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Addressing Mobile Agent Security through Agent Collaboration 
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Abstract: The use of agent paradigm in today’s applications is hampered by the security concerns of 
agents and hosts alike. The agents require the presence of a secure and trusted execution environment; 
while hosts aim at preventing the execution of potentially malicious code. In general, hosts support the 
migration of agents through the provision of an agent server and managing the activities of arriving 
agents on the host. Numerous studies have been conducted to address the security concerns present in 
the mobile agent paradigm with a strong focus on the theoretical aspect of the problem. Various 
proposals in Intrusion Detection Systems aim at securing hosts in traditional client-server execution 
environments. The use of such proposals to address the security of agent hosts is not desirable since 
migrating agents typically execute on hosts as a separate thread of the agent server process. Agent 
servers are open to the execution of virtually any migrating agent; thus the intent or tasks of such 
agents cannot be known a priori. It is also conceivable that migrating agents may wish to hide their 
intentions from agent servers.  
In light of these observations, this work attempts to bridge the gap from theory to practice by analyzing 
the security mechanisms available in Aglet. We lay the foundation for implementation of application 
specific protocols dotted with access control, secured communication and ability to detect tampering of 
agent data. As agents exists in a distributed environment, our proposal also introduces a novel security 
framework to address the security concerns of hosts through collaboration and pattern matching even 
in the presence of differing views of the system. The introduced framework has been implemented on 
the Aglet platform and evaluated in terms of accuracy, false positive, and false negative rates along 
with its performance strain on the system.  
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1. Introduction 
 

Mobile Agent refers to the ability for a program to halt 
its execution, move to a new environment where execution 
can then be resumed. Even with the development of 
numerous mobile agent platforms such as Aglet [18], an 
open source system originally released by IBM, the use of 
mobile agents have not transcended from theoretical to 
practical applications due to the numerous security threats 
plaguing the paradigm. The security threats facing mobile 
agents, including Aglets, have been studied in depth and 
categorized into host-to-agent and agent-to-host [9]. 
Solutions to such threats have to this point only been 
introduced from a theoretical perspective. In order to foster 
the emergence of mobile agents to address practical issues, 
we conducted an analysis of the security options available 
in the Aglet platform. The study resulted in the introduction 
of a Secured Aglet Server (SAS) providing: 

 Secured communication, 
 Controlled resource consumption of agents, and 

 Integrity and reliability of agent’s data. 
The introduction of SAS attacks the issue of securing the 

agent paradigm from a centralized standpoint. It is fair to 
note that any mobile agent system is inherently suitable to 
support distributed applications; hence, securing such 
systems need to take into account the distributed nature of 
the environment. Malicious agents are not a threat solely to 
the current execution environment but to any host to which 
they may migrate. As such, there is an inherent need for 
hosts to collaborate and learn from each other’s experience 
in executing an agent’s code. The Computer Security 
Division of the National Institute of Standards and 
Technology has also suggested that one of the main 
hindrances to the adoption of mobile agent technology 
stems from the security concerns of hosts [12]. Thus, the 
protection of hosts needs to occur from both a centralized 
and distributed standpoints. In light of this observation, we 
herein introduce a boosting-based monitoring system that 
allows hosts to learn and classify agents, not only based on 
their own experiences, but also based on collaboration with 
other hosts in the network, some of which may have been 
victims to agent attacks. 

The issue of protecting a resource in a distributed 
environment is not novel; in fact, it has been thoroughly 
explored in the literature under the banner of Intrusion 
Detection Systems (IDS). In general, IDS attempt to detect 
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malicious activities of users in a system in order to 
maintain the system’s integrity. The use of IDS should help 
in protecting hosts against misbehaving agents. However, 
due to the fact that agent servers, or hosts, in agent 
platforms are unlike traditional systems, the application of 
IDS cannot adequately address the security threats of such 
servers. Migrating agents execute as independent threads 
of the agent server process, thus limiting the ability of 
present day IDS systems to determine the identity of 
misbehaving agents. As an open system, the range of 
execution patterns of migrating agents in the paradigm is 
essentially unlimited. Through our proposal of having hosts 
collaborate based on their experience with specific agent 
applications, we contend that protection of hosts in the 
distributed environment can be rendered more efficient. 
Within the proposed framework, security agents 
collaborate to learn from each other’s experience in dealing 
with any migrating agent. Our contribution can thus be 
summarized as follows: 

• Collaboration between hosts to identify malicious 
agents, and 

• Ability for the security agents of hosts to learn from 
experience and thus prevent attacks. 

 
In further detailing our work, we will start by 

introducing the necessary background in section 2. Section 
3 will then discuss our work in securing Tahiti, the Aglet 
server. The adaptive security-monitoring framework is 
introduced in section 4. We will then proceed to evaluating 
the proposed framework and draw conclusions highlighting 
our contribution and future work in sections 5 and 6, 
respectively. 

 
 

2. Background 
 

To ensure that the reader gains an in depth appreciation 
of our proposal, we find it imperative to provide a thorough 
coverage of agent security, intrusion detection, and 
supervised learning along with other pertinent works 
related to our proposal. 

 
2.1 Agent Security 

 

Mobile agents lend themselves nicely to searches and 
computation that requires parallel and distributed 
processing, as well as network roaming. The mobility of 
mobile agents may depend on predetermined itinerary or 
intermediate computation results. Along with flexibility in 
system design, agent mobility also introduces security 
concerns. The categorization of the threats plaguing mobile 
agents is done based on the origination of the attack; as 
such we have agent-to-host, as well as host-to-agent attacks. 
The security issues in mobile agents have been studied and 
some of the proposed solutions include but are not limited 
to the following:  

• Code signing, access control, proof carrying code, and 
path histories to protect the hosts [7, 9, 21], 

• Tracing, obfuscation, trusted hardware as well as 
encrypted functions and data to protect the mobile 
agents [2, 7, 9, 21]. 

 
Research in mobile agent security is still an open field, 

and many of these approaches remain theoretical at best. 
Moreover, most of these proposals further suffer from 
reliance on an isolated view of agent systems. 

 
2.2 Intrusion Detection Systems 

 

Intrusion Detection Systems (IDS) refer to the detection 
and reporting of suspicious behaviors in a network with the 
purpose of identifying intruders and thus securing the 
system. Such techniques can be categorized based on the 
approaches taken to accomplish their goals, thus, we have 
anomaly detection and misuse detection approaches [5, 19, 
23]. Misuse detection leaves the specification of 
abnormalities to the administrators of the system. An 
exhaustive definition of such abnormalities is very difficult 
to achieve and even more so in agent systems where the 
intent or tasks of agents cannot be known a priori. On the 
other hand, anomaly detection relies on the system’s 
training to learn the expected behaviors of users and is thus 
able to detect novel forms of attacks and represent the 
approach adopted in this article to address agent security. 
Dotted with the ability to learn from novel attacks, 
anomaly detection is an interesting approach to protecting 
hosts, as precise prior knowledge of agent’s intents and 
tasks are not necessary. In general, current proposals in 
IDS suffer from the inability to detect precisely which 
agent is responsible for an attack as the agents are typically 
independent threads of execution of the hosting agent 
server process. Applying anomaly detection to securing 
agent hosts would thus require an IDS system that is 
intimate with the agent platform in use and able to detect 
anomalies at fine granularities. 

The agent paradigm has inevitably found its use in IDS 
[5, 19]. Deeter et al. aim at achieving bandwidth 
performance, scalability, minimizing analysis delay as well 
as allowing integration with new IDS systems without the 
need for global change [5]. As such, the mobile agent 
paradigm was adopted to establish a middle-ware layer 
allowing for different IDS to collaborate and secure a 
system. The mobile agents migrate to sources of potential 
attacks and determine whether to raise an alarm or not 
through analysis of data collected by various IDS. The 
mobility of agents adds virtualization and serialization 
overhead to the performance of the IDS architecture [5]. 
The system’s agents could also potentially be used to carry 
out a denial of service attack on hosts, as the introduced 
IDS architecture was not designed to address agent security 
[5]. 

 
2.3 Supervised Learning 

 

Supervised learning focuses on the ability to extract 
patterns from a set of raw data whose categories are known. 
Various algorithms have been introduced to allow 
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Fig. 1. Aglet Execution Environment 

extraction of existing patterns in a data set. Such 
algorithms include Support Vector Machines (SVM), 
neural networks, decision trees, as well as boosting [8, 10, 
20]. Boosting has an interesting property, in the fact that 
training occurs in stages. In each stage of boosting, a weak 
classifier is trained using a subset of the raw data. The set 
of trained classifiers yield the learning function used to 
determine how to categorize future data samples. As the 
boosting learning function emanates from several weak 
classifiers, it is easily adaptable to a distributed 
environment where each weak classifier may operate from 
different sources. It is this inherent ability of boosting that 
we attempt to harness in addressing the issue of identifying 
malicious agents operating across several hosts. 

 
2.4 Related Works 

 

Agent collaboration has been the focus of various 
research efforts in recent years. Becker et al. [1] studied the 
issue of confidence determination to ascertain its effect in 
collaborative agent systems. The study showed that, in a 
multi-agent system, incorrect confidence-integration might 
propagate and thus change the collaborative answers of the 
agents. The problem was simplified by assuming that trust 
is not an issue between the collaborating agents. Within our 
approach, each of the collaborating agents is extremely 
flexible in integrating confidence factors to yield a 
collaborative result. The collaborating agents do take trust 
into account along with confidence in determining their 
results to provide distributed security.  

Chen et al. [3] presented a boosting-based hierarchical 
learning algorithm for experience classification. The work 
was motivated by the need for agents within a team to 
collaborate and learn from their past experiences, which 
may differ from one agent to another, as individual agents 
may only have a partial view of the team’s environment. 
The learning algorithm [3] attempts to take advantage of 
boosting by building a hierarchical framework where 
agents at the lowest level may only have a partial view of 
the system. Agents at the lowest level are trained using 
decision stumps based only on the feature set available to 
them. On the other hand, agents higher up in the hierarchy 
are trained, not based on their observations, but using the 
classification results of the corresponding agents at the 
lower level. Training is hierarchical and tightly coupled 

amongst agents as the classifiers are inter-dependent. The 
hierarchical learning system is not suitable to address 
security concerns that we have discussed as the system is 
built upon the assumptions that the agents are members of 
the same team, thus ignoring any trust issues. The fact that 
the system is built in a hierarchical fashion means that the 
final decision must originate from the root of the structure 
if it is to take into account the experience of every possible 
agent involved. The latter also means that such a system 
would be highly unsuitable for distributed security-
monitoring since it would introduce a single point of 
failure, namely the root, in properly classifying agents. 

 
 

3. Securing the Aglet Platform 
 

The security threats facing the agent paradigm are 
extensive and hinder the development of agent-based 
applications. As a result, we will study agent security by 
focusing on one of the available agent platforms to help 
secure the paradigm’s execution environment. Aglet is one 
of the numerous platforms introduced to support agent 
development; a pictorial representation of the platform’s 
execution environment is depicted in figure 1.  

Aglet is a library written in Java, released by IBM to 
support the development of mobile code; the platform is 
fairly documented, easy to install, has received great press 
coverage, and is currently maintained by the open-source 
community [14]. Numerous application prototypes have 
already been introduced on the platform [14, 15, 16], 
thereby making it a suitable choice in analyzing the 
security infrastructure in place to support secure agent 
applications. We have discussed the general classification 
of security threats to agent systems as being agent-to-host 
or host-to-agent. As thus, our intent is to analyze the 
security framework in place in Tahiti, the Aglet server, to 
ascertain that both entities are properly secured. Our study 
has revealed the following vulnerabilities in the Aglet 
platform [14]: 

• Communication vulnerability established through the 
use of the Dsniff package to intercept agents as they 
are being transmitted from one host to another. This 
has led us to conclude that the Aglet framework 
cannot satisfy the requirement of agents to migrate 
exclusively to intended hosts. 
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• Data vulnerability has not been addressed in the Aglet 
framework. While there is no acclaimed solution to 
the issue, it is imperative that users be able to 
determine if their data has been tampered with, and 
determine the malicious host. 

• Resource vulnerability determined through analysis of 
the lifecycle of agents in the environment. Through 
seemingly normal transition of lifecycle states (see 
Figure 2), agents can wreak havoc in hosts through 
repeated state transitions such as cloning. 

 
Details on the aforementioned studies can be found in 

[14]. Based on our experimental results, the task of 
addressing agent security resulted in the introduction of a 
new server namely Secure Aglet Server (SAS). The 
following subsections detail our contribution in addressing 
agent security in the Aglet platform that has led to SAS. 

 

 

Fig. 2. Lifecycle states of Aglets 
 

3.1 Securing the Communication Channels 
 

The Communication Layer of Aglets makes use of an 
unsecured protocol, thus leaving the framework open to a 
range of attacks, which we intended to address in our 
research. SSL is the current industry standard in addressing 
communication security. Keeping in line with our intent of 
fostering the adoption of agents in commercial applications, 
we opted to implement SSL in Tahiti, using the Java Secure 
Socket Extension (JSSE). Through the use of SSL sockets, 
we have endowed the Aglet framework with the ability to 
communicate over secure channels capable of 
authenticating the parties involved, refusing unsecured 
connections and adjusting the security level on the 
channels. Through the availability of SSL in SAS, 
administrators will gain control of the level of security 
enforced on network links; most importantly, it provides a 
standard solution trusted in the industry to handle secure 
communication. 

 
3.2 Securing Agent’s Data 
 

Granting Aglets the ability to detect tampering with their 
data required that we extend the functionalities of the 
server. Consequently, the Runtime Layer of SAS was 
extended to support the creation of Message Digests using 
the Java Cryptography Extension (JCE) as well as the 
ability to digitally sign objects. We provided Aglets with a 
java class library that implements the concept of Read-

Only data. With the new functionalities of SAS in place, 
the library obtains a signed copy of the message digest 
computed by the host along with the host’s certificate. An 
Aglet can retrieve the message digests stored by the library 
and use the corresponding certificate to ensure that its data 
has not been tampered with. The introduction of computed 
message digests and digital signatures in the Runtime 
Layer of SAS provides Aglets with the capability of 
detecting active malicious hosts in the agent’s itinerary. 

 
3.3 Securing Hosts 
 

Securing the hosts from a centralized aspect meant 
dealing with the possibility of an Aglet overusing the 
resources of a host through seemingly normal transition 
between its lifecycle states (Figure 2). As a result, we 
needed a scheme to not only specify and track the 
resources in use by an Aglet but also to take proper actions 
once an Aglet attempts to overuse the host’s resources. The 
design of such a scheme led us to the introduction of a 
MonitorAglet in SAS. The MonitorAglet tracks the number 
of instances of an Aglet, based on the Aglet’s properties 
such as the corresponding ID, to ensure that the specified 
limit is never exceeded. Within the scope of SAS, we 
defined instances as the instantiation of an Aglet or 
Message object.  

 
Definition 1: An Aglet B is an instance of an Aglet A if 

and only if one of the following is true:  
• B belongs to the same resource object as A,  
• A has created, retracted, or activated B, and  
• B is a clone of A. 

 
Once an Aglet has reached its instance limit, the 

MonitorAglet prevents the creation, cloning, activation, or 
retraction of any other instances of the Aglets in the system 
until one of the instances has been deactivated, dispatched, 
or disposed of. As we attempt to protect hosts against 
malicious agents, we have introduced powerful capabilities 
to the Aglet framework. It is now possible to limit the 
number of instances of an Aglet executing on a host, 
thereby preventing the aforementioned attack. 

In addressing centralized agent security, we have 
introduced a new agent server, namely SAS, endowed with 
secured communication, ability to detect tampering of 
agent’s data along with prevention of over-usage of host’s 
resources. The interested reader is referred to [14] for 
further details on the aforementioned schemes. Note that 
the introduced security mechanism to protect host is only 
an extra layer of protection. While effectively addressing 
the security issues of hosts, SAS merely reacts to malicious 
agents attempting denial of service (DoS) attacks. The 
malicious agent itself is never destroyed and the occurring 
attack is thwarted by controlling the resources in use by 
instances of the attacking agent. The system does not take 
into account the fact that a misbehaving agent may travel 
from one host to another and repeat its actions. A malicious 
agent that attacks one host is very likely to migrate and 
attack another host in the near future. As SAS only controls 
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the number of instances of an agent, a malicious entity 
could abuse its privileges and migrate to another host once 
it has reached its instance limit. Such a malicious entity 
could indeed migrate over numerous hosts in a domain and 
effectively wreak havoc. Improving the security of SAS 
further requires: 

• Collaboration between hosts to identify malicious 
agents. 

• Ability for the MonitorAglet of hosts to learn from 
experience and thus prevent attacks instead of merely 
reacting to such occurrences. 

 
 

4. Distributed and Adaptive Security-Monitoring 
Through Agent Collaboration 

 

Agents interact in a distributed environment; hence, 
similarly, agent security needs to be validated in a 
distributed manner. As hosts monitor agents, data regarding 
the actions of the agent can be recorded. Our work is based 
on the assumption that there is a relationship, though not 
clearly defined, between the actions of an agent and the 
intent of such agent; whether the intent is malicious or not. 
The definition of the set of actions that can help determine 
whether an agent is malicious will vary from one host to 
another and such actions are herein referred to as 
threatening actions. The consistent fact will remain 
however, that a malicious agent on one host is highly likely 
to represent a threat to the security of future hosts. Due to 
the variation in what constitutes a malicious agent, any 
proposed learning scheme must allow for such flexibility in 
identifying potential threats. 

Our approach in tackling the problem is through the 
introduction of a variation of the Boosting-learning 
algorithm, namely a Distributed and Adaptive Security-
Monitoring through Agent Collaboration (DASAC). To 
determine whether an agent is malicious, DASAC relies on 
collaboration between the current host and past hosts 
visited by the agent. The current host acts as a decision 
maker; every hosts including the current one act as base 
learners. We attain the required flexibility by allowing each 
host in the system, as base learners, to be trained 
independently and based on different feature sets. A 
discussion of what feature sets could possibly be used is 
deferred at this point and discussed later (section 5). The 
base learners in DASAC are trained as follows: 

- Implement a binary classifier, which can be a decision 
tree or any other classifier, where 1 is the class of 
malicious agent and -1 otherwise. 

- Train the classifier using a sample data set with the 
threatening actions against the host as the various 
features of each training instance. 

 

Note that each host in the system may serve as a base 
learner and as a decision maker depending upon its 
contribution to the current decision-making process. The 
base learners, being trained independently, may implement 
various classifiers depending on the host’s administrator.  

Upon arrival of an agent to a host, one of two cases may 

be true. The host may be seeing the agent for the first time 
or the host may have had a personal experience with the 
agent. In either of these two cases, the host needs to 
determine whether to allow the agent to execute or not. If 
the host had no prior experience with the agent in question, 
it does not have any pertinent information about the agent 
to classify it as malicious or not using its base learner. It 
must thus rely on the hosts that the agent has visited in the 
past. If the agent had in the past executed on the host, the 
host’s base learner can classify the agent. 

Within DASAC, classification of an agent by the 
decision maker is based on the following steps: 

- If the host has had prior experience with the agent, the 
base learner of the host is used to classify the agent; 
else, the agent is assigned the default value of 0. 

- The classification of the agent from every host in the 
agent’s history as determined by their respective base 
learners are collected by the decision maker. 

- Using the possibly diverse experiences of other hosts, 
the decision maker determines whether to allow an 
agent to execute or not. 

In essence, a Decision Maker (DM) interacts with the 
various base learners of the hosts in the distributed 
environment to thwart attacks. In the final steps, a DM 
could use techniques such as majority-vote to reach a 
consensus. We however recommend a version of weighted 
sum tailored to the problem at hand as specified in 
Equation 1 where Ψi represents the class to which an agent 
has been assigned by the base learner of a host. We allow 
Ψi to possibly have a value of 0 to ignore a base learner 
that does not have any information on the agent as such 
may be the case for the learner on the current host. 
Furthermore, τi and λi, represent the trust, and confidence 
levels, respectively, associated with each host being 
contacted.  

 

x =

1 ∀ τ i ∗ λ i ∗ Ψii =0

n
∑ > 0

−1 ∀ τ i ∗ λ i ∗ Ψii=0

n
∑ < 0

0 Otherwise

⎧ 

⎨ 

⎪ 
⎪ ⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

 

Equation 1. Trust and Confidence based weighted sum 
 
The recommended version of majority vote derives from 

our observations of the underlying mechanisms in inter-
human collaboration. Consider the case where a person, A, 
asks a friend, B, for his/her opinion on a puzzling question; 
A does not blindly believe B’s assertion. Instead, A weighs 
his/her opinion and confidence on the topic with B’s 
recommendation based on two factors; namely, how much 
does A trust B and how confident is B in his/her assertion. 
The confidence level, in the proposed majority vote 
scheme, is determined by the accuracy of the classifier 
used in a host and varies between 0 and 100. The 
confidence of a host is communicated to the DM along 
with the classification of an agent.  

The trust level, on the other hand, can be defined 
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statically by the system administrator of a host based on 
the reputation of a particular host. We propose trust levels 
to be defined as a value between 0 and 10. A default value 
can be specified for use whenever a remote host’s trust 
information is not available. Notice that setting the default 
value of trust to 0 would effectively allow the monitoring 
system to not take into account the experience/ 
classification of unknown hosts. As the definition of trust 
levels does not carry over from one host to another, 
administrators are free in setting the limits of trust values 
in their systems. 

If an agent is allowed to execute in the system, the 
decision maker keeps track of the actions of the agent. It 
can then periodically attempt to re-classify the agent and 
thus adapt to agents that may execute malicious code only 
on specific hosts. The frequency upon which to re-classify 
an agent is left as an implementation detail as it will vary 
upon the requirements of a host. 

 
Δ = n * max( τ i ) ∗ max( λi ) ∗ max( Ψi )[ ]

SL = β *

τ
i

∗ λ
i

∗ Ψ
i

i = 0

n
∑

Δ

⎡ 

⎢ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎥ 

⎥ 
⎥ 
⎥ 
⎥ 

 

Equation 2. Security Level of an agent 
 
Although DASAC, as described, can be made to be 

completely autonomous, except during training, we 
understand that administrators may need to have hands-on 
control on whether or not an agent should be allowed to 
continue or start execution. To cope with such a need, we 
introduce the notion of Security Levels (SL) of agents on a 
host. The SL of an agent is defined (Equation 2) as the 
ceiling of the product of its weighted-sum, as computed in 
Equation 1, and the number of security levels in the system 
(ß). The result is divided by ∆, representing the maximum 
sum of products multiplied by the number of cooperating 
hosts. Note that ∆ is always greater than 0 as n takes into 
account the current host as well. While the SL could be 
calculated for all possible value of the weighted-sum, one 
should note that it is not of importance when the weighted-
sum is 0 or less as such agents have not been classified as 
malicious.  

Using the SL, the system can be made to be semi-
autonomous, requiring human assistance once a threshold 
has been reached. Agent-human interaction can further 
increase the efficiency of the system as the agent can be 
made to adjust its classifier based on such interactions. 
Thus, DASAC may decide to use the collected data about 
an agent, classify it based on its interaction with an 
administrator, and inserts the information in the pool of 
training data. The classifier can be periodically retrained 
thereby leading to an adaptive security system.  

Evaluation of our proposal requires its implementation 
in one of the numerous agent platforms that have been thus 

far advanced in the literature. Addressing the security of 
the hosts further requires that an adequate security 
mechanism be in place to protect the agents as well. As we 
have introduced a secured server for the Aglet platform, the 
implementation of DASAC on SAS was the logical choice. 
The following section details our work in implementing 
DASAC on the chosen server.  

 
 

5. DASAC Implementation on SAS 
 

We have previously addressed the motivation behind the 
presence of the MonitorAglet within SAS (i.e., controlling 
the amount of resources being used by any particular 
agent). In implementing the DASAC scheme into SAS, the 
use of the MonitorAglet as the DM of a host was an 
obvious option, which we adopted. The base learner on the 
other hand is implemented as an independent agent for 
flexibility and performance. The implementation of the 
base learner as an agent allows for separate threads of 
execution to handle classification and training. Moreover, 
as agent entities, a host may have multiple base learners 
trained using independent feature sets; however within our 
implementation of DASAC we assumed that each host has 
one base learner. All base learners in our implementation 
are built using the classifiers from the weka data-mining 
library [22]. Figure 3 shows a pictorial representation of 
the interaction between DMs and base learners within SAS. 
The dotted lines in the figure denotes the trajectory of the 
agent migrating from one host to another; the solid lines 
depict the communication between the DM and the base 
learners in order to decide whether to allow the arriving 
agent to execute. In a nutshell, using the MonitorAglet as 
the DM of DASAC with other agents acting as base 
learners extended SAS. The implemented version of 
DASAC makes use of the suggested version of weighted 
sum (equation 2) to classify agents. Moreover, we 
employed the notion of security levels which are used to 
determine whether interaction with a system administrator 
is needed to dispose of an agent classified as malicious. 
Five distinct security levels were defined:  

• The MonitorAglet is augmented with the capability of 
requesting interaction from a system administrator to 
determine the appropriate set of actions to undertake 
once an agent has been identified as a malicious entity 
below or at level 3.  

• Malicious agent of levels 4 and 5 are automatically 
denied execution.  

The choice of level 3 is an arbitrary cutoff point that can 
be tuned by the system administrator of a host.  

The set of features selected to train the base learners 
need to correlate in a manner that differentiates malicious 
entities from non-malicious ones in the system. Within 
SAS, agents are monitored and based upon the number of 
instances running, the MonitorAglet can allow or reject a 
requested action such as cloning, dispatching etc. Such 
actions of agents have been shown [14] to be potentially 
detrimental to the security of a system and thus constitute 
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good candidates for inclusion in the feature set. It is our 
belief that the frequency at which an agent requests the 
right to transition from one state to another, along with the 
total amount of time spent on the host, can help in 
identifying malicious actions. Due to Java’s sandboxing 
techniques, a security manager prevents access to entities 
lacking the proper access rights to local resources. The 
malicious agents may attempt to access various resources 
in the hope that the security policy in effect is not well 
defined. As a result, we take into account the frequency of 
security exceptions generated by an agent. The security 
manager resides within the Runtime layer of SAS and in 
order to track the security exceptions generated by an aglet, 
we introduced a listener class through which interested 
parties can be notified whenever such events occur.  

To sum up, we selected the features in table 1 to train the 
classifiers based on CPU usage times, lifecycle state 
transitions, and access to low-level system resources. Once 
the feature set has been selected, we trained the classifiers 
to extract data patterns that may help classify an agent 
based on its behavior. We used a system consisting of 5 
hosts. Hosts 1 thru 5 have different classifiers, namely, an 
alternating decision tree with 0 boosting iterations, a fast 
decision tree learner, a decision stump, a naïve Bayes 
classifier and an alternating decision tree with 3 boosting 
iterations respectively. The implementations of the 
classifiers used are from the weka library [22]. Moreover, 
the hosts in the experiment have different trust levels.  

Due to the fact that training data for classifiers are not 
readily available, we trained our classifiers using a data set 
generated by tracking the features of interest during actual 
runs of the following agent-based applications:  

 
• MAMDAS [16]  
• Private Information Retrieval prototype [14]  
• Instance and Message DoS attack generator agents 

[14].  

The choice of applications used to collect the data was 
based on their availability, along with the fact that their 
classifications were known a priori, as discussed in SAS 
[14]. The choice of applications encompasses both classes 
of agents, malicious and benign, that are of interest to our 
work. The MonitorAglet tracks every event generated by 
agents in the system and construct a data sample for the 
corresponding agent. The constructed sample consists of 
the features that we identified as having the potential to 
help identify malicious entities (see Table 1). 

 
Table 1. Classification Features for Each Agent 

Feature Feature Description 
Biased Running 

Time 
Biased Length of Execution Time on 
System 

Cloning Frequency Ratio of number of cloning to average 
time between cloning 

Activation 
Frequency 

Ratio of number of activation to 
average time between activations 

Dispatch Frequency Ratio of number of dispatching to 
average time between dispatching 

Retract Frequency Ratio of number of retraction to 
average time between retractions 

Arrival Frequency Ratio of number of arrivals to average 
time between arrivals 

Security Access 
Request Frequency

Ratio of number of security access 
requests to average time between such 
requests 

Security Access 
Grant Frequency 

Ratio of number of security access 
grants to average time between such 
grants 

Security Access 
Denial Frequency 

Ratio of number of security access 
denials to average time between such 
denials 

 
The generated data set consists of over 3000 samples, 

manually classified, of which, roughly 15% is used to train 
each classifier. The classifiers used the remainder of the 
data set for accuracy assessment. The accuracy of each host 

 
Fig. 3. Overview of DASAC implementation in SAS  
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classifier is used as the confidence level of the host in 
question, as suggested by DASAC, in all our experiments. 

Figure 4 presents the average accuracy rate of the hosts 
in the system over multiple runs. The accuracy of hosts 
shown was determined based on the ability of the host’s 
classifier to properly classify the remainder of the 3000 
samples in the data set not used for training. As we noted 
earlier, the hosts use different classifiers resulting in 
different accuracy rates based on the strength of the 
classifier being used. As thus, Host1 exhibits the worst 
accuracy as it uses an alternating decision tree with 0 
boosting iterations. Through the use of decision stumps, 
naïve Bayes classifier and alternating decision trees with 
numerous boosting iterations, the other hosts are able to 
achieve a higher accuracy rate.  

 

 
Fig. 4. Training Accuracy of hosts 

 
 

6. System Evaluation 
 

DASAC is evaluated based on several performance 
metrics such as accuracy (i.e., the ability of the framework 
to properly classify agents), the false and missed alarm 
rates and the time it takes to evaluate whether an agent is 
malicious. The following subsections details the results of 
our evaluation of the framework. 

 
6.1 System Accuracy and The Impact of trust 

 

To evaluate DASAC, the first set of experiment focused 
on measuring the accuracy of the system in identifying 
malicious agents as well as studying the impact of trust 
level on the accuracy. We chose the first host in the system 
(Host1 from Figure 4) as the local classifier against which 
DASAC will be compared. This choice was based on the 
fact that host1 showed a slightly better performance than 
random guessing. Our goal is to analyze how DASAC can 
help improve the performance of a host, through 
collaboration. We thus proceeded to launching the agent 
applications used in training the system classifiers. We also 
introduced a PortScannerAglet (malicious) which 
repeatedly attempts to connect to numerous ports in the 
system whether it has access to conduct such actions or not. 
Furthermore, we manually created, dispatched, and 
retracted each of the following benign agents: 
CirculateAglet, WebServerAglet and HelloAglet. These 
agents are available as part of the Aglet framework. Lastly, 
we created and used a MigratingWebServer agent that 
migrates to hosts and attempts to set up a server on random 

ports, restricted or not, repeatedly. The 
MigratingWebServer, a malicious agent, migrates to a new 
host, once it has been denied access to ports over 10 times. 
Our reasoning behind the introduction of new Aglets that 
were not used during the training phase is to gain insights 
into the ability of our classifiers to perform well even in the 
presence of previously unseen behaviors.  

The DM of each host dynamically classifies agents to 
determine whether or not they are malicious. We evaluated 
the system based on the accuracy at which the local 
classifier and DASAC recognize malicious agents. We also 
tracked the best accuracy recorded in the system and 
computed the average accuracy of the hosts including 
Host1. While the confidence levels used in the experiments 
were as described in section 3, the trust levels, on the other 
hand, were assigned randomly. The local classifier is 
assigned a trust level of 9, close to the maximum of 10, to 
reflect the trust that we expect administrators to have in 
their own systems. 

Figure 5 depicts the measured accuracy of DASAC 
compared to that of Host1’s classifier, the best accuracy 
rate measured in the system, and the average accuracy rate 
of hosts in the experiment. On average, one can conclude 
that DASAC’s performance lies between the average 
accuracy of the involved hosts and that of the most 
accurate classifier. The fluctuations in the accuracy rate 
measured are due to the fact that the hosts are trained for 
every experimental run on a random sample. Thus, their 
performance is slightly dependent on the sample used 
during training. 

 

 
Fig. 5. Local vs. DASAC accuracy 

 
While DASAC generally outperforms the worst 

classifier in the system, it matched the first host’s 
performance during the first run of the experiment. The 
only reasonable explanation for such a poor performance 
by DASAC is the trust levels used during the first 
experiment. We noted that the total trust levels of hosts 2 
thru 5 varied from one experiment to the next as follows: 5, 
16, 23, 27, and 36. When the trust levels of the other hosts 
are low compared to that of the local host, DASAC’s 
performance seems to be more dependent on that of the 
local classifier. This brings us to the second set of 
experiments that were carried out to further investigate the 
effect of trust levels on DASAC. During the second 
experiment, we kept the trust levels of all hosts, including 
host1, identical. The trust levels were however varied from 
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one experimental run to the next starting at 0 up to 10.  
The results of the second experiment are depicted in 

Figure 6. The figure shows that DASAC still outperforms 
the average accuracy rate computed. The experiment 
revealed two crucial points; Firstly, all the classifiers in the 
system can indeed outperform DASAC, as is the case when 
the trust levels are 0. The explanation behind such an 
occurrence is due to the fact that DASAC will classify all 
samples as 0, which is in effect non-malicious. Thus, 
DASAC will fail to classify any malicious agents possibly 
degrading to an accuracy rate of 0. The second interesting 
point is the fact that DASAC’s accuracy seems to quickly 
become dependent upon the accuracy rates of the best 
classifiers in the system. This is justified by the fact that 
DASAC is in effect designed to take advantage of the 
strength and experience of other hosts in the system. Once 
the trust levels are identical for all hosts, the only 
determining factor in classifying an agent becomes the 
confidence of hosts. The more confident hosts have a more 
significant weight on the system’s classification of an entity. 
The experiment allowed us to assert the accuracy of the 
herein introduced framework and analyze the impact of the 
use of trust levels on the observed accuracy.  The next 
step that we undertook was to analyze the response time of 
DASAC in determining whether to allow an agent to 
execute along with the false and missed alarm rates. 

 

 
Fig. 6. Effect of trust levels on DASAC accuracy 

 
 

6.2 Response Time, False and Missed Alarms Rate of 
DASAC 

 

As noted earlier, determining the false and missed alarm 
rate of an IDS system is crucial in evaluating the system. 
Moreover, the time that it takes to determine the 
classification of an entity needs to be as low as possible, 
since a slow response time would allow attackers to 
quickly execute their malicious code and migrate to the 
next target. Keeping in line with such facts, the focus of 
this set of experiment was geared towards evaluating the 
accuracy, missed and false alarm rate of DASAC along 
with the response time of the framework. In setting up the 
experiment, we decided to use two hosts and collect the 
information of interest to our study. The two hosts used in 
the experiment are Host1 and Host2 from Figure 5 with 
training accuracy of 55.6% and 87.4%, respectively. We 

have also designed a new Aglet whose sole task is to 
execute on Host2 and repeatedly create agents and dispatch 
them to Host1. The intent behind such a setup is to study 
the response time of the framework when the agents are 
arriving and having been to one and only one host prior to 
the current one. Moreover, the experiment is intended to 
allow us to study the efficiency of the system when it is 
collaborating under the aforementioned conditions. 

As we have mentioned, agents are created on Host2 and 
dispatched to Host1 (one-hop away). The agents that are 
being dispatched are the DoS attack generators noted 
earlier (section 5), the PortScannerAglet, and the 
MigratingWebServer along with the followings from the 
Aglet platform: 

• examples.simple.DisplayAglet 
• examples.hello.HelloAglet 
• examples.itinerary.CirculateAglet 
• examples.mdispatcher.HelloAglet 
• examples.http.WebServerAglet 
• examples.talk.TalkMaster 
 
The choice of such agents was motivated by the fact that 

they constitute a fair representation of the types of agents 
that can exist in the system in terms of their intentions 
being malicious or not. The agent executing on Host2 
continuously generates and dispatch the agents to Host1; 
from that location, we measure the accuracy, false and 
missed alarm rate, and the time it takes for Host1 to contact 
Host2 and determine whether to allow an arriving agent to 
execute. The key point here is that as DASAC is currently 
implemented, Host1 needs to formally deploy an Aglet to 
Host2 and collect the information necessary to classify any 
arriving agent. The result of the experiment is presented in 
Figure 7 showcasing the accuracy of DASAC on Host1, 
along with the false (FAR) and missed (MAR) alarm rates 
of the host. As expected, DASAC outperforms Host1 and 
draws closer to the accuracy of Host2 while the false and 
missed alarm rates decrease before settling.  

 

 

Fig. 7. False alarm rate, Miss alarm rate and Accuracy Rate 

 
The average amount of time spent solely on contacting 

Host2 to classify an arriving agent was also measured. As 
expected, the ratio of time spent on communicating with 
Host2 compared to the total time required to classify 
arriving agents was drastic (see Figure 8).  

The communication time alone represents over 90% of 
the time it takes to determine whether to allow an agent to 
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execute. Such an observation is a direct result of the fact 
that the current implementation of DASAC has to dispatch 
an Aglet to past hosts and collect the required information 
to classify an agent. In order to avoid such a significant 
cost in classifying an agent, we slightly modified our 
implementation of the framework in DASAC. The 
modification occurred by not only attaching the address of 
the current host to agents being dispatched as is currently 
done, but also pertinent information that the framework 
requires such as the class to which the agent has been 
assigned prior to migrating from the current system, along 
with the confidence factor of originating host.  Having 
altered our implementation of DASAC on Aglet we noted 
close to a 90% reduction in the response time of the Host1, 
as one would expect. Such a drastic reduction is due to the 
fact that Host1 no longer has to use network bandwidth to 
collaborate with Host2, nor does it have to wait for such 
information to be available before making a decision. With 
the changes in the framework’s implementation, the 
average response time in classifying agents is effectively 
reduced. 

 

 

Fig. 8. Processing vs. Communication Time of Arriving 
Agents 

 
 

7. Conclusion 
 

This article has introduced a novel distributed and 
adaptive security-monitoring framework achieved through 
agent collaboration across multiple hosts. To the best of our 
knowledge, this work represents the first in its kind to 
attack agent security through collaboration between the 
hosts in the system. While we have only implemented 
DASAC within SAS at this point, it can be easily applied 
to any agent platform. The framework, as we have shown, 
builds on the idea of boosting to allow host protection by 
classifying agents based on their reputation. The system is 
flexible enough to support the incorporation of various 
classifiers that may be trained using independent variables, 
as the hosts do not communicate their feature sets to each 
other. Moreover, DASAC introduces the notion of security 
levels to support human-agent interaction in order to render 
the system even more flexible and robust. We have also 
secured the Aglet framework from a centralized aspect, 
providing secured communication, ability for agents to 
detect tampering of their data, and allowing hosts to 
restricts the actions of malicious agents that may lead to 
denial of service attacks. 

While DASAC is very powerful and flexible, its 
weakness lies in its dependence upon the choice of 

classifiers and feature sets used to train the classifiers. 
Future work on the subject should analyze agent patterns in 
more detail especially as more agent applications become 
available. One possible approach to addressing the issue 
may be to reduce the scope of the problem and study agent 
patterns based on specific class of applications. As such, 
administrators will be better equipped in choosing a feature 
set along with classifiers that may be used on a host based 
on the services such host may provide. 
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