
Journal of Information Processing Systems, Vol.4, No.1, March 2008 17

Inverted Index based Modified Version of KNN for Text Categorization

Taeho Jo*

Abstract: This research proposes a new strategy where documents are encoded into string vectors
and modified version of KNN to be adaptable to string vectors for text categorization. Traditionally,
when KNN are used for pattern classification, raw data should be encoded into numerical vectors. This
encoding may be difficult, depending on a given application area of pattern classification. For example,
in text categorization, encoding full texts given as raw data into numerical vectors leads to two main
problems: huge dimensionality and sparse distribution. In this research, we encode full texts into string
vectors, and modify the supervised learning algorithms adaptable to string vectors for text
categorization.

Keywords: String Vector, K- Nearest Neighbor, Text Categorization

1. Introduction

Text categorization refers to the process of assigning one
or some of predefined categories to each document. Before
doing the task, a fixed number of categories should be
defined. The task is necessary for arranging documents
based on their contents automatically for administrating
textual information systems. Techniques of automatic text
categorization have their high demand for both academic
and industrial world for managing documents easily and
efficiently. The scope of this research is restricted to
automatic text categorization and electronic documents
given as target for the task.

In 2002, Sebastiani stated that there are two classes of
approaches to text categorization in his survey paper [16].
The first class of approaches is rule based ones given as
heuristic ones. In this class of approaches, classification
rules are defined manually in each category, in advance.
This class of approaches was already applied to early text
categorization systems [6]. However, this class of
approaches requires prior knowledge to build classification
rules; they have very good precision but poor recall with a
lack of its flexibility.

Machine learning based approaches belong to the second
class of ones to text categorization. In this class of
approaches, classification rules or equations are defined
automatically using sample labeled documents. In the
previous class, classification rules are given manually as the
input while in this class sample labeled documents are given
as the input. This class of approaches has its better flexibility
than rule based ones; it has slightly less precision but its

much higher recall than rule based ones. Therefore, in recent
text categorization systems, rule based approaches tend to be
replaced by machine learning based ones [16].

It is required to represent documents into numerical
vectors for using machine learning based approaches for
text categorization. The representation leads to two main
problems: huge dimensionality and sparse distribution. The
dimension of numerical vectors representing documents is
usually several hundreds, in spite of feature selection.
When training examples are given as largely dimensional
numerical vectors, it costs very much time for processing
them, and a large number of training examples is required
to build sufficient constraints proportionally to the
dimension. An excessive reduction of dimension leads to
the information loss by which classification performance is
degraded very much.

The second problem in representing documents into
numerical vectors is sparse distribution. It refers to the
phenomena where each numerical vector has dominantly
zero values as its elements. This problem indicates a poor
discrimination among numerical vectors. It degrades
classification performance very much. In order to mitigate
this problem, a given text categorization is decomposed to
binary classification problems in previous literatures
[16][17].

The idea of this research is to propose an alternative
strategy of encoding documents, in order to address the
two problems. In the proposed strategy, documents are
encoded into string vectors, and a string vector refers to a
finite ordered set of words. When in a numerical vector,
numerical values given as its elements are replaced by
words, it becomes a string vector. The goal of this research
is to address the two problems by representing documents
into string vectors, instead of numerical vectors. An
additional advantage of string vectors is that they are more

DOI : 10.3745/JIPS.2008.4.1.017

Manuscript received November 29, 2007; revised February 13, 2008;
accepted March 10, 2008.
Corresponding Author: Taeho Jo
* School of Computer and Information Engineering Inha University

(tjo018@naver.com)

Copyright ⓒ 2008 KIPS (ISSN 1976-913X)

18 Inverted Index based Modified Version of KNN for Text Categorization

transparent than numerical vectors.
In this research, KNN (K Nearest Neighbor) is adopted

as targets for modification into their adaptable versions to
string vectors. In other words, we propose their modified
versions where string vectors are used as their input vectors,
instead of numerical vectors. A process of computing a
semantic similarity between two string vectors is defined in
this research as an operation on string vectors. Before
performing the operation, we must build a similarity matrix
from a corpus. Therefore, the operation on string vectors is
performed, depending strongly on the similarity matrix.

However, there was a previous attempt to use the
modified versions of SVM and KNN for text
categorization. In the previous attempt, a restricted
similarity matrix was used as a basis for the operation on
string vectors. Once a similarity matrix is built from a
corpus, it is easy and fast to perform the operation.
However, it cost very much in terms of time and system
resources to build the similarity matrix; if the numbers of
words and documents in a corpus is N and M , respectively,
the complexity for doing that becomes)(22 NMO . If more
than 10,000 words and 1,000 documents are given, it is
almost impossible to build a full similarity matrix in our
reality.

In this attempt, we will use an inverted index as the basis
for the operation on string vectors involved in the modified
version. An inverted index refers to a list of words each of
which is linked to a list of documents including it. The
advantage of an inverted index over a similarity matrix is
that it is cheaper to build an inverted index from a corpus
than a similarity matrix. The complexity of doing that
reduces to)(MNO . Therefore, since it is possible to build a
full inverted index from a corpus, in this research, it is
expected to avoid the information loss from using a
restricted sized similarity matrix.

This article consists of six sections including this section.
In section 2, we will explore previous research on text
categorization and an attempt to address the two problems.
In section 3, we will describe two strategies of encoding
documents for text categorization. In section 4, we will
present architecture of text categorization systems and
describe two versions of KNN. In section 5, we present
experimental results of comparing the two versions of
KNN with each other on two test beds and in section 6,
mention the significance of this research and remaining
tasks as the conclusion.

2. Related Work

In this section, we will explore previous research on text
categorization and previous attempts to address the two
problems in representing documents into numerical vectors.

The scope of exploring approaches to text categorization is
restricted to machine learning based ones, because they are
more flexible than rule based ones. In this section, the four
supervised learning algorithms, NB (Naïve Bayes), KNN,
SVM, and Back Propagation, are covered as the popular
and representative approaches to text categorization. In this
section, we will describe briefly each of them and mention
previous cases of applying it to text categorization. We will
justify in detail why we select KNN and SVM as targets
for the modification among the four approaches.

The fist typical approach to text categorization is KNN.
KNN is a supervised learning algorithm where objects are
classified by voting target labels of their most similar
samples. The supervised learning algorithm has its two
properties. Its first property is that it does not learn any
training example until an unseen example is given; it is
called lazy based learning algorithm [13]. Its second
property is that it classified unseen objects based on target
labels of their similar samples; it is called example based
learning algorithm [13].

Among the four supervised learning algorithms, KNN
was applied earliest to text categorization. In 1992,
Massand et al applied it for classifying news articles [12].
Since then, the KNN has been assigned as the traditional
machine learning based approach. In successive literatures,
the KNN has been compared with other approaches, and it
has been insisted that their own approaches are better than
KNN in text categorization [7] [16] [17] [18]. However, in
1999, Yang recommended the KNN as a good approach
when she compared more than ten approaches [18].

Another popular approach to text categorization is NB.
NB refers to a variant of Bayes classifier where each
example is classified based on posterior probabilities of
categories given it. In this approach, elements of an object
are assumed to be independent of each other, and a
probability of the object given a category is given as the
product of probabilities of its elements given a category.
The learning process of NB is to define probabilities of all
values of elements given categories using training
examples. The NB learns training examples in advance,
differently from the KNN.

Among the four approaches, NB has been most
popularly applied for text categorization. In 1997, Mitchell
mentioned NB is a typical approach to text categorization
in his text book [13]. In 1999, Mladenic et al evaluated
feature selection methods, implying that the NB is the most
popular approach to text categorization [14]. In 2000,
Androutsopoulos et al adopted NB as the approach to spam
mail filtering [1]. Note that spam mail filtering is a
practical and highly demanding instance of text
categorization.

The back propagation may be considered as another
approach to text categorization. Among supervised neural

Taeho Jo 19

networks, the back propagation is most popular model for
classifications and regressions. It consists of three layers:
the input layer, the hidden layer, and the output layer. In
this neural network model, its weights are initialized
randomly and output values are computed in a forward
direction from the input layer to the output layer. The
weights are updated to minimize errors between computed
output values and target ones of training examples in a
backward direction, from the output layer to the input layer.

In 1995, Winer attempted to apply the back propagation
to text categorization in his master thesis [17]. He validated
that the back propagation classifies unseen documents
more accurately than KNN and NB on the standard test
bed: Reuter 21578. In 2002, Ruiz et al proposed multiple
back propagations in the fashion of a hierarchical structure
for text categorization [15]. They validated that the
hierarchical combination of multiple back propagations is
desirable than the flat one [15]. However, note that it costs
very much time for training the back propagation.

Recently, the SVM becomes a popular approach to any
classification problem including text categorization. In the
SVM, unseen objects are classified by a linear combination
of kernels of training examples. A kernel function in the
SVM indicates a criterion of similarity between a training
example and an unseen object. Depending on how to
define a kernel function, SVM may be implemented as its
various versions. Since the SVM classifies unseen objects
based on a kernel function of training examples, it is called
a kernel based learning algorithm [2].

In 1998, Joachim attempted initially to apply the SVM
to text categorization [7]. He validated empirically that the
SVM is a suitable approach to text categorization by
comparing it with NB and KNN. In 2000, Cristiani et al
mentioned that the SVM is a typical approach to text
categorization in their text book. In 2002, Ducker et al used
SVM for spam mail filtering as a practical instance of text
categorization and compared it with NB [3]. The reason
that the SVM becomes more accurate to text categorization
than any other approach is that it is tolerable to huge
dimension of numerical vectors; it addresses the first
problem: huge dimensionality.

In 2002, Lodhi et al attempted to solve the two main
problems from representing documents into numerical
vectors by proposing the string kernel for SVM [11]. The
string kernel proposed by them is the operation on full
texts where a syntactic similarity between two full texts is
computed. Its additional advantage is that it is applicable
independent of natural languages without considering their
grammatical properties. Its disadvantage is that it takes too
much time for performing the operation because of its very
high complexity. Furthermore, their proposed version of
SVM where the string kernel was used failed to be better
than the traditional version of SVM.

In 2005, NTSO (Neural Text Self Organizer) was
proposed as a solution to the two problems by Jo and
Japkowicz. NTSO is an unsupervised neural network
which follows learning rule of Kohonen Networks and uses
string vectors as its input vectors. Two operations are
involved in training the neural network. The first operation
is the process of computing a semantic similarity between
two string vectors; it is also used in the proposed versions
of SVM and KNN in this research. The second operation is
the process of retrieving a set of inter-words between two
words which are words with higher semantic similarities
than that between the two words; the operation has very
high complexity in NTSO.

With two reasons, KNN is adopted as target of its
modification in this research. The first reason is that KNN
is simple and easy to modify it into its adaptable version to
string vectors. Once a similarity between two string vectors
is able to be defined, KNN is modified easily. The second
reason is that KNN was recommended previously as a
practical approach. In 1999, Yang considered KNN as one
of recommended approaches among more than ten
approaches to text categorization [18], and in 2002,
Sebatiani recommended it, since it is simple and
comparable to the best approach, SVM, on the standard test
bed, Reuter 21578 [17].

3. Strategies of Encoding Documents

This section concerns two strategies of encoding
documents for tasks of text mining, such as text
categorization and text clustering. In our reality, it is
impossible that documents given as raw data are processed
directly by a computer. In this section, we will describe the
two strategies of encoding documents to be enabled to
process them by a computer. One is the traditional strategy
where documents are encoded into numerical vectors, and
it is described in section 3.1. The other is the proposed one
where they are encoded into string vectors, and it is
described in section 3.2.

3.1. Numerical Vectors

This subsection concerns the traditional strategy of
encoding documents for processing them. In this strategy,
documents are encoded into numerical vectors for text
categorization or text clustering. In this section, we will
describe in detail the process of doing that. For first, we
will describe the process of extracting words as feature
candidates from a corpus and the process of selecting some
of them as features. For second, we will describe the
process of assigning values corresponding to the features
as the final step of generating numerical vectors.

In the first stage of encoding documents into numerical

20 Inverted Index based Modified Version of KNN for Text Categorization

vectors, feature candidates are extracted from a corpus. A
collection of documents is given as a corpus in advance3. A
particular corpus is given as the input of this stage. A list of
words and their frequencies is generated as its output. This
stage consists of three steps, as illustrated in Figure 1.

As illustrated in Figure 1, a document or documents may
be given as input of this stage; here, documents are given
as the input, since they are given as a corpus. The full texts
of the documents are concatenated into a full text and it is
the target for the tokenization. The concatenated full text is
tokenized into tokens by a white space or a punctuation
mark. Therefore, the output of the first step of this stage is
a list of tokens.

The next step is the stemming & exception handling, as
illustrated in Figure 1. In this step, each token is converted
into its root form. In advance, rules of stemming and
exception handling are saved into a file. When the program
which encodes documents is executed, the rules are loaded
into memory and the corresponding rules are applied to
each token. The output of this step is a list of root forms of
tokens.

Concatenation & Tokenization

Stemming and
Exception Handling

Removal of Stop Words

Document
or

Documents

List of Words and
their Frequencies

Fig. 1. The Process of Extracting Feature Candidates

The last step of extracting feature candidates from a

corpus is to remove stop words as illustrated in Figure 1.
Here, stop words are defined as words which perform only
grammatical functions without their relevance to content of
a document or documents; articles (a an, or the),
prepositions (in, on, into, or at), pronoun (he, she, I, or me),
and conjunctions (and, or, but, and so on) belong to this
kind of words. It is necessary to remove this kind of words
for more efficient processing. After removing stop words,
frequencies of remaining words are counted. Therefore, a

1 In text categorization, the training collection or a separated
collection may be given as a corpus. Here, we set the former as
the corpus. However, note that it is possible to use unlabeled
documents as a corpus for extracting feature candidates.

list of the remaining words and their frequencies is
generated as the final output from the stage illustrated in
Figure 1.

Since too many feature candidates are usually extracted
from a corpus, some of them should be selected as
features4. Many schemes for selecting some of them were
already proposed [14][16]. In this research, for a simple
implementation, features are selected by their frequencies.
In other words, words with their highest frequencies are
selected as features5. Other schemes for selecting features
will be used in our future researches.

Once features are selected as attributes of numerical
vectors, values should be assigned to the features. There
are the three ways for assigning values to features in
encoding documents into numerical vectors. For first, to
each feature, a binary value which indicates whether its
corresponding feature is absent or present in the document
as the source; a document encoded into a binary vector in
this way. For second, to each feature, its frequency in the
document is set as its value; a numerical vector
representing a document has integers as its elements, in
this way. For third, we can set values of features as weights
of words computed by equation (1),

)1)(2log2(log

)()(

+−⋅

=

kwdfD
kwitfkwiweight (1)

where)(ki wweight indicates a weight of the word, kw ,
which indicates its content based importance in the
document, i ,)(ki wtf indicates the frequency of the word,

kw in the document, i ,)(kwdf is the number of

documents including the word,
kw , and D is the total

number of documents in a given corpus.

3.2. String Vectors

This subsection concerns the proposed strategy of
encoding documents. In this strategy, documents are
encoded into string vectors, instead of numerical vectors.
Depending on a given application area, it may be
complicated or difficult that raw data are represented into
numerical vectors for using machine learning algorithms.
Especially in text mining, it is unnatural to encode
documents into numerical vectors. The goal of this strategy

2 Usually, more than 10,000 words are extracted as feature
candidates. The number of selected features becomes usually
several hundreds.
3 Stop words have their high frequencies in a given document or a
collection of documents. However, since stop words were already
removed in the process of extracting feature candidates, the kind
of words never selected as features.

Taeho Jo 21

is to address the two problems of the traditional strategy:
huge dimensionality and sparse distribution.

A string vector is defined as a finite ordered set of words.
If numerical values given as its elements in a numerical
vector are replaced by words, the numerical vector
becomes a string vector. A d -dimensional string vector is
notated by[]dwww ,....,, 21 . For example, [computer system
information] is an instance of a three dimensional string
vector. Note that the string vector, [computer system
information] is different from the string vector [system
computer information], since elements are dependent on
their positions like the case in every numerical vector.

Properties of words may be set as features of string
vectors. Features of string vectors are defined in one or
combined one of three views. In the first views, features
are defined based on posting information of words: a
random word in the first sentence, a random word in the
last sentence, and a random word in the first paragraph. In
the second view, they are defined based on linguistic
properties of words, such as first noun, first verb, last noun,
and last verb. In the third view, they are defined based on
their frequencies, such as the most frequent word, the
second most frequent word, and the third most frequent
word, and so on.
In this research, the third way of defining features of string
vectors is adopted; a strong vector consists of words in the
descending order of their frequencies. The reason of
defining features of string vectors so is to implement easily
and simply the encoder of a text clustering system. Figure
2 illustrates the process of encoding documents into string
vectors. A document is given as the input. The process
illustrated in figure 2 generates a string vector as its output.

The process of encoding a document into a string vector
consists of the three steps, as illustrated in figure 2. The
first step, indexing, was already explained in detail in
section 3.1 and illustrated in figure 1. In the second step,
the most frequent words are selected as elements with their

Fig. 2. The Process of Encoding Documents into String Vectors

fixed number; the number indicates the dimension of string
vectors given as a parameter. The selected words are sorted
in the descending order of their frequencies and they are
generated as a string vector.

As mentioned in section 1, an inverted index is used as
the basis for the operation on string vectors as expressed in
equation (3). An inverted index is defined as a list of words
each of which is linked with a list of documents including it.
Figure 3 illustrates the data structure of an inverted index.
As illustrated in figure 3, each word is linked with a list of
document identifiers including the word. A list of words is
implemented with a hash table, while a list of documents
which including a word is implemented with an array.
A semantic similarity between two words is computed
based on a number of documents where both words are
collocated with each other. The more documents
including both words, the higher semantic similarity
between them is. From the inverted index, two lists of
document identifiers corresponding to the two words are
retrieved. The intersection is taken from the two lists of
document identifiers as a list of documents including
both words. Therefore, the semantic similarity is
computed by equation (2),

()
)()(

),(2
,

ji

ji
jiij wdfwdf

wwdf
wwsss

+
== (2)

where ijs is a semantic similarity between the two

words, iw and jw ,)(iwdf is a number of documents

including the word in the corpus, iw , and),(ji wwdf is a

number of documents including both words, iw and jw .

The operation on string vectors involved in the modified
version of KNN and SVM is defined based on an inverted
index illustrated as an example in figure 3. The operation is
the process of computing a semantic similarity between
two string vectors. The operation is defined by equation (3),

Fig. 3. Inverted Index

22 Inverted Index based Modified Version of KNN for Text Categorization

[] []

∑
=

=

==
d

k
jkikji

jdjjjidiii

wwss
d

sim

wwwwww

1

2121

),(1),(

,...,,,,...,,

ss

ss
 (3)

In the proposed version of KNN, this operation is used
as a similarity measure between a training example and an
unseen example. In the proposed version of SVM, the
operation expressed in equation (3) is used as a kernel
function of string vectors.

4. Text Categorization Systems

This section concerns architecture of text categorization
systems KNN. The approach involves trainer and classifier
as the engine in the text categorization system. The reason of
adopting KNN is that they are modified into their adaptable
versions to string vectors easily and simply. If the defined
operation on string vectors is used as similarity measure
between a training document and an unseen document
encoded into string vectors, KNN can be modified so.
Figure 3 illustrates the architecture of text categorization
systems consisting of encoder, trainer, and classifiers as
their modules. The encoder given as the interface to input
data maps documents into numerical vectors or string
vectors; the strategies of implementing it were described in
detail in section 3. The trainer builds classification capacity
using training documents and provides it for the classifier.
The classifier classifies unseen documents using the
classification capacity given as classification rules or
equations. KNN is used as a scheme for implementing the
two modules in this research and both of them are
described in two subsection.

Fig. 4. Architecture of Text Categorization Systems

4.1. K-Means Algorithm

This subsection concerns a brief description of KNN in
its traditional and modified versions. KNN is simple and
practical as an approach to text categorization. It does not
learn any training example until an unseen example is

given. Therefore, KNN was called lazy based learning [13].
Since KNN depends strongly on labels of training
examples for classify unseen examples, it is called
examples based learning.

KNN is involved in the trainer and the classifier which
are illustrated in figure 3. Sample encoded documents are
given as input of the trainer. Before an unseen encoded
document is given, sample encoded documents are only
stored in the trainer. When an unseen document is given,
the trainer is activated. The trainer receives the unseen
document from the classifier, and ransfers its nearest
training examples to the classifier.

The classifier implemented with KNN determines labels
of unseen documents based on their nearest training
examples. A number of nearest training examples is given
as the parameter of KNN. The parameter is usually set as
an odd number, such as one, three, five, and seven. When
an unseen document is given, the classifier transfers it to
the trainer. It receives its nearest training examples from
the trainer and determines its label by voting target labels
of the nearest training examples.

In this research, the two versions of KNN will be
compared with each other. The first version is the
traditional version where documents are encoded into
numerical vectors which are used as input vectors. In the
traditional version, two measures for computing a
similarity between two numerical vectors are given. As
expressed in equation (4), the first measure is the reverse of
a distance between two numerical vectors.

[] []

()
2

1

2121

1),(

,...,,,,...,,

∑
=

−

=

==

d

k
kk

dd

yx

yxsim

yyyyxxxx
 (4)

The second measure is cosine similarity as expressed in
equation (5), and we will adopt this measure for
implementing the traditional version of KNN.

[] []

∑∑

∑

==

=

+

×
=

+
⋅

=

==

d

k
k

d

k
k

d

k
kk

dd

yx

yx

yx
yxyxsim

yyyyxxxx

1

2

1

2

1

2121

2),(

,...,,,,...,,
 (5)

The second version of KNN is the proposed version

where documents are encoded into string vectors as input
data. The goal of the proposed version is to avoid the two
main problems, huge dimensionality and sparse
distribution, from the traditional version. A semantic
similarity between two string vectors as expressed in
equation (3) is used as the similarity measure between a
training example and an unseen example in the proposed

Taeho Jo 23

version. A semantic similarity between two words given as
elements is computed by fetching it from the similarity
matrix. Note that it is necessary to build the similarity
matrix before using this version of KNN for implementing
the trainer and the classifier.

KNN is characterized by two properties. Its first
property is that it does not learn any training example until
any unseen example is given for its classification.
Therefore, if too many training examples are given, it takes
very much time for classifying unseen objects. Its second
property is that it determines labels of unseen objects by
referring target labels of involved training examples; it is
called example based learning algorithm. Training
examples relevant to a given unseen object becomes
classification rules for it, in KNN.

5. Experiment and Results

This article concerns the experiments where two
strategies of encoding documents for text categorization
are compared with each other. We used the two test beds
for these experiments: NewsPage.com and Reuter 21578.
In order to compute an operation on string vectors, an
inverted index of words are built from a corpus as the basis
for doing that. We adopted KNN as the approaches to text
categorization with their traditional and modified versions.
The goal of these experiments is to observe whether
modified version is comparable to their traditional versions,
when we use the inverted index, instead of a restricted
sized similarity matrix.

5.1. Experiment Data

This section concerns the two test beds used for these
experiments. The first test bed is a small collection of news
articles, called NewsPage.com. This test bed consists of
five categories and totally 1,200 news articles. The second
test bed is the standard collection of news articles, called
Reuter21578. The test bed consists of more than one
hundred categories and 21,578 news articles, and is
popularly used for evaluating approaches to text
categorization [16].
Table 1 illustrates the number of news articles in each
category in the first test bed, NewsPage.com. There are
totally 1,200 news articles which are exclusively labeled
with one of five categories: ‘business’, ‘health’, ‘law’,
‘internet’, and ‘sports’. The source of this test bed is from
the web site, www.newspage.com; the test bed is named
after the URL address. We made the test bed as text files by
copying and pasting full texts of news articles. In this test
bed, each news article is given as an ASCII text file.

Table 2 illustrates the partition of the test bed into the
training set and the test set. The task of text categorization

Table 1. NewsPage.com
Category Name #Document
Business 400
Health 200
Law 100
Internet 300
Sports 200
Total 1200

Table 2. Training Set and Test Set of Newspage.com

Training Set Test Set
Categories Positive

Class
Negative

Class
Positive

Class
Negative

Class
Business 280 280 120 120
Health 140 140 60 60
Law 70 70 30 30

Internet 210 210 90 90
Sports 140 140 60 60

on the test bed was decomposed into five binary
classification tasks, according to the number of categories.
In each binary classification task, there are two classes:
positive class indicating that a document belongs to the
corresponding category and negative class indicating that
the document does not so. For each binary classification
task corresponding to each category, we use F1-measure as
the evaluation measure. As the general evaluation measure
representing the five F1-meaures, we use micro-averaged
and macro-averaged F1 measures.

The second test bed used for these experiments is
Reuter21578. In this test bed, more than one hundred
categories and 21578 news articles are given. We obtained
the test bed by downloading it from the web site,
http://www.daviddlewis.com/resources/testcollections/reuter
s21578/, and it has been popularly used as the standard test
bed for evaluating approaches to text categorization [16]. In
the previous test bed, news articles are exclusively labeled
with only one category, while in this test bed, news articles
are softly labeled with more than one category. News articles
in this test bed are originally given as SGML files.
Table 3 illustrates the partition of this test bed into training
set and test set for each category. Among more than one
hundred categories, we select ten most frequent categories6.
The text categorization task on this test bed is decomposed
into ten binary classification tasks, according to the number
of categories. In order to evaluate the approaches in the
environment where a sparse number of training examples
is given as an environment closer one to our reality, the
number of training examples is restricted to 250, maximally.
On this test bed, we use the identical measures for
evaluating the approaches to those on the previous test bed.

4 In the rest categories, each category has a very sparse number of
news articles. Therefore, only ten most frequent categories are
also selected as predefined ones in other literatures [Esbrooks et
al 2004][Jo and Japkowicz 2004].

24 Inverted Index based Modified Version of KNN for Text Categorization

Table 3. Training Set and Test Set of Reuter21578
Training Set Test Set

Categories Positive
Class

Negative
Class

Positive
Class

Negative
Class

Acq 250 250 672 672
Corn 152 152 57 57
Crude 250 250 203 203
Earn 250 250 954 954
Grain 250 250 162 162

Interest 250 250 135 135
Money-Fx 250 250 246 246

Ship 176 176 87 87
Trade 250 250 160 160
Wheat 173 173 76 76

5.2. The Configurations of Involved Approaches

This section concerns the process of these experiments,
together with the configurations of them. For the text
categorization, documents are encoded into numerical
vectors as large sized input data or string vectors as small
sized ones. From training documents, an inverted index of
words is built as the basis for the operation on string
vectors in the modified version. KNN is adopted and used
for these experiments as approaches to text categorization.
This section specifies the configuration and process of
these experiments.

Table 4 illustrates the configurations for these
experiments, in the context of the two strategies of
encoding documents. For using the traditional version,
documents are encoded into large dimensional numerical
vectors: 100, 250, or 500 dimensional numerical vectors.
The inner product between two numerical vectors is used
as an operation on them in the traditional versions. For
using the modified version, documents are encoded into
small dimensional string vectors: 10, 25, or 50 dimensional
string vectors. The process of computing a semantic
similarity between two string vectors is used as an
operation on them for the modified version.
Table 4 illustrates the parameter settings for using the two
supervised learning algorithms for text categorization. In
KNN, the number of nearest neighbor given as its
parameter is set to three.

Table 4. Configurations for these Experiments
K Nearest Neighbor K = 3

Dimensions Numerical Vectors: 100, 250, and 500
String Vectors: 10, 25, and 50

5.3. Experimental Results

This section concerns the results of comparing the two
versions of KNN on the two test beds. Figure 5 and 6
illustrate the results as bar-graphs. In each figure, the y-
axis indicates macro-averaged F1 in the left side and
micro-averaged F1 in the right side. Within the x-axis, each

group of bars indicates the traditional version or the
modified version of either of the two supervised learning
algorithms, and each individual bar within a group
indicates a dimension of numerical vectors or string
vectors into which documents are encoded. Among three-
bars in each group, the white bar, the grey bar, and the
black bar indicate a small dimension, a medium dimension,
and a large dimension of numerical vectors or string
vectors, respectively.

0

0.2

0.4

0.6

0.8

1

Traditional Modified

100 vs 10

250 vs 25

500 vs 50

0

0.2

0.4

0.6

0.8

1

Traditional Modified

100 vs 10

250 vs 25

500 vs 50

Fig. 5. The Results of Two Strategies of Encoding Documents in

using KNN on NewsPage.com
Macroaveraged-F1 Measure (Top) and Microaveraged-
F1 Measure (Bottom)

Figure 5 illustrates the results of comparing the two

versions of KNN on the first bed called NewsPage.com. As
illustrated in figure 5, in the traditional version, both macro
and micro averaged F1 measures are close to 0.8, with
regardless of dimensions of numerical vectors. In the
modified version, macro-averaged F1 measures range
between 0.6 and 0.8 as illustrated in the left side of figure 5,
while micro-averaged F1 measures are around 0.8 as
illustrated in the right side. With respect to macro-averaged
F1 measures, the modified version is slightly better than
the traditional version, only when documents are encoded
into ten dimensional string vectors. With respect to micro-
averaged F1 measures, the modified version is slightly
better in all dimensions.

Figure 6 illustrates the results of comparing the two
versions of KNN on the second bed called Reuter21578.
As illustrated in figure 6, in the traditional version, its

Taeho Jo 25

macro-averaged F1 measures are around 0.75, while its
micro-averaged F1 measures are around 0.6. In the
modified version, both macro and micro averaged F1
measures are close to 0.8, with regardless of dimensions of
string vectors. With respect to the macro-averaged F1
measures, both versions are close to each other, as
illustrated in the left side of figure 6. With respect to the
micro-averaged F1 measures, the modified version
becomes clearly better than the traditional version as
illustrated in the right side of figure 6.

0

0.2

0.4

0.6

0.8

1

Traditonal Modified

100 vs 10

250 vs 25

500 vs 50

0

0.2

0.4

0.6

0.8

1

Traditional Modified

100 vs 10

250 vs 25

500 vs 50

Fig. 6. The Results of Two Strategies of Encoding Documents

in using KNN on Reuter21578
 Macroaveraged-F1 Measure (Top) and Microaveraged

F1 Measure (Bottom)

5.4. Discussion and Comments

Figure 7 visualizes the comparison of the traditional and
modified versions of KNN spanning over the two test beds
with respect to both kinds of F1 measures. In figure 7, the
black part is the portion of the traditional version, while the
white part is the portion of the proposed one. In the
traditional version, the mean macro-averaged F1 measure
which is averaged over dimensions and the two test beds is
0.7528, and the mean micro-averaged F1 measure is
0.7257. In the modified version, the mean macro-averaged
F1 measure is 0.7475, and the mean micro-averaged F1
measure is 0.7937. With respect to the macro-averaged F1
measure, both versions of KNN are almost identical to
each other. With respect to the micro-averaged F1 measure,
the modified version is slightly better than the traditional
version.

Traditional

Modified

Traditional

Modified

Fig. 7. The Comparison of Two Versions of KNN
Macroaveraged
F1 Measure (Top) and Microaveraged-F1 Measure (Bottom)

6. Conclusion

This research used a full inverted index as the basis for
the operation on string vectors, instead of a restricted sized
similarity matrix. It was cheaper to build an inverted index
from a corpus than a similarity matrix, as mentioned in
section 1. In the previous attempt, a restricted sized
similarity matrix was used as the basis for the operation on
string vectors. Therefore, information loss from the
similarity matrix degraded the performance of modified
version of KNN very much. This research addresses the
information loss by using a full inverted index, instead of a
restricted sized similarity matrix.

Note that there is trade-off between the two bases for the
operation on string vectors. Although it is cheaper to build
an inverted index from a corpus, note that it costs more
time interactively for doing the operation expressed in
equation (3). Let’s the numbers of words, documents, and
elements in each string vector be N , M , and d . In using
the inverted index, the complexity for doing the operation
is)(2dMO in worst case, while in using the similarity
matrix, the complexity is)(dO . When we try to compute
semantic similarities of all possible pairs, the complexity
is)(22 dMNO , whether we use a similarity matrix or an
inverted index.

Other machine learning algorithms such as Naïve Bayes
and back propagation are considered to be modified into
their adaptable versions to string vectors. KNN is modified
easily once the process of computing a semantic similarity
between two vectors is defined as the operation. The
operation may be insufficient for modifying other machine
learning algorithms. For example, it requires the definition
of a string vector which is representative of string vectors

26 Inverted Index based Modified Version of KNN for Text Categorization

corresponding to a mean vector in numerical vectors for
modifying a k-means algorithm into the adaptable version.
Various operations on string vectors should be defined in a
future research for modifying other machine learning
algorithms.

References

[1] Androutsopoulos, K. Koutsias, K. V. Chandrinos, and
C. D. Spyropoulos, “An Experimental Comparison of
Naïve Bayes and Keyword-based Anti-spam Filtering
with personal email message”, The Proceedings of
23rd ACM SIGIR, pp160-167, 2000.

[2] N. Cristianini and J. Shawe-Taylor, Support Vector
Machines and Other Kernel-based Learning Methods,
Cambridge University Press, 2000.

[3] H. Drucker, D. Wu, and V. N. Vapnik, “Support Vector
Machines for Spam Categorization”, IEEE
Transaction on Neural Networks, Vol 10, No 5,
pp1048-1054, 1999.

[4] A. Estabrooks, T. Jo, and N . Japkowicz, “A Multiple
Resampling Method for Learning from Imbalanced
Data Sets”, Computational Intelligence, Vol 28, No 1,
pp18-26, 2004.

[5] M. Hearst, “Support Vector Machines”, IEEE
Intelligent Systems, Vol 13, No 4, pp18-28, 1998.

[6] P. Jackson, and I. Mouliner, Natural Language
Processing for Online Applications: Text Retrieval,
Extraction and Categorization, John Benjamins
Publishing Company, 2002.

[7] T. Joachims, “Text Categorization with Support
Vector Machines: Learning with many Relevant
Features”, The Proceedings of 10th European
Conference on Machine Learning, pp143-151, 1998.

[8] T. Jo, and N. Japkowicz, “Class Imbalances versus
Small Disjuncts”, ACM SIGKDD Exploration
Newsletters, Vol 6, No1, pp40-49, 2004.

[9] T. Jo and N. Japkowicz, “Text Clustering using
NTSO”, The Proceedings of IJCNN, pp558-563, 2005.

[10] R. R. Korfahage, Information Storage and Retrieval,
Wiley Computer Publishing, 1997.

[11] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini,
and C. Watkins, “Text Classification with String
Kernels, Journal of Machine Learning Research”, Vol
2, No 2, pp419-444, 2002.

[12] B. Massand, G. Linoff, and D. Waltz, “Classifying
News Stories using Memory based Reasoning”, The
Proceedings of 15th ACM International Conference on
Research and Development in Information Retrieval,
pp59-65, 1992.

[13] T. Mitchell, Machine Learning, McGraw-Hill, 1997.
[14] D. Mladenic and M. Grobelink, “Feature Selection for

unbalanced class distribution and Naïve Bayes”, The
Proceedings of International Conference on Machine
Learning, pp256-267, 1999.

[15] M. E. Ruiz and P. Srinivasan, “Hierarchical Text
Categorization Using Neural Networks”, Information
Retrieval, Vol 5, No 1, pp87-118, 2002.

[16] F. Sebastiani, “Machine Learning in Automated Text
Categorization”, ACM Computing Survey, Vol 34, No
1, pp1-47, 2002.

[17] E. D. Wiener, “A Neural Network Approach to Topic
Spotting in Text”, The Thesis of Master of University
of Colorado, 1995.

[18] Y. Yang, “An evaluation of statistical approaches to
text categorization”, Information Retrieval, Vol 1, No
1-2, pp67-88, 1999.

Taeho Jo
He received BS, MS, and PhD from
Korea University in 1994, from
POSTECH in 1997, and from
University of Ottawa in 2006,
respectively. Currently, he is working
for IT Convergence of KAIST as a

senior research scientist. His research interests are Text
Mining, Neural Networks, Machine Learning, and
Information Retrieval. He has submitted and published
almost 100 research papers since 1996. He has more than
five years working experience in industrial organizations.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Albertus-ExtraBold
 /Albertus-Medium
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Algerian
 /AmiR-HM
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Medium
 /BaskOldFace
 /Batang
 /BatangChe
 /BatangOldHangulJamo
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolFive
 /BookshelfSymbolFour
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolSix
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScript
 /BrushScriptBT-Regular
 /BrushScriptMT
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CharisSIL
 /CharisSIL-Bold
 /CharisSIL-BoldItalic
 /CharisSIL-Italic
 /Chiller-Regular
 /Clarendon
 /Clarendon-Bold
 /Clarendon-Light
 /CliperSKana
 /Cmsy10
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Consolekana
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CooperBlack-Italic
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Copperplate-ThirtyTwoBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Crayon
 /CurlzMT
 /DanzinRegular
 /DFKMincho-Bd-WIN-KSC-H
 /Dinbla
 /Dinbol
 /DinerRegular
 /DingDongBold
 /Dinlig
 /Dinmed
 /Dinreg
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /Eurostile
 /Eurostile-Bold
 /Eurostile-BoldExtendedTwo
 /Eurostile-ExtendedTwo
 /ExpoM-HM
 /FelixTitlingMT
 /FencesPlain
 /Flora-Bold
 /Flora-BoldEx
 /Flora-BoldHo
 /Flora-BoldWd
 /Floralies
 /Flora-Normal
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreestyleScript-Regular
 /FrenchScriptMT
 /FZSY--SURROGATE-0
 /Gaeul
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /GaramondNo4CyrTCY-Medi
 /GauFontShirousagi
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldCondensed
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-ExtraBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Goudy
 /Goudy-Bold
 /Goudy-BoldItalic
 /Goudy-ExtraBold
 /Goudy-Italic
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GTB
 /GTM
 /Gulim
 /GulimChe
 /GulimOldHangulJamo
 /Gungsuh
 /GungsuhChe
 /H2bulL
 /H2gprM
 /H2gsrB
 /H2gtrE
 /H2gtrM
 /H2hdrM
 /H2mjmM
 /H2mjrB
 /H2mjrE
 /H2mjsM
 /H2mjuM
 /H2mkpB
 /H2porL
 /H2porM
 /H2sa1M
 /H2wulE
 /H2wulL
 /HaansoftBatang
 /HaansoftDotum
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HeadG
 /HeadlineR-HM
 /HeadR
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HGMinchoB
 /HGPMinchoB
 /HGSMinchoB
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HoeflerText-Black
 /HoeflerText-BlackItalic
 /HoeflerText-Italic
 /HoeflerText-Ornaments
 /HoeflerText-Regular
 /HYbdaL
 /HYbdaM
 /HYbsrB
 /HYcysM
 /HYdnkB
 /HYdnkM
 /HYgprM
 /HYgsrB
 /HYgtrE
 /HYhaeseo
 /HYHeadLine-Bold
 /HyhwpEQ
 /HYkanB
 /HYkanM
 /HYKHeadLine-Bold
 /HYmjrE
 /HYmprL
 /HYMyeongJo-Medium
 /HYnamB
 /HYnamL
 /HYnamM
 /HYPop-Medium
 /HYporM
 /HYRGoThic-Medium
 /HYsanB
 /HYsnrL
 /HYsupB
 /HYsupM
 /HYSymbolE
 /HYtbrB
 /HYwulB
 /HYwulM
 /HYYeasoL-Bold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /JasmineUPC
 /JasmineUPC-Bold
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /KirillicaWincyr
 /KristenITC-Regular
 /KunstlerScript
 /KyunKo
 /KyunMyung
 /Latha
 /LatinWide
 /LCDReg
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /Love
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /MagicR-HM
 /Magneto-Bold
 /MaiandraGD-Regular
 /MalgunGothicBold
 /MalgunGothicRegular
 /Mangal-Regular
 /Marigold
 /MaturaMTScriptCapitals
 /MDAlong
 /MDArt
 /MDEasop
 /Mdesb
 /MDGaesung
 /MDSol
 /Mfoxb
 /Mfoxl
 /Mfoxm
 /MicrosoftSansSerif
 /MingLiU
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /MJB
 /MJL
 /MJM
 /Modern-Regular
 /MoeumTR-HM
 /Monaco
 /MonaLisa-Recut
 /MonotypeCorsiva
 /MonotypeSorts
 /Mpaperb
 /Mpaperl
 /Mpaperm
 /Msam10
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSerif
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /Munhem
 /MVBoli
 /Narkisim
 /Nekoyanagi
 /NemoB
 /NemoL
 /NemoM
 /NemoXB
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewGulim
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /OCRAExtended
 /OCRB10PitchBT-Regular
 /OldEnglishTextMT
 /Onyx
 /OriginalGaramondBT-Roman
 /Oxford
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Pilgi2
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Pristina-Regular
 /PyunjiR-HM
 /QDotum
 /QGulim
 /QGungsuh
 /Raavi
 /RageItalic
 /Ravie
 /Retort
 /RetortOutline
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /SaenaegiXB-HM
 /SAKURAhira
 /San02B
 /San02L
 /San02M
 /San60B
 /San60L
 /San60M
 /San60R
 /San60SB
 /SanBiB
 /SanBiL
 /SanBiM
 /SanBoB
 /SanBoL
 /SanBoM
 /SanBsB
 /SanBsL
 /SanBsU
 /SanCrB
 /SanCrK
 /SanCrL
 /SandArB
 /SandArL
 /SandArM
 /SandArXB
 /SandAtM
 /SandAtXB
 /SandJg
 /SandKg
 /SandKm
 /SandMtB
 /SandMtL
 /SandMtM
 /SandSaB
 /SandSaL
 /SandSaM
 /SandSm
 /SandTg
 /SandTm
 /SanHgB
 /SanHgL
 /SanHgM
 /SanIgM
 /SanKbB
 /SanKbL
 /SanKbM
 /SanKsB
 /SanKsL
 /SanKsM
 /SanMogfilB
 /SanMogfilL
 /SanMogfilM
 /SanMrB
 /SanMrJ
 /SanMrM
 /SanNsB
 /SanNsL
 /SanNsM
 /SanPkB
 /SanPkL
 /SanPkM
 /SanPuB
 /SanPuW
 /SanSrB
 /SanSrL
 /SanSrM
 /SanSwB
 /SanSwL
 /SanSwM
 /ScriptMTBold
 /SegoeMediaCenter-Regular
 /SegoeMediaCenter-Semibold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /SeoulCity
 /SeUtum
 /SFgoJ1-KSCpc-EUC-H
 /SFgoT-KSCpc-EUC-H
 /SgreekMedium
 /Shadow9
 /SHeadG
 /SHeadR
 /ShowcardGothic-Reg
 /Shruti
 /Shusha
 /Shusha02
 /Shusha05
 /SILDoulosIPA
 /SILDoulosIPA93Bold
 /SILDoulosIPA93BoldItalic
 /SILDoulosIPA93Italic
 /SILDoulosIPA93Regular
 /SILManuscriptIPA
 /SILManuscriptIPA93Bold
 /SILManuscriptIPA93BoldItalic
 /SILManuscriptIPA93Italic
 /SILManuscriptIPA93Regular
 /SILSophiaIPA
 /SILSophiaIPA93Bold
 /SILSophiaIPA93BoldItalic
 /SILSophiaIPA93Italic
 /SILSophiaIPA93Regular
 /SimHei
 /SimSun
 /SinGraphic
 /SinMun
 /SnapITC-Regular
 /SohaR-HM
 /Sol
 /SPgoJ1-KSCpc-EUC-H
 /SPgoJ-KSCpc-EUC-H
 /SPgoJS-KSCpc-EUC-H
 /SPgoT-KSCpc-EUC-H
 /SPmuS-KSCpc-EUC-H
 /StempelGaramond-Bold
 /StempelGaramond-BoldItalic
 /StempelGaramond-Italic
 /StempelGaramond-Roman
 /Stencil
 /Sylfaen
 /Symbol
 /SymbolMT
 /TaeKo
 /TaeM
 /TaeUtum
 /Taffy
 /Tahoma
 /Tahoma-Bold
 /TahomaSmallCap-Bold
 /TempusSansITC
 /TeXplusEF
 /TeXplusEF-Bold
 /TeXplusEM
 /TeXplusEM-BoldItalic
 /TeXplusEM-Italic
 /TeXplusEX
 /TeXplusMI
 /TeXplusMI-Bold
 /TeXplusRM
 /TeXplusRM-Bold
 /TeXplusRM-BoldItalic
 /TeXplusRM-Italic
 /TeXplusSA
 /TeXplusSB
 /TeXplusSY
 /TeXplusSY-Bold
 /TeXplusTE
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldTh
 /TimesIPAnew
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Tiplo
 /ToodamB
 /ToodamL
 /ToodamM
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TSTNamr
 /TSTPenC
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /TypewriteB
 /TypewriteL
 /TypewriteM
 /Univers
 /Univers-BlackExt
 /Univers-Black-Normal
 /Univers-BoldExt
 /UniversCondensedLight
 /UniversCondensedOblique
 /Univers-Light-Italic
 /Univers-Light-Light
 /Univers-Light-LightTh
 /Univers-Light-Normal
 /Univers-Medium
 /Univers-Oblique
 /Uri
 /Utum
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WP-CyrillicA
 /WP-GreekCentury
 /WP-MultinationalARoman
 /YDIBirdB
 /YDIBirdL
 /YDIBirdM
 /YDIChungM
 /YDICMjoM
 /YDICstreB
 /YDICstreL
 /YDICstreM
 /YDICstreUL
 /YDIGasiIIB
 /YDIGasiIIL
 /YDIGasiIIM
 /YDIGukB
 /YDIGukL
 /YDIGukM
 /YDIHSalM
 /YDIYGO310
 /YDIYGO330
 /YDIYGO340
 /YDIYGO350
 /YDIYGO360
 /YDIYMjO330
 /YDIYMjO350
 /YDIYMjO360
 /YetR-HM
 /YjBACDOOBold
 /YJBELLAMedium
 /YJBLOCKMedium
 /YJBONMOKGAKMedium
 /YjBUTGOTLight
 /YjCHMSOOTBold
 /YjDOOLGIMedium
 /YjDWMMOOGJOMedium
 /YjGABIBold
 /YjGOTGAEMedium
 /YjINITIALPOSITIVEMedium
 /YJINJANGMedium
 /YjMAEHWASemiBold
 /YjNANCHOMedium
 /YjSHANALLMedium
 /YjSOSELSemiBold
 /YjTEUNTEUNBold
 /YjWADAGMedium
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

