
Journal of Information Processing Systems, Vol.3, No.2, December 2007 43

Addressing Mobile Agent Security through Agent Collaboration

Evens Jean*, Yu Jiao**, and Ali R. Hurson*

Abstract: The use of agent paradigm in today’s applications is hampered by the security concerns of
agents and hosts alike. The agents require the presence of a secure and trusted execution environment;
while hosts aim at preventing the execution of potentially malicious code. In general, hosts support the
migration of agents through the provision of an agent server and managing the activities of arriving
agents on the host. Numerous studies have been conducted to address the security concerns present in
the mobile agent paradigm with a strong focus on the theoretical aspect of the problem. Various
proposals in Intrusion Detection Systems aim at securing hosts in traditional client-server execution
environments. The use of such proposals to address the security of agent hosts is not desirable since
migrating agents typically execute on hosts as a separate thread of the agent server process. Agent
servers are open to the execution of virtually any migrating agent; thus the intent or tasks of such
agents cannot be known a priori. It is also conceivable that migrating agents may wish to hide their
intentions from agent servers.
In light of these observations, this work attempts to bridge the gap from theory to practice by analyzing
the security mechanisms available in Aglet. We lay the foundation for implementation of application
specific protocols dotted with access control, secured communication and ability to detect tampering of
agent data. As agents exists in a distributed environment, our proposal also introduces a novel security
framework to address the security concerns of hosts through collaboration and pattern matching even
in the presence of differing views of the system. The introduced framework has been implemented on
the Aglet platform and evaluated in terms of accuracy, false positive, and false negative rates along
with its performance strain on the system.

Keywords: Disk Striping, Multimedia System, Bandwidth

1. Introduction

Mobile Agent refers to the ability for a program to halt
its execution, move to a new environment where execution
can then be resumed. Even with the development of
numerous mobile agent platforms such as Aglet [18], an
open source system originally released by IBM, the use of
mobile agents have not transcended from theoretical to
practical applications due to the numerous security threats
plaguing the paradigm. The security threats facing mobile
agents, including Aglets, have been studied in depth and
categorized into host-to-agent and agent-to-host [9].
Solutions to such threats have to this point only been
introduced from a theoretical perspective. In order to foster
the emergence of mobile agents to address practical issues,
we conducted an analysis of the security options available
in the Aglet platform. The study resulted in the introduction
of a Secured Aglet Server (SAS) providing:

 Secured communication,
 Controlled resource consumption of agents, and

 Integrity and reliability of agent’s data.
The introduction of SAS attacks the issue of securing the

agent paradigm from a centralized standpoint. It is fair to
note that any mobile agent system is inherently suitable to
support distributed applications; hence, securing such
systems need to take into account the distributed nature of
the environment. Malicious agents are not a threat solely to
the current execution environment but to any host to which
they may migrate. As such, there is an inherent need for
hosts to collaborate and learn from each other’s experience
in executing an agent’s code. The Computer Security
Division of the National Institute of Standards and
Technology has also suggested that one of the main
hindrances to the adoption of mobile agent technology
stems from the security concerns of hosts [12]. Thus, the
protection of hosts needs to occur from both a centralized
and distributed standpoints. In light of this observation, we
herein introduce a boosting-based monitoring system that
allows hosts to learn and classify agents, not only based on
their own experiences, but also based on collaboration with
other hosts in the network, some of which may have been
victims to agent attacks.

The issue of protecting a resource in a distributed
environment is not novel; in fact, it has been thoroughly
explored in the literature under the banner of Intrusion
Detection Systems (IDS). In general, IDS attempt to detect

Copyright ⓒ 2007 KIPS (ISSN 1976-913X)

10.3745/JIPS.2008.3.2.043

Manuscript received December 6, 2007; accepted December 26, 2007.
The National Science Foundation under the contract IIS-0324835 in part
has supported this work.
Corresponding Author: Ali R. Hurson(hurson@mst.edu)
* Computer Science & Engineering, The Pennsylvania State University,

University Park, PA 16802
** Computational Sciences and Engineering Division, Oak Ridge

National Laboratory Oak Ridge, TN 37831

44 Addressing Mobile Agent Security through Agent Collaboration

malicious activities of users in a system in order to
maintain the system’s integrity. The use of IDS should help
in protecting hosts against misbehaving agents. However,
due to the fact that agent servers, or hosts, in agent
platforms are unlike traditional systems, the application of
IDS cannot adequately address the security threats of such
servers. Migrating agents execute as independent threads
of the agent server process, thus limiting the ability of
present day IDS systems to determine the identity of
misbehaving agents. As an open system, the range of
execution patterns of migrating agents in the paradigm is
essentially unlimited. Through our proposal of having hosts
collaborate based on their experience with specific agent
applications, we contend that protection of hosts in the
distributed environment can be rendered more efficient.
Within the proposed framework, security agents
collaborate to learn from each other’s experience in dealing
with any migrating agent. Our contribution can thus be
summarized as follows:

• Collaboration between hosts to identify malicious
agents, and

• Ability for the security agents of hosts to learn from
experience and thus prevent attacks.

In further detailing our work, we will start by

introducing the necessary background in section 2. Section
3 will then discuss our work in securing Tahiti, the Aglet
server. The adaptive security-monitoring framework is
introduced in section 4. We will then proceed to evaluating
the proposed framework and draw conclusions highlighting
our contribution and future work in sections 5 and 6,
respectively.

2. Background

To ensure that the reader gains an in depth appreciation
of our proposal, we find it imperative to provide a thorough
coverage of agent security, intrusion detection, and
supervised learning along with other pertinent works
related to our proposal.

2.1 Agent Security

Mobile agents lend themselves nicely to searches and
computation that requires parallel and distributed
processing, as well as network roaming. The mobility of
mobile agents may depend on predetermined itinerary or
intermediate computation results. Along with flexibility in
system design, agent mobility also introduces security
concerns. The categorization of the threats plaguing mobile
agents is done based on the origination of the attack; as
such we have agent-to-host, as well as host-to-agent attacks.
The security issues in mobile agents have been studied and
some of the proposed solutions include but are not limited
to the following:

• Code signing, access control, proof carrying code, and
path histories to protect the hosts [7, 9, 21],

• Tracing, obfuscation, trusted hardware as well as
encrypted functions and data to protect the mobile
agents [2, 7, 9, 21].

Research in mobile agent security is still an open field,

and many of these approaches remain theoretical at best.
Moreover, most of these proposals further suffer from
reliance on an isolated view of agent systems.

2.2 Intrusion Detection Systems

Intrusion Detection Systems (IDS) refer to the detection
and reporting of suspicious behaviors in a network with the
purpose of identifying intruders and thus securing the
system. Such techniques can be categorized based on the
approaches taken to accomplish their goals, thus, we have
anomaly detection and misuse detection approaches [5, 19,
23]. Misuse detection leaves the specification of
abnormalities to the administrators of the system. An
exhaustive definition of such abnormalities is very difficult
to achieve and even more so in agent systems where the
intent or tasks of agents cannot be known a priori. On the
other hand, anomaly detection relies on the system’s
training to learn the expected behaviors of users and is thus
able to detect novel forms of attacks and represent the
approach adopted in this article to address agent security.
Dotted with the ability to learn from novel attacks,
anomaly detection is an interesting approach to protecting
hosts, as precise prior knowledge of agent’s intents and
tasks are not necessary. In general, current proposals in
IDS suffer from the inability to detect precisely which
agent is responsible for an attack as the agents are typically
independent threads of execution of the hosting agent
server process. Applying anomaly detection to securing
agent hosts would thus require an IDS system that is
intimate with the agent platform in use and able to detect
anomalies at fine granularities.

The agent paradigm has inevitably found its use in IDS
[5, 19]. Deeter et al. aim at achieving bandwidth
performance, scalability, minimizing analysis delay as well
as allowing integration with new IDS systems without the
need for global change [5]. As such, the mobile agent
paradigm was adopted to establish a middle-ware layer
allowing for different IDS to collaborate and secure a
system. The mobile agents migrate to sources of potential
attacks and determine whether to raise an alarm or not
through analysis of data collected by various IDS. The
mobility of agents adds virtualization and serialization
overhead to the performance of the IDS architecture [5].
The system’s agents could also potentially be used to carry
out a denial of service attack on hosts, as the introduced
IDS architecture was not designed to address agent security
[5].

2.3 Supervised Learning

Supervised learning focuses on the ability to extract
patterns from a set of raw data whose categories are known.
Various algorithms have been introduced to allow

Evens Jean, Yu Jiao, and Ali R. Hurson 45

Network

Host Host

Resource Resource

Agent Server Agent Server

Agents Agents

The bee icon for aglets

Fig. 1. Aglet Execution Environment

extraction of existing patterns in a data set. Such
algorithms include Support Vector Machines (SVM),
neural networks, decision trees, as well as boosting [8, 10,
20]. Boosting has an interesting property, in the fact that
training occurs in stages. In each stage of boosting, a weak
classifier is trained using a subset of the raw data. The set
of trained classifiers yield the learning function used to
determine how to categorize future data samples. As the
boosting learning function emanates from several weak
classifiers, it is easily adaptable to a distributed
environment where each weak classifier may operate from
different sources. It is this inherent ability of boosting that
we attempt to harness in addressing the issue of identifying
malicious agents operating across several hosts.

2.4 Related Works

Agent collaboration has been the focus of various
research efforts in recent years. Becker et al. [1] studied the
issue of confidence determination to ascertain its effect in
collaborative agent systems. The study showed that, in a
multi-agent system, incorrect confidence-integration might
propagate and thus change the collaborative answers of the
agents. The problem was simplified by assuming that trust
is not an issue between the collaborating agents. Within our
approach, each of the collaborating agents is extremely
flexible in integrating confidence factors to yield a
collaborative result. The collaborating agents do take trust
into account along with confidence in determining their
results to provide distributed security.

Chen et al. [3] presented a boosting-based hierarchical
learning algorithm for experience classification. The work
was motivated by the need for agents within a team to
collaborate and learn from their past experiences, which
may differ from one agent to another, as individual agents
may only have a partial view of the team’s environment.
The learning algorithm [3] attempts to take advantage of
boosting by building a hierarchical framework where
agents at the lowest level may only have a partial view of
the system. Agents at the lowest level are trained using
decision stumps based only on the feature set available to
them. On the other hand, agents higher up in the hierarchy
are trained, not based on their observations, but using the
classification results of the corresponding agents at the
lower level. Training is hierarchical and tightly coupled

amongst agents as the classifiers are inter-dependent. The
hierarchical learning system is not suitable to address
security concerns that we have discussed as the system is
built upon the assumptions that the agents are members of
the same team, thus ignoring any trust issues. The fact that
the system is built in a hierarchical fashion means that the
final decision must originate from the root of the structure
if it is to take into account the experience of every possible
agent involved. The latter also means that such a system
would be highly unsuitable for distributed security-
monitoring since it would introduce a single point of
failure, namely the root, in properly classifying agents.

3. Securing the Aglet Platform

The security threats facing the agent paradigm are
extensive and hinder the development of agent-based
applications. As a result, we will study agent security by
focusing on one of the available agent platforms to help
secure the paradigm’s execution environment. Aglet is one
of the numerous platforms introduced to support agent
development; a pictorial representation of the platform’s
execution environment is depicted in figure 1.

Aglet is a library written in Java, released by IBM to
support the development of mobile code; the platform is
fairly documented, easy to install, has received great press
coverage, and is currently maintained by the open-source
community [14]. Numerous application prototypes have
already been introduced on the platform [14, 15, 16],
thereby making it a suitable choice in analyzing the
security infrastructure in place to support secure agent
applications. We have discussed the general classification
of security threats to agent systems as being agent-to-host
or host-to-agent. As thus, our intent is to analyze the
security framework in place in Tahiti, the Aglet server, to
ascertain that both entities are properly secured. Our study
has revealed the following vulnerabilities in the Aglet
platform [14]:

• Communication vulnerability established through the
use of the Dsniff package to intercept agents as they
are being transmitted from one host to another. This
has led us to conclude that the Aglet framework
cannot satisfy the requirement of agents to migrate
exclusively to intended hosts.

46 Addressing Mobile Agent Security through Agent Collaboration

• Data vulnerability has not been addressed in the Aglet
framework. While there is no acclaimed solution to
the issue, it is imperative that users be able to
determine if their data has been tampered with, and
determine the malicious host.

• Resource vulnerability determined through analysis of
the lifecycle of agents in the environment. Through
seemingly normal transition of lifecycle states (see
Figure 2), agents can wreak havoc in hosts through
repeated state transitions such as cloning.

Details on the aforementioned studies can be found in

[14]. Based on our experimental results, the task of
addressing agent security resulted in the introduction of a
new server namely Secure Aglet Server (SAS). The
following subsections detail our contribution in addressing
agent security in the Aglet platform that has led to SAS.

Fig. 2. Lifecycle states of Aglets

3.1 Securing the Communication Channels

The Communication Layer of Aglets makes use of an
unsecured protocol, thus leaving the framework open to a
range of attacks, which we intended to address in our
research. SSL is the current industry standard in addressing
communication security. Keeping in line with our intent of
fostering the adoption of agents in commercial applications,
we opted to implement SSL in Tahiti, using the Java Secure
Socket Extension (JSSE). Through the use of SSL sockets,
we have endowed the Aglet framework with the ability to
communicate over secure channels capable of
authenticating the parties involved, refusing unsecured
connections and adjusting the security level on the
channels. Through the availability of SSL in SAS,
administrators will gain control of the level of security
enforced on network links; most importantly, it provides a
standard solution trusted in the industry to handle secure
communication.

3.2 Securing Agent’s Data

Granting Aglets the ability to detect tampering with their
data required that we extend the functionalities of the
server. Consequently, the Runtime Layer of SAS was
extended to support the creation of Message Digests using
the Java Cryptography Extension (JCE) as well as the
ability to digitally sign objects. We provided Aglets with a
java class library that implements the concept of Read-

Only data. With the new functionalities of SAS in place,
the library obtains a signed copy of the message digest
computed by the host along with the host’s certificate. An
Aglet can retrieve the message digests stored by the library
and use the corresponding certificate to ensure that its data
has not been tampered with. The introduction of computed
message digests and digital signatures in the Runtime
Layer of SAS provides Aglets with the capability of
detecting active malicious hosts in the agent’s itinerary.

3.3 Securing Hosts

Securing the hosts from a centralized aspect meant
dealing with the possibility of an Aglet overusing the
resources of a host through seemingly normal transition
between its lifecycle states (Figure 2). As a result, we
needed a scheme to not only specify and track the
resources in use by an Aglet but also to take proper actions
once an Aglet attempts to overuse the host’s resources. The
design of such a scheme led us to the introduction of a
MonitorAglet in SAS. The MonitorAglet tracks the number
of instances of an Aglet, based on the Aglet’s properties
such as the corresponding ID, to ensure that the specified
limit is never exceeded. Within the scope of SAS, we
defined instances as the instantiation of an Aglet or
Message object.

Definition 1: An Aglet B is an instance of an Aglet A if

and only if one of the following is true:
• B belongs to the same resource object as A,
• A has created, retracted, or activated B, and
• B is a clone of A.

Once an Aglet has reached its instance limit, the

MonitorAglet prevents the creation, cloning, activation, or
retraction of any other instances of the Aglets in the system
until one of the instances has been deactivated, dispatched,
or disposed of. As we attempt to protect hosts against
malicious agents, we have introduced powerful capabilities
to the Aglet framework. It is now possible to limit the
number of instances of an Aglet executing on a host,
thereby preventing the aforementioned attack.

In addressing centralized agent security, we have
introduced a new agent server, namely SAS, endowed with
secured communication, ability to detect tampering of
agent’s data along with prevention of over-usage of host’s
resources. The interested reader is referred to [14] for
further details on the aforementioned schemes. Note that
the introduced security mechanism to protect host is only
an extra layer of protection. While effectively addressing
the security issues of hosts, SAS merely reacts to malicious
agents attempting denial of service (DoS) attacks. The
malicious agent itself is never destroyed and the occurring
attack is thwarted by controlling the resources in use by
instances of the attacking agent. The system does not take
into account the fact that a misbehaving agent may travel
from one host to another and repeat its actions. A malicious
agent that attacks one host is very likely to migrate and
attack another host in the near future. As SAS only controls

Evens Jean, Yu Jiao, and Ali R. Hurson 47

the number of instances of an agent, a malicious entity
could abuse its privileges and migrate to another host once
it has reached its instance limit. Such a malicious entity
could indeed migrate over numerous hosts in a domain and
effectively wreak havoc. Improving the security of SAS
further requires:

• Collaboration between hosts to identify malicious
agents.

• Ability for the MonitorAglet of hosts to learn from
experience and thus prevent attacks instead of merely
reacting to such occurrences.

4. Distributed and Adaptive Security-Monitoring
Through Agent Collaboration

Agents interact in a distributed environment; hence,
similarly, agent security needs to be validated in a
distributed manner. As hosts monitor agents, data regarding
the actions of the agent can be recorded. Our work is based
on the assumption that there is a relationship, though not
clearly defined, between the actions of an agent and the
intent of such agent; whether the intent is malicious or not.
The definition of the set of actions that can help determine
whether an agent is malicious will vary from one host to
another and such actions are herein referred to as
threatening actions. The consistent fact will remain
however, that a malicious agent on one host is highly likely
to represent a threat to the security of future hosts. Due to
the variation in what constitutes a malicious agent, any
proposed learning scheme must allow for such flexibility in
identifying potential threats.

Our approach in tackling the problem is through the
introduction of a variation of the Boosting-learning
algorithm, namely a Distributed and Adaptive Security-
Monitoring through Agent Collaboration (DASAC). To
determine whether an agent is malicious, DASAC relies on
collaboration between the current host and past hosts
visited by the agent. The current host acts as a decision
maker; every hosts including the current one act as base
learners. We attain the required flexibility by allowing each
host in the system, as base learners, to be trained
independently and based on different feature sets. A
discussion of what feature sets could possibly be used is
deferred at this point and discussed later (section 5). The
base learners in DASAC are trained as follows:

- Implement a binary classifier, which can be a decision
tree or any other classifier, where 1 is the class of
malicious agent and -1 otherwise.

- Train the classifier using a sample data set with the
threatening actions against the host as the various
features of each training instance.

Note that each host in the system may serve as a base
learner and as a decision maker depending upon its
contribution to the current decision-making process. The
base learners, being trained independently, may implement
various classifiers depending on the host’s administrator.

Upon arrival of an agent to a host, one of two cases may

be true. The host may be seeing the agent for the first time
or the host may have had a personal experience with the
agent. In either of these two cases, the host needs to
determine whether to allow the agent to execute or not. If
the host had no prior experience with the agent in question,
it does not have any pertinent information about the agent
to classify it as malicious or not using its base learner. It
must thus rely on the hosts that the agent has visited in the
past. If the agent had in the past executed on the host, the
host’s base learner can classify the agent.

Within DASAC, classification of an agent by the
decision maker is based on the following steps:

- If the host has had prior experience with the agent, the
base learner of the host is used to classify the agent;
else, the agent is assigned the default value of 0.

- The classification of the agent from every host in the
agent’s history as determined by their respective base
learners are collected by the decision maker.

- Using the possibly diverse experiences of other hosts,
the decision maker determines whether to allow an
agent to execute or not.

In essence, a Decision Maker (DM) interacts with the
various base learners of the hosts in the distributed
environment to thwart attacks. In the final steps, a DM
could use techniques such as majority-vote to reach a
consensus. We however recommend a version of weighted
sum tailored to the problem at hand as specified in
Equation 1 where Ψi represents the class to which an agent
has been assigned by the base learner of a host. We allow
Ψi to possibly have a value of 0 to ignore a base learner
that does not have any information on the agent as such
may be the case for the learner on the current host.
Furthermore, τi and λi, represent the trust, and confidence
levels, respectively, associated with each host being
contacted.

x =

1 ∀ τ i ∗ λ i ∗ Ψii =0

n
∑ > 0

−1 ∀ τ i ∗ λ i ∗ Ψii=0

n
∑ < 0

0 Otherwise

⎧

⎨

⎪
⎪ ⎪

⎩

⎪
⎪
⎪

Equation 1. Trust and Confidence based weighted sum

The recommended version of majority vote derives from

our observations of the underlying mechanisms in inter-
human collaboration. Consider the case where a person, A,
asks a friend, B, for his/her opinion on a puzzling question;
A does not blindly believe B’s assertion. Instead, A weighs
his/her opinion and confidence on the topic with B’s
recommendation based on two factors; namely, how much
does A trust B and how confident is B in his/her assertion.
The confidence level, in the proposed majority vote
scheme, is determined by the accuracy of the classifier
used in a host and varies between 0 and 100. The
confidence of a host is communicated to the DM along
with the classification of an agent.

The trust level, on the other hand, can be defined

48 Addressing Mobile Agent Security through Agent Collaboration

statically by the system administrator of a host based on
the reputation of a particular host. We propose trust levels
to be defined as a value between 0 and 10. A default value
can be specified for use whenever a remote host’s trust
information is not available. Notice that setting the default
value of trust to 0 would effectively allow the monitoring
system to not take into account the experience/
classification of unknown hosts. As the definition of trust
levels does not carry over from one host to another,
administrators are free in setting the limits of trust values
in their systems.

If an agent is allowed to execute in the system, the
decision maker keeps track of the actions of the agent. It
can then periodically attempt to re-classify the agent and
thus adapt to agents that may execute malicious code only
on specific hosts. The frequency upon which to re-classify
an agent is left as an implementation detail as it will vary
upon the requirements of a host.

Δ = n * max(τ i) ∗ max(λi) ∗ max(Ψi)[]

SL = β *

τ
i

∗ λ
i

∗ Ψ
i

i = 0

n
∑

Δ

⎡

⎢

⎢
⎢
⎢
⎢

⎤

⎥

⎥
⎥
⎥
⎥

Equation 2. Security Level of an agent

Although DASAC, as described, can be made to be

completely autonomous, except during training, we
understand that administrators may need to have hands-on
control on whether or not an agent should be allowed to
continue or start execution. To cope with such a need, we
introduce the notion of Security Levels (SL) of agents on a
host. The SL of an agent is defined (Equation 2) as the
ceiling of the product of its weighted-sum, as computed in
Equation 1, and the number of security levels in the system
(ß). The result is divided by ∆, representing the maximum
sum of products multiplied by the number of cooperating
hosts. Note that ∆ is always greater than 0 as n takes into
account the current host as well. While the SL could be
calculated for all possible value of the weighted-sum, one
should note that it is not of importance when the weighted-
sum is 0 or less as such agents have not been classified as
malicious.

Using the SL, the system can be made to be semi-
autonomous, requiring human assistance once a threshold
has been reached. Agent-human interaction can further
increase the efficiency of the system as the agent can be
made to adjust its classifier based on such interactions.
Thus, DASAC may decide to use the collected data about
an agent, classify it based on its interaction with an
administrator, and inserts the information in the pool of
training data. The classifier can be periodically retrained
thereby leading to an adaptive security system.

Evaluation of our proposal requires its implementation
in one of the numerous agent platforms that have been thus

far advanced in the literature. Addressing the security of
the hosts further requires that an adequate security
mechanism be in place to protect the agents as well. As we
have introduced a secured server for the Aglet platform, the
implementation of DASAC on SAS was the logical choice.
The following section details our work in implementing
DASAC on the chosen server.

5. DASAC Implementation on SAS

We have previously addressed the motivation behind the
presence of the MonitorAglet within SAS (i.e., controlling
the amount of resources being used by any particular
agent). In implementing the DASAC scheme into SAS, the
use of the MonitorAglet as the DM of a host was an
obvious option, which we adopted. The base learner on the
other hand is implemented as an independent agent for
flexibility and performance. The implementation of the
base learner as an agent allows for separate threads of
execution to handle classification and training. Moreover,
as agent entities, a host may have multiple base learners
trained using independent feature sets; however within our
implementation of DASAC we assumed that each host has
one base learner. All base learners in our implementation
are built using the classifiers from the weka data-mining
library [22]. Figure 3 shows a pictorial representation of
the interaction between DMs and base learners within SAS.
The dotted lines in the figure denotes the trajectory of the
agent migrating from one host to another; the solid lines
depict the communication between the DM and the base
learners in order to decide whether to allow the arriving
agent to execute. In a nutshell, using the MonitorAglet as
the DM of DASAC with other agents acting as base
learners extended SAS. The implemented version of
DASAC makes use of the suggested version of weighted
sum (equation 2) to classify agents. Moreover, we
employed the notion of security levels which are used to
determine whether interaction with a system administrator
is needed to dispose of an agent classified as malicious.
Five distinct security levels were defined:

• The MonitorAglet is augmented with the capability of
requesting interaction from a system administrator to
determine the appropriate set of actions to undertake
once an agent has been identified as a malicious entity
below or at level 3.

• Malicious agent of levels 4 and 5 are automatically
denied execution.

The choice of level 3 is an arbitrary cutoff point that can
be tuned by the system administrator of a host.

The set of features selected to train the base learners
need to correlate in a manner that differentiates malicious
entities from non-malicious ones in the system. Within
SAS, agents are monitored and based upon the number of
instances running, the MonitorAglet can allow or reject a
requested action such as cloning, dispatching etc. Such
actions of agents have been shown [14] to be potentially
detrimental to the security of a system and thus constitute

Evens Jean, Yu Jiao, and Ali R. Hurson 49

good candidates for inclusion in the feature set. It is our
belief that the frequency at which an agent requests the
right to transition from one state to another, along with the
total amount of time spent on the host, can help in
identifying malicious actions. Due to Java’s sandboxing
techniques, a security manager prevents access to entities
lacking the proper access rights to local resources. The
malicious agents may attempt to access various resources
in the hope that the security policy in effect is not well
defined. As a result, we take into account the frequency of
security exceptions generated by an agent. The security
manager resides within the Runtime layer of SAS and in
order to track the security exceptions generated by an aglet,
we introduced a listener class through which interested
parties can be notified whenever such events occur.

To sum up, we selected the features in table 1 to train the
classifiers based on CPU usage times, lifecycle state
transitions, and access to low-level system resources. Once
the feature set has been selected, we trained the classifiers
to extract data patterns that may help classify an agent
based on its behavior. We used a system consisting of 5
hosts. Hosts 1 thru 5 have different classifiers, namely, an
alternating decision tree with 0 boosting iterations, a fast
decision tree learner, a decision stump, a naïve Bayes
classifier and an alternating decision tree with 3 boosting
iterations respectively. The implementations of the
classifiers used are from the weka library [22]. Moreover,
the hosts in the experiment have different trust levels.

Due to the fact that training data for classifiers are not
readily available, we trained our classifiers using a data set
generated by tracking the features of interest during actual
runs of the following agent-based applications:

• MAMDAS [16]
• Private Information Retrieval prototype [14]
• Instance and Message DoS attack generator agents

[14].

The choice of applications used to collect the data was
based on their availability, along with the fact that their
classifications were known a priori, as discussed in SAS
[14]. The choice of applications encompasses both classes
of agents, malicious and benign, that are of interest to our
work. The MonitorAglet tracks every event generated by
agents in the system and construct a data sample for the
corresponding agent. The constructed sample consists of
the features that we identified as having the potential to
help identify malicious entities (see Table 1).

Table 1. Classification Features for Each Agent

Feature Feature Description
Biased Running

Time
Biased Length of Execution Time on
System

Cloning Frequency Ratio of number of cloning to average
time between cloning

Activation
Frequency

Ratio of number of activation to
average time between activations

Dispatch Frequency Ratio of number of dispatching to
average time between dispatching

Retract Frequency Ratio of number of retraction to
average time between retractions

Arrival Frequency Ratio of number of arrivals to average
time between arrivals

Security Access
Request Frequency

Ratio of number of security access
requests to average time between such
requests

Security Access
Grant Frequency

Ratio of number of security access
grants to average time between such
grants

Security Access
Denial Frequency

Ratio of number of security access
denials to average time between such
denials

The generated data set consists of over 3000 samples,

manually classified, of which, roughly 15% is used to train
each classifier. The classifiers used the remainder of the
data set for accuracy assessment. The accuracy of each host

Fig. 3. Overview of DASAC implementation in SAS

50 Addressing Mobile Agent Security through Agent Collaboration

classifier is used as the confidence level of the host in
question, as suggested by DASAC, in all our experiments.

Figure 4 presents the average accuracy rate of the hosts
in the system over multiple runs. The accuracy of hosts
shown was determined based on the ability of the host’s
classifier to properly classify the remainder of the 3000
samples in the data set not used for training. As we noted
earlier, the hosts use different classifiers resulting in
different accuracy rates based on the strength of the
classifier being used. As thus, Host1 exhibits the worst
accuracy as it uses an alternating decision tree with 0
boosting iterations. Through the use of decision stumps,
naïve Bayes classifier and alternating decision trees with
numerous boosting iterations, the other hosts are able to
achieve a higher accuracy rate.

Fig. 4. Training Accuracy of hosts

6. System Evaluation

DASAC is evaluated based on several performance
metrics such as accuracy (i.e., the ability of the framework
to properly classify agents), the false and missed alarm
rates and the time it takes to evaluate whether an agent is
malicious. The following subsections details the results of
our evaluation of the framework.

6.1 System Accuracy and The Impact of trust

To evaluate DASAC, the first set of experiment focused
on measuring the accuracy of the system in identifying
malicious agents as well as studying the impact of trust
level on the accuracy. We chose the first host in the system
(Host1 from Figure 4) as the local classifier against which
DASAC will be compared. This choice was based on the
fact that host1 showed a slightly better performance than
random guessing. Our goal is to analyze how DASAC can
help improve the performance of a host, through
collaboration. We thus proceeded to launching the agent
applications used in training the system classifiers. We also
introduced a PortScannerAglet (malicious) which
repeatedly attempts to connect to numerous ports in the
system whether it has access to conduct such actions or not.
Furthermore, we manually created, dispatched, and
retracted each of the following benign agents:
CirculateAglet, WebServerAglet and HelloAglet. These
agents are available as part of the Aglet framework. Lastly,
we created and used a MigratingWebServer agent that
migrates to hosts and attempts to set up a server on random

ports, restricted or not, repeatedly. The
MigratingWebServer, a malicious agent, migrates to a new
host, once it has been denied access to ports over 10 times.
Our reasoning behind the introduction of new Aglets that
were not used during the training phase is to gain insights
into the ability of our classifiers to perform well even in the
presence of previously unseen behaviors.

The DM of each host dynamically classifies agents to
determine whether or not they are malicious. We evaluated
the system based on the accuracy at which the local
classifier and DASAC recognize malicious agents. We also
tracked the best accuracy recorded in the system and
computed the average accuracy of the hosts including
Host1. While the confidence levels used in the experiments
were as described in section 3, the trust levels, on the other
hand, were assigned randomly. The local classifier is
assigned a trust level of 9, close to the maximum of 10, to
reflect the trust that we expect administrators to have in
their own systems.

Figure 5 depicts the measured accuracy of DASAC
compared to that of Host1’s classifier, the best accuracy
rate measured in the system, and the average accuracy rate
of hosts in the experiment. On average, one can conclude
that DASAC’s performance lies between the average
accuracy of the involved hosts and that of the most
accurate classifier. The fluctuations in the accuracy rate
measured are due to the fact that the hosts are trained for
every experimental run on a random sample. Thus, their
performance is slightly dependent on the sample used
during training.

Fig. 5. Local vs. DASAC accuracy

While DASAC generally outperforms the worst

classifier in the system, it matched the first host’s
performance during the first run of the experiment. The
only reasonable explanation for such a poor performance
by DASAC is the trust levels used during the first
experiment. We noted that the total trust levels of hosts 2
thru 5 varied from one experiment to the next as follows: 5,
16, 23, 27, and 36. When the trust levels of the other hosts
are low compared to that of the local host, DASAC’s
performance seems to be more dependent on that of the
local classifier. This brings us to the second set of
experiments that were carried out to further investigate the
effect of trust levels on DASAC. During the second
experiment, we kept the trust levels of all hosts, including
host1, identical. The trust levels were however varied from

Evens Jean, Yu Jiao, and Ali R. Hurson 51

one experimental run to the next starting at 0 up to 10.
The results of the second experiment are depicted in

Figure 6. The figure shows that DASAC still outperforms
the average accuracy rate computed. The experiment
revealed two crucial points; Firstly, all the classifiers in the
system can indeed outperform DASAC, as is the case when
the trust levels are 0. The explanation behind such an
occurrence is due to the fact that DASAC will classify all
samples as 0, which is in effect non-malicious. Thus,
DASAC will fail to classify any malicious agents possibly
degrading to an accuracy rate of 0. The second interesting
point is the fact that DASAC’s accuracy seems to quickly
become dependent upon the accuracy rates of the best
classifiers in the system. This is justified by the fact that
DASAC is in effect designed to take advantage of the
strength and experience of other hosts in the system. Once
the trust levels are identical for all hosts, the only
determining factor in classifying an agent becomes the
confidence of hosts. The more confident hosts have a more
significant weight on the system’s classification of an entity.
The experiment allowed us to assert the accuracy of the
herein introduced framework and analyze the impact of the
use of trust levels on the observed accuracy. The next
step that we undertook was to analyze the response time of
DASAC in determining whether to allow an agent to
execute along with the false and missed alarm rates.

Fig. 6. Effect of trust levels on DASAC accuracy

6.2 Response Time, False and Missed Alarms Rate of
DASAC

As noted earlier, determining the false and missed alarm
rate of an IDS system is crucial in evaluating the system.
Moreover, the time that it takes to determine the
classification of an entity needs to be as low as possible,
since a slow response time would allow attackers to
quickly execute their malicious code and migrate to the
next target. Keeping in line with such facts, the focus of
this set of experiment was geared towards evaluating the
accuracy, missed and false alarm rate of DASAC along
with the response time of the framework. In setting up the
experiment, we decided to use two hosts and collect the
information of interest to our study. The two hosts used in
the experiment are Host1 and Host2 from Figure 5 with
training accuracy of 55.6% and 87.4%, respectively. We

have also designed a new Aglet whose sole task is to
execute on Host2 and repeatedly create agents and dispatch
them to Host1. The intent behind such a setup is to study
the response time of the framework when the agents are
arriving and having been to one and only one host prior to
the current one. Moreover, the experiment is intended to
allow us to study the efficiency of the system when it is
collaborating under the aforementioned conditions.

As we have mentioned, agents are created on Host2 and
dispatched to Host1 (one-hop away). The agents that are
being dispatched are the DoS attack generators noted
earlier (section 5), the PortScannerAglet, and the
MigratingWebServer along with the followings from the
Aglet platform:

• examples.simple.DisplayAglet
• examples.hello.HelloAglet
• examples.itinerary.CirculateAglet
• examples.mdispatcher.HelloAglet
• examples.http.WebServerAglet
• examples.talk.TalkMaster

The choice of such agents was motivated by the fact that

they constitute a fair representation of the types of agents
that can exist in the system in terms of their intentions
being malicious or not. The agent executing on Host2
continuously generates and dispatch the agents to Host1;
from that location, we measure the accuracy, false and
missed alarm rate, and the time it takes for Host1 to contact
Host2 and determine whether to allow an arriving agent to
execute. The key point here is that as DASAC is currently
implemented, Host1 needs to formally deploy an Aglet to
Host2 and collect the information necessary to classify any
arriving agent. The result of the experiment is presented in
Figure 7 showcasing the accuracy of DASAC on Host1,
along with the false (FAR) and missed (MAR) alarm rates
of the host. As expected, DASAC outperforms Host1 and
draws closer to the accuracy of Host2 while the false and
missed alarm rates decrease before settling.

Fig. 7. False alarm rate, Miss alarm rate and Accuracy Rate

The average amount of time spent solely on contacting

Host2 to classify an arriving agent was also measured. As
expected, the ratio of time spent on communicating with
Host2 compared to the total time required to classify
arriving agents was drastic (see Figure 8).

The communication time alone represents over 90% of
the time it takes to determine whether to allow an agent to

52 Addressing Mobile Agent Security through Agent Collaboration

execute. Such an observation is a direct result of the fact
that the current implementation of DASAC has to dispatch
an Aglet to past hosts and collect the required information
to classify an agent. In order to avoid such a significant
cost in classifying an agent, we slightly modified our
implementation of the framework in DASAC. The
modification occurred by not only attaching the address of
the current host to agents being dispatched as is currently
done, but also pertinent information that the framework
requires such as the class to which the agent has been
assigned prior to migrating from the current system, along
with the confidence factor of originating host. Having
altered our implementation of DASAC on Aglet we noted
close to a 90% reduction in the response time of the Host1,
as one would expect. Such a drastic reduction is due to the
fact that Host1 no longer has to use network bandwidth to
collaborate with Host2, nor does it have to wait for such
information to be available before making a decision. With
the changes in the framework’s implementation, the
average response time in classifying agents is effectively
reduced.

Fig. 8. Processing vs. Communication Time of Arriving
Agents

7. Conclusion

This article has introduced a novel distributed and
adaptive security-monitoring framework achieved through
agent collaboration across multiple hosts. To the best of our
knowledge, this work represents the first in its kind to
attack agent security through collaboration between the
hosts in the system. While we have only implemented
DASAC within SAS at this point, it can be easily applied
to any agent platform. The framework, as we have shown,
builds on the idea of boosting to allow host protection by
classifying agents based on their reputation. The system is
flexible enough to support the incorporation of various
classifiers that may be trained using independent variables,
as the hosts do not communicate their feature sets to each
other. Moreover, DASAC introduces the notion of security
levels to support human-agent interaction in order to render
the system even more flexible and robust. We have also
secured the Aglet framework from a centralized aspect,
providing secured communication, ability for agents to
detect tampering of their data, and allowing hosts to
restricts the actions of malicious agents that may lead to
denial of service attacks.

While DASAC is very powerful and flexible, its
weakness lies in its dependence upon the choice of

classifiers and feature sets used to train the classifiers.
Future work on the subject should analyze agent patterns in
more detail especially as more agent applications become
available. One possible approach to addressing the issue
may be to reduce the scope of the problem and study agent
patterns based on specific class of applications. As such,
administrators will be better equipped in choosing a feature
set along with classifiers that may be used on a host based
on the services such host may provide.

References

 [1] R. Becker, D. D. Corkill, “Determining Confidence
When Integrating Contributions from Multiple
Agents” In Sixth International Joint Conference on
Autonomous Agents and Multi-Agent Systems
(AAMAS 2007), Honolulu, Hawaii, May 2007.

 [2] E. Bierman, E. Cloete, “Classification of Malicious
Host Threats in Mobile Agent Computing” In
Proceedings of SAICSIT, 2002, pp. 141-148.

 [3] P.-C. Chen, X. Fan, S. Zhu, J. Yen. “Boosting-based
learning agents for experience classification” In
Proceedings of the 2006 IEEE/WIC/ACM
International Conference on Intelligent Agent
Technology, pp. 385-388, 2006.

 [4] J. Claessens, B. Preneel, J. Vandewalle, “(How) Can
Mobile Agents Do Secure Electronic Transactions on
Untrusted Hosts? A Survey of the Security Issues and
the Current Solutions” In ACM Transactions on
Internet Technology, 3(1): 28-48, 2003.

 [5] K. Deeter, K. Singh, S. Wilson, L. Filipozzi, S Vuong.
“APHIDS: A Mobile Agent-Based Programmable
Hybrid Intrusion Detection System” MATA 2004,
LNCS 3284, pp. 244-253, 2004. © Springer-Verlag
Berlin Heidelberg 2004.

 [6] W. Diffie, M. E. Hellman. “New Directions in
Cryptography” In IEEE Transactions on Information
Theory, vol. IT-22: 644-654, 1976.

 [7] O. Esparz, M. Fernandez, M. Soriano, “Protecting
mobile agents by using traceability techniques” In
IEEE © 2003.

 [8] Y. Freund. Boosting a weak learning algorithm by
majority. In Information and Computation, 121: 256-
285, 1995.

 [9] M. S. Greenberg, J. C. Byington, T. Holding, D. G.
Harper “Mobile Agents and Security” In IEEE
Communications Magazine, 1998.

[10] T. Hastie, R. Tibshirani, J. H. Friedman. The Elements
of Statistical Learning. Springer, 2001.

[11] K. E. B. Hickman “Secure Socket Library” Netscape
Communications Corp., Internet Draft RFC (1995).

[12] W. Jansen, T. Karygiannis, “NIST Special
Publication 800-19 – Mobile Agent Security”
National Institute of Standards and Technology, 2000.

[13] JCE Internet Reference Guide. (n.d). Retrieved
December 5th 2006, from http://java.sun.com/javase
/6/docs/technotes/guides/security/crypto/CryptoSpec.
html

Evens Jean, Yu Jiao, and Ali R. Hurson 53

[14] E. Jean, Y. Jiao, A. R. Hurson, T. E. Potok "SAS: A
secure aglet server" In Proceedings of Computer
Security Conference 2007.

[15] E. Jean, Y. Jiao, A. R. Hurson, T. E. Potok
“Boosting-based Distributed Adaptive Security-
Monitoring through Agent Collaboration” In Second
International Workshop on Agent and Data Mining
Interaction ADMI 2007.

[16] Y. Jiao, A. R. Hurson, “Application of mobile agents
in mobile data access systems: A prototype” In
Journal of Database Management, 15(4): 1-24, 2004.

[17] JSSE Internet Reference Guide. (n.d). Retrieved
December 5th 2006, from http://java.sun.com/
javase/6/docs/technotes/guides/security/jsse/JSSERef
Guide.html

[18] D. B. Lange, M. Oshima. Programming and
deploying Java mobile agents with Aglets. Addison-
Wesley, 1998.

[19] A. Patcha, J.-M. Park. “An overview of anomaly
detection techniques: Existing solutions and latest
technological trends” In Computer Networks: The
International Journal of Computer and
Telecommunications Networking. Vol. 51, Issue 12
(August 2007) pp. 3448-3470

[20] R. E. Schapire. The strength of weak learnability.
Machine Learning, 5(2):197-227, 1990.

[21] C. F. Tschudin. “Mobile Agent Security” In
Intelligent Information Agents: Agent-Based
Information Discovery and Management on the
Internet, M. Klusch, Ed., Springer-Verlagu, New
York, 1999, Chapter 18 pp. 431–446.

[22] I. H. Witten, E. Frank. Data Mining: Practical
machine learning tools and techniques 2nd Edition,
Morgan Kaufmann, San Francisco, 2005.

[23] Y.-S. Wu, B. Foo, Y. Mei, S. Bagchi. “Collaborative
Intrusion Detection System (CIDS): A Framework for
Accurate and Efficient IDS” In Proceedings of the
19th Annual Computer Security Applications
Conference (ACSAC 2003) © 2003 IEEE

Evens Jean is a Ph.D. student at the
Computer Science and Engineering
department of the Pennsylvania State
University. He is a member of the
Global Information Systems Research
Group directed by Dr. Ali R. Hurson.
He completed his undergraduate
studies in Computer Science with

honors at the City College of the City University of New
York in 2003. Mobile agents constitute the underlying
theme of his research as a Ph.D. student, as thus, he has
investigated the security issues faced by the paradigm. His
research interests also encompass sensor network,
ubiquitous and reconfigurable computing.

Dr. Yu (Cathy) Jiao is a research
scientist at the Oak Ridge National
Laboratory. She received her B.S.
degree from the Civil Aviation Institute
of China, Tianjin, China in 1997, and
her M.S. and Ph.D. degrees from The
Pennsylvania State University, in 2002
and 2005, respectively, all in computer

science. Her main research interests include mobile agent
technology, pervasive computing, dynamic data stream
mining, and natural language processing.

A. R. Hurson is the chair and
professor of Computer Science
department at the Missouri University
of Science and Technology (Formerly
known as the University of Missouri-
Rolla). Prior to his appoinemt at MST,
he was a professor of Computer

Science and Engineering department at The Pennsylvania
State University. His research for the past 25 years has
been directed toward the design and analysis of general as
well as special purpose computer architectures. His
research has been supported by NSF, NCR Corp., DARPA,
IBM, Lockheed Martin, ONR, Pennsylvania State
University, and Missouri University of Science and
Technology. He has published over 250 technical papers
in areas including database systems, multidatabases,
application of mobile agent technology, Mobile computing
environment, computer architecture and cache memory,
parallel and distributed processing, dataflow architectures,
and VLSI algorithms.
Professor Hurson has been active in various IEEE/ACM
Conferences and has given tutorials for various
conferences on global information sharing, database
management systems, supercomputer technology,
data/knowledge-based systems, dataflow processing,
scheduling and load balancing, and parallel computing.

