a category. 
The learning process of NB is to define probabilities of all 
values of elements given categories using training 
examples. The NB learns training examples in advance, 
differently from the KNN. 

Among the four approaches, NB has been most 
popularly applied for text categorization. In 1997, Mitchell 
mentioned NB is a typical approach to text categorization 
in his text book [13]. In 1999, Mladenic et al evaluated 
feature selection methods, implying that the NB is the most 
popular approach to text categorization [14]. In 2000, 
Androutsopoulos et al adopted NB as the approach to spam 
mail filtering [1]. Note that spam mail filtering is a 
practical and highly demanding instance of text 
categorization. 

The back propagation may be considered as another 
approach to text categorization. Among supervised neural 
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networks, the back propagation is most popular model for 
classifications and regressions. It consists of three layers: 
the input layer, the hidden layer, and the output layer. In 
this neural network model, its weights are initialized 
randomly and output values are computed in a forward 
direction from the input layer to the output layer. The 
weights are updated to minimize errors between computed 
output values and target ones of training examples in a 
backward direction, from the output layer to the input layer. 

In 1995, Winer attempted to apply the back propagation 
to text categorization in his master thesis [17]. He validated 
that the back propagation classifies unseen documents 
more accurately than KNN and NB on the standard test 
bed: Reuter 21578. In 2002, Ruiz et al proposed multiple 
back propagations in the fashion of a hierarchical structure 
for text categorization [15]. They validated that the 
hierarchical combination of multiple back propagations is 
desirable than the flat one [15]. However, note that it costs 
very much time for training the back propagation. 

Recently, the SVM becomes a popular approach to any 
classification problem including text categorization. In the 
SVM, unseen objects are classified by a linear combination 
of kernels of training examples. A kernel function in the 
SVM indicates a criterion of similarity between a training 
example and an unseen object. Depending on how to 
define a kernel function, SVM may be implemented as its 
various versions. Since the SVM classifies unseen objects 
based on a kernel function of training examples, it is called 
a kernel based learning algorithm [2]. 

In 1998, Joachim attempted initially to apply the SVM 
to text categorization [7]. He validated empirically that the 
SVM is a suitable approach to text categorization by 
comparing it with NB and KNN. In 2000, Cristiani et al 
mentioned that the SVM is a typical approach to text 
categorization in their text book. In 2002, Ducker et al used 
SVM for spam mail filtering as a practical instance of text 
categorization and compared it with NB [3]. The reason 
that the SVM becomes more accurate to text categorization 
than any other approach is that it is tolerable to huge 
dimension of numerical vectors; it addresses the first 
problem: huge dimensionality. 

In 2002, Lodhi et al attempted to solve the two main 
problems from representing documents into numerical 
vectors by proposing the string kernel for SVM [11]. The 
string kernel proposed by them is the operation on full 
texts where a syntactic similarity between two full texts is 
computed. Its additional advantage is that it is applicable 
independent of natural languages without considering their 
grammatical properties. Its disadvantage is that it takes too 
much time for performing the operation because of its very 
high complexity. Furthermore, their proposed version of 
SVM where the string kernel was used failed to be better 
than the traditional version of SVM. 

In 2005, NTSO (Neural Text Self Organizer) was 
proposed as a solution to the two problems by Jo and 
Japkowicz. NTSO is an unsupervised neural network 
which follows learning rule of Kohonen Networks and uses 
string vectors as its input vectors. Two operations are 
involved in training the neural network. The first operation 
is the process of computing a semantic similarity between 
two string vectors; it is also used in the proposed versions 
of SVM and KNN in this research. The second operation is 
the process of retrieving a set of inter-words between two 
words which are words with higher semantic similarities 
than that between the two words; the operation has very 
high complexity in NTSO. 

With two reasons, KNN is adopted as target of its 
modification in this research. The first reason is that KNN 
is simple and easy to modify it into its adaptable version to 
string vectors. Once a similarity between two string vectors 
is able to be defined, KNN is modified easily. The second 
reason is that KNN was recommended previously as a 
practical approach. In 1999, Yang considered KNN as one 
of recommended approaches among more than ten 
approaches to text categorization [18], and in 2002, 
Sebatiani recommended it, since it is simple and 
comparable to the best approach, SVM, on the standard test 
bed, Reuter 21578 [17]. 
  
 

3. Strategies of Encoding Documents 
 

This section concerns two strategies of encoding 
documents for tasks of text mining, such as text 
categorization and text clustering. In our reality, it is 
impossible that documents given as raw data are processed 
directly by a computer. In this section, we will describe the 
two strategies of encoding documents to be enabled to 
process them by a computer. One is the traditional strategy 
where documents are encoded into numerical vectors, and 
it is described in section 3.1. The other is the proposed one 
where they are encoded into string vectors, and it is 
described in section 3.2. 
 
3.1. Numerical Vectors 
 

This subsection concerns the traditional strategy of 
encoding documents for processing them. In this strategy, 
documents are encoded into numerical vectors for text 
categorization or text clustering. In this section, we will 
describe in detail the process of doing that. For first, we 
will describe the process of extracting words as feature 
candidates from a corpus and the process of selecting some 
of them as features. For second, we will describe the 
process of assigning values corresponding to the features 
as the final step of generating numerical vectors. 

In the first stage of encoding documents into numerical 
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vectors, feature candidates are extracted from a corpus. A 
collection of documents is given as a corpus in advance3. A 
particular corpus is given as the input of this stage. A list of 
words and their frequencies is generated as its output. This 
stage consists of three steps, as illustrated in Figure 1. 

As illustrated in Figure 1, a document or documents may 
be given as input of this stage; here, documents are given 
as the input, since they are given as a corpus. The full texts 
of the documents are concatenated into a full text and it is 
the target for the tokenization. The concatenated full text is 
tokenized into tokens by a white space or a punctuation 
mark. Therefore, the output of the first step of this stage is 
a list of tokens. 

The next step is the stemming & exception handling, as 
illustrated in Figure 1. In this step, each token is converted 
into its root form. In advance, rules of stemming and 
exception handling are saved into a file. When the program 
which encodes documents is executed, the rules are loaded 
into memory and the corresponding rules are applied to 
each token. The output of this step is a list of root forms of 
tokens. 

Concatenation & Tokenization

Stemming and 
Exception Handling

Removal of Stop Words

Document 
or 

Documents

List of Words and 
their Frequencies  

Fig. 1. The Process of Extracting Feature Candidates 
 
The last step of extracting feature candidates from a 

corpus is to remove stop words as illustrated in Figure 1. 
Here, stop words are defined as words which perform only 
grammatical functions without their relevance to content of 
a document or documents; articles (a an, or the), 
prepositions (in, on, into, or at), pronoun (he, she, I, or me), 
and conjunctions (and, or, but, and so on) belong to this 
kind of words. It is necessary to remove this kind of words 
for more efficient processing. After removing stop words, 
frequencies of remaining words are counted. Therefore, a 

                                            
1 In text categorization, the training collection or a separated 
collection may be given as a corpus. Here, we set the former as 
the corpus. However, note that it is possible to use unlabeled 
documents as a corpus for extracting feature candidates. 

list of the remaining words and their frequencies is 
generated as the final output from the stage illustrated in 
Figure 1. 

Since too many feature candidates are usually extracted 
from a corpus, some of them should be selected as 
features4. Many schemes for selecting some of them were 
already proposed [14][16]. In this research, for a simple 
implementation, features are selected by their frequencies. 
In other words, words with their highest frequencies are 
selected as features5. Other schemes for selecting features 
will be used in our future researches. 

Once features are selected as attributes of numerical 
vectors, values should be assigned to the features. There 
are the three ways for assigning values to features in 
encoding documents into numerical vectors. For first, to 
each feature, a binary value which indicates whether its 
corresponding feature is absent or present in the document 
as the source; a document encoded into a binary vector in 
this way. For second, to each feature, its frequency in the 
document is set as its value; a numerical vector 
representing a document has integers as its elements, in 
this way. For third, we can set values of features as weights 
of words computed by equation (1), 

 

 
)1)(2log2(log

)()(

+−⋅

=

kwdfD
kwitfkwiweight           (1) 

 

where )( ki wweight  indicates a weight of the word, kw , 
which indicates its content based importance in the 
document, i , )( ki wtf  indicates the frequency of the word, 

kw  in the document, i , )( kwdf  is the number of 

documents including the word, 
kw , and D  is the total 

number of documents in a given corpus. 
 

3.2. String Vectors 
 

This subsection concerns the proposed strategy of 
encoding documents. In this strategy, documents are 
encoded into string vectors, instead of numerical vectors. 
Depending on a given application area, it may be 
complicated or difficult that raw data are represented into 
numerical vectors for using machine learning algorithms. 
Especially in text mining, it is unnatural to encode 
documents into numerical vectors. The goal of this strategy 

                                            
2 Usually, more than 10,000 words are extracted as feature 
candidates. The number of selected features becomes usually 
several hundreds. 
3 Stop words have their high frequencies in a given document or a 
collection of documents. However, since stop words were already 
removed in the process of extracting feature candidates, the kind 
of words never selected as features. 
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is to address the two problems of the traditional strategy: 
huge dimensionality and sparse distribution. 

A string vector is defined as a finite ordered set of words. 
If numerical values given as its elements in a numerical 
vector are replaced by words, the numerical vector 
becomes a string vector. A d -dimensional string vector is 
notated by[ ]dwww ,....,, 21 . For example, [computer system 
information] is an instance of a three dimensional string 
vector. Note that the string vector, [computer system 
information] is different from the string vector [system 
computer information], since elements are dependent on 
their positions like the case in every numerical vector. 

Properties of words may be set as features of string 
vectors. Features of string vectors are defined in one or 
combined one of three views. In the first views, features 
are defined based on posting information of words: a 
random word in the first sentence, a random word in the 
last sentence, and a random word in the first paragraph. In 
the second view, they are defined based on linguistic 
properties of words, such as first noun, first verb, last noun, 
and last verb. In the third view, they are defined based on 
their frequencies, such as the most frequent word, the 
second most frequent word, and the third most frequent 
word, and so on. 
In this research, the third way of defining features of string 
vectors is adopted; a strong vector consists of words in the 
descending order of their frequencies. The reason of 
defining features of string vectors so is to implement easily 
and simply the encoder of a text clustering system. Figure 
2 illustrates the process of encoding documents into string 
vectors. A document is given as the input. The process 
illustrated in figure 2 generates a string vector as its output. 

The process of encoding a document into a string vector 
consists of the three steps, as illustrated in figure 2. The 
first step, indexing, was already explained in detail in 
section 3.1 and illustrated in figure 1. In the second step, 
the most frequent words are selected as elements with their 

 

 
Fig. 2. The Process of Encoding Documents into String Vectors 

fixed number; the number indicates the dimension of string 
vectors given as a parameter. The selected words are sorted 
in the descending order of their frequencies and they are 
generated as a string vector. 

As mentioned in section 1, an inverted index is used as 
the basis for the operation on string vectors as expressed in 
equation (3). An inverted index is defined as a list of words 
each of which is linked with a list of documents including it. 
Figure 3 illustrates the data structure of an inverted index. 
As illustrated in figure 3, each word is linked with a list of 
document identifiers including the word. A list of words is 
implemented with a hash table, while a list of documents 
which including a word is implemented with an array. 
A semantic similarity between two words is computed 
based on a number of documents where both words are 
collocated with each other. The more documents 
including both words, the higher semantic similarity 
between them is. From the inverted index, two lists of 
document identifiers corresponding to the two words are 
retrieved. The intersection is taken from the two lists of 
document identifiers as a list of documents including 
both words. Therefore, the semantic similarity is 
computed by equation (2), 
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where ijs  is a semantic similarity between the two 

words, iw  and jw , )( iwdf  is a number of documents 

including the word in the corpus, iw , and ),( ji wwdf is a 

number of documents including both words, iw  and jw . 

The operation on string vectors involved in the modified 
version of KNN and SVM is defined based on an inverted 
index illustrated as an example in figure 3. The operation is 
the process of computing a semantic similarity between 
two string vectors. The operation is defined by equation (3), 

 

 
 

Fig. 3. Inverted Index 



22                           Inverted Index based Modified Version of KNN for Text Categorization 

 

[ ] [ ]

∑
=

=

==
d

k
jkikji

jdjjjidiii

wwss
d

sim

wwwwww

1

2121

),(1),(

,...,,,,...,,

ss

ss
  (3) 

 

In the proposed version of KNN, this operation is used 
as a similarity measure between a training example and an 
unseen example. In the proposed version of SVM, the 
operation expressed in equation (3) is used as a kernel 
function of string vectors. 
 
 

4. Text Categorization Systems 
 

This section concerns architecture of text categorization 
systems KNN. The approach involves trainer and classifier 
as the engine in the text categorization system. The reason of 
adopting KNN is that they are modified into their adaptable 
versions to string vectors easily and simply. If the defined 
operation on string vectors is used as similarity measure 
between a training document and an unseen document 
encoded into string vectors, KNN can be modified so.  
Figure 3 illustrates the architecture of text categorization 
systems consisting of encoder, trainer, and classifiers as 
their modules. The encoder given as the interface to input 
data maps documents into numerical vectors or string 
vectors; the strategies of implementing it were described in 
detail in section 3. The trainer builds classification capacity 
using training documents and provides it for the classifier. 
The classifier classifies unseen documents using the 
classification capacity given as classification rules or 
equations. KNN is used as a scheme for implementing the 
two modules in this research and both of them are 
described in two subsection. 

 
 

 
Fig. 4. Architecture of Text Categorization Systems 

 
4.1. K-Means Algorithm 
 

This subsection concerns a brief description of KNN in 
its traditional and modified versions. KNN is simple and 
practical as an approach to text categorization. It does not 
learn any training example until an unseen example is 

given. Therefore, KNN was called lazy based learning [13]. 
Since KNN depends strongly on labels of training 
examples for classify unseen examples, it is called 
examples based learning. 

KNN is involved in the trainer and the classifier which 
are illustrated in figure 3.  Sample encoded documents are 
given as input of the trainer. Before an unseen encoded 
document is given, sample encoded documents are only 
stored in the trainer. When an unseen document is given, 
the trainer is activated. The trainer receives the unseen 
document from the classifier, and ransfers its nearest 
training examples to the classifier. 

The classifier implemented with KNN determines labels 
of unseen documents based on their nearest training 
examples. A number of nearest training examples is given 
as the parameter of KNN. The parameter is usually set as 
an odd number, such as one, three, five, and seven. When 
an unseen document is given, the classifier transfers it to 
the trainer. It receives its nearest training examples from 
the trainer and determines its label by voting target labels 
of the nearest training examples. 

In this research, the two versions of KNN will be 
compared with each other. The first version is the 
traditional version where documents are encoded into 
numerical vectors which are used as input vectors. In the 
traditional version, two measures for computing a 
similarity between two numerical vectors are given. As 
expressed in equation (4), the first measure is the reverse of 
a distance between two numerical vectors. 
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The second measure is cosine similarity as expressed in 
equation (5), and we will adopt this measure for 
implementing the traditional version of KNN. 
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The second version of KNN is the proposed version 

where documents are encoded into string vectors as input 
data. The goal of the proposed version is to avoid the two 
main problems, huge dimensionality and sparse 
distribution, from the traditional version. A semantic 
similarity between two string vectors as expressed in 
equation (3) is used as the similarity measure between a 
training example and an unseen example in the proposed 
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version. A semantic similarity between two words given as 
elements is computed by fetching it from the similarity 
matrix. Note that it is necessary to build the similarity 
matrix before using this version of KNN for implementing 
the trainer and the classifier. 

KNN is characterized by two properties. Its first 
property is that it does not learn any training example until 
any unseen example is given for its classification. 
Therefore, if too many training examples are given, it takes 
very much time for classifying unseen objects. Its second 
property is that it determines labels of unseen objects by 
referring target labels of involved training examples; it is 
called example based learning algorithm. Training 
examples relevant to a given unseen object becomes 
classification rules for it, in KNN. 
 
 

5. Experiment and Results 
 

This article concerns the experiments where two 
strategies of encoding documents for text categorization 
are compared with each other. We used the two test beds 
for these experiments: NewsPage.com and Reuter 21578. 
In order to compute an operation on string vectors, an 
inverted index of words are built from a corpus as the basis 
for doing that. We adopted KNN as the approaches to text 
categorization with their traditional and modified versions. 
The goal of these experiments is to observe whether 
modified version is comparable to their traditional versions, 
when we use the inverted index, instead of a restricted 
sized similarity matrix. 
 
5.1. Experiment Data 
 

This section concerns the two test beds used for these 
experiments. The first test bed is a small collection of news 
articles, called NewsPage.com. This test bed consists of 
five categories and totally 1,200 news articles. The second 
test bed is the standard collection of news articles, called 
Reuter21578. The test bed consists of more than one 
hundred categories and 21,578 news articles, and is 
popularly used for evaluating approaches to text 
categorization [16]. 
Table 1 illustrates the number of news articles in each 
category in the first test bed, NewsPage.com. There are 
totally 1,200 news articles which are exclusively labeled 
with one of five categories: ‘business’, ‘health’, ‘law’, 
‘internet’, and ‘sports’. The source of this test bed is from 
the web site, www.newspage.com; the test bed is named 
after the URL address. We made the test bed as text files by 
copying and pasting full texts of news articles. In this test 
bed, each news article is given as an ASCII text file. 

Table 2 illustrates the partition of the test bed into the 
training set and the test set. The task of text categorization  

Table 1. NewsPage.com 
Category Name #Document 
Business 400 
Health 200 
Law 100 
Internet 300 
Sports 200 
Total 1200 

 
Table 2.  Training Set and Test Set of Newspage.com 

Training Set Test Set 
Categories Positive 

Class 
Negative 

Class 
Positive 

Class 
Negative 

Class 
Business 280 280 120 120 
Health 140 140 60 60 
Law 70 70 30 30 

Internet 210 210 90 90 
Sports 140 140 60 60 

 
on the test bed was decomposed into five binary 
classification tasks, according to the number of categories. 
In each binary classification task, there are two classes: 
positive class indicating that a document belongs to the 
corresponding category and negative class indicating that 
the document does not so. For each binary classification 
task corresponding to each category, we use F1-measure as 
the evaluation measure. As the general evaluation measure 
representing the five F1-meaures, we use micro-averaged 
and macro-averaged F1 measures. 

The second test bed used for these experiments is 
Reuter21578. In this test bed, more than one hundred 
categories and 21578 news articles are given. We obtained 
the test bed by downloading it from the web site, 
http://www.daviddlewis.com/resources/testcollections/reuter
s21578/, and it has been popularly used as the standard test 
bed for evaluating approaches to text categorization [16]. In 
the previous test bed, news articles are exclusively labeled 
with only one category, while in this test bed, news articles 
are softly labeled with more than one category. News articles 
in this test bed are originally given as SGML files. 
Table 3 illustrates the partition of this test bed into training 
set and test set for each category. Among more than one 
hundred categories, we select ten most frequent categories6. 
The text categorization task on this test bed is decomposed 
into ten binary classification tasks, according to the number 
of categories. In order to evaluate the approaches in the 
environment where a sparse number of training examples 
is given as an environment closer one to our reality, the 
number of training examples is restricted to 250, maximally. 
On this test bed, we use the identical measures for 
evaluating the approaches to those on the previous test bed. 

                                            
4 In the rest categories, each category has a very sparse number of 
news articles. Therefore, only ten most frequent categories are 
also selected as predefined ones in other literatures [Esbrooks et 
al 2004][Jo and Japkowicz 2004]. 
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Table 3.  Training Set and Test Set of Reuter21578 
Training Set Test Set 

Categories Positive 
Class 

Negative 
Class 

Positive 
Class 

Negative 
Class 

Acq 250 250 672 672 
Corn 152 152 57 57 
Crude 250 250 203 203 
Earn 250 250 954 954 
Grain 250 250 162 162 

Interest 250 250 135 135 
Money-Fx 250 250 246 246 

Ship 176 176 87 87 
Trade 250 250 160 160 
Wheat 173 173 76 76 

 
5.2. The Configurations of Involved Approaches 
 

This section concerns the process of these experiments, 
together with the configurations of them. For the text 
categorization, documents are encoded into numerical 
vectors as large sized input data or string vectors as small 
sized ones. From training documents, an inverted index of 
words is built as the basis for the operation on string 
vectors in the modified version. KNN is adopted and used 
for these experiments as approaches to text categorization. 
This section specifies the configuration and process of 
these experiments. 

Table 4 illustrates the configurations for these 
experiments, in the context of the two strategies of 
encoding documents. For using the traditional version, 
documents are encoded into large dimensional numerical 
vectors: 100, 250, or 500 dimensional numerical vectors. 
The inner product between two numerical vectors is used 
as an operation on them in the traditional versions. For 
using the modified version, documents are encoded into 
small dimensional string vectors: 10, 25, or 50 dimensional 
string vectors. The process of computing a semantic 
similarity between two string vectors is used as an 
operation on them for the modified version. 
Table 4 illustrates the parameter settings for using the two 
supervised learning algorithms for text categorization. In 
KNN, the number of nearest neighbor given as its 
parameter is set to three. 
 

Table 4.  Configurations for these Experiments 
K Nearest Neighbor K = 3 

Dimensions Numerical Vectors: 100, 250, and 500 
String Vectors: 10, 25, and 50 

 
5.3. Experimental Results 
 

This section concerns the results of comparing the two 
versions of KNN on the two test beds. Figure 5 and 6 
illustrate the results as bar-graphs. In each figure, the y-
axis indicates macro-averaged F1 in the left side and 
micro-averaged F1 in the right side. Within the x-axis, each 

group of bars indicates the traditional version or the 
modified version of either of the two supervised learning 
algorithms, and each individual bar within a group 
indicates a dimension of numerical vectors or string 
vectors into which documents are encoded. Among three-
bars in each group, the white bar, the grey bar, and the 
black bar indicate a small dimension, a medium dimension, 
and a large dimension of numerical vectors or string 
vectors, respectively. 

 

0

0.2

0.4

0.6

0.8

1

Traditional Modified

100 vs  10

250 vs  25

500 vs  50

0

0.2

0.4

0.6

0.8

1

Traditional Modified

100 vs  10

250 vs  25

500 vs  50

 
Fig. 5. The Results of Two Strategies of Encoding Documents in 

using KNN on NewsPage.com 
Macroaveraged-F1 Measure (Top) and Microaveraged-
F1 Measure (Bottom) 

 
Figure 5 illustrates the results of comparing the two 

versions of KNN on the first bed called NewsPage.com. As 
illustrated in figure 5, in the traditional version, both macro 
and micro averaged F1 measures are close to 0.8, with 
regardless of dimensions of numerical vectors. In the 
modified version, macro-averaged F1 measures range 
between 0.6 and 0.8 as illustrated in the left side of figure 5, 
while micro-averaged F1 measures are around 0.8 as 
illustrated in the right side. With respect to macro-averaged 
F1 measures, the modified version is slightly better than 
the traditional version, only when documents are encoded 
into ten dimensional string vectors. With respect to micro-
averaged F1 measures, the modified version is slightly 
better in all dimensions. 

Figure 6 illustrates the results of comparing the two 
versions of KNN on the second bed called Reuter21578. 
As illustrated in figure 6, in the traditional version, its 
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macro-averaged F1 measures are around 0.75, while its 
micro-averaged F1 measures are around 0.6. In the 
modified version, both macro and micro averaged F1 
measures are close to 0.8, with regardless of dimensions of 
string vectors. With respect to the macro-averaged F1 
measures, both versions are close to each other, as 
illustrated in the left side of figure 6. With respect to the 
micro-averaged F1 measures, the modified version 
becomes clearly better than the traditional version as 
illustrated in the right side of figure 6. 
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Fig. 6. The Results of Two Strategies of Encoding Documents  

in using KNN on Reuter21578 
      Macroaveraged-F1 Measure (Top) and Microaveraged 

F1 Measure (Bottom) 
 

5.4. Discussion and Comments 
 

Figure 7 visualizes the comparison of the traditional and 
modified versions of KNN spanning over the two test beds 
with respect to both kinds of F1 measures. In figure 7, the 
black part is the portion of the traditional version, while the 
white part is the portion of the proposed one. In the 
traditional version, the mean macro-averaged F1 measure 
which is averaged over dimensions and the two test beds is 
0.7528, and the mean micro-averaged F1 measure is 
0.7257. In the modified version, the mean macro-averaged 
F1 measure is 0.7475, and the mean micro-averaged F1 
measure is 0.7937. With respect to the macro-averaged F1 
measure, both versions of KNN are almost identical to 
each other. With respect to the micro-averaged F1 measure, 
the modified version is slightly better than the traditional 
version. 

Traditional

Modified

Traditional

Modified

 

Fig. 7. The Comparison of Two Versions of KNN 
Macroaveraged 
F1 Measure (Top) and Microaveraged-F1 Measure (Bottom) 
 
 

6. Conclusion 
 

This research used a full inverted index as the basis for 
the operation on string vectors, instead of a restricted sized 
similarity matrix. It was cheaper to build an inverted index 
from a corpus than a similarity matrix, as mentioned in 
section 1. In the previous attempt, a restricted sized 
similarity matrix was used as the basis for the operation on 
string vectors. Therefore, information loss from the 
similarity matrix degraded the performance of modified 
version of KNN very much. This research addresses the 
information loss by using a full inverted index, instead of a 
restricted sized similarity matrix. 

Note that there is trade-off between the two bases for the 
operation on string vectors. Although it is cheaper to build 
an inverted index from a corpus, note that it costs more 
time interactively for doing the operation expressed in 
equation (3). Let’s the numbers of words, documents, and 
elements in each string vector be N , M , and d . In using 
the inverted index, the complexity for doing the operation 
is )( 2dMO  in worst case, while in using the similarity 
matrix, the complexity is )(dO . When we try to compute 
semantic similarities of all possible pairs, the complexity 
is )( 22 dMNO , whether we use a similarity matrix or an 
inverted index.  

Other machine learning algorithms such as Naïve Bayes 
and back propagation are considered to be modified into 
their adaptable versions to string vectors. KNN is modified 
easily once the process of computing a semantic similarity 
between two vectors is defined as the operation. The 
operation may be insufficient for modifying other machine 
learning algorithms. For example, it requires the definition 
of a string vector which is representative of string vectors 
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corresponding to a mean vector in numerical vectors for 
modifying a k-means algorithm into the adaptable version. 
Various operations on string vectors should be defined in a 
future research for modifying other machine learning 
algorithms. 
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