
114 International Journal of Information Processing Systems, Vol.2, No.2, June 2006

A Method for Automatic Generation of OWL-S Service Ontology

Jin-Hyuk Yang*, and In-Jeong Chung*

Abstract: We present in this paper the methodology for automatic generation of OWL-S service

model ontology along with the results and issues. First, we extract information related to atomic

services and their properties such as IOPE from the UML class diagram, and retrieve information

related to the composition of services from the UML state-chart diagram. Then, the XSLT applications

utilize the acquired information to generate the OWL-S service model ontology through the predefined

mappings between OWL-S constructs for composite services and UML state-chart primitives. For the

justification of generated service ontology, several validation checks are performed. Our service

ontology generation method is general and fully automatic, as well as effective, in that it is achieved in

an environment familiar to developers, and information needed to generate service ontology is

provided necessarily during service development. It is also noticeable to facilitate representing the

condition with GUI rather than a complex language such as OCL.

Keywords: Ontology, Semantic Web, OWL-S, State-chart, and UML

1. Introduction

As the role of the Internet becomes greatly valued, not

only for static resources such as web pages, but also for

dynamic ones such as services, the importance of web

services has been emphasized. However, the use of the

fundamental technologies of web services, such as WSDL

(Web Service Description Language)[1], UDDI (Universal

Description, Discovery, and Integration)[2], and SOAP

(Simple Object Access Protocol)[3], lacks intelligent

utilization of services called semantic web services[4]. For

example, as WSDL documents describe the interface of

service only, information required to composite and

interoperate among services is not contained in a WSDL

document. As UDDI registries support keyword-based APIs

for searching services, flexible results cannot be provided.

Hereupon, various standards have been published by

different communities such as BPEL4WS (Business

Process Execution Language for Web Services)[5] in the

web service community, WSCI (Web Service Choreography

Interface)[6] by W3C, and OWL-S (OWL for Services)[7]

in the semantic web community. Among these specifi-

cations, OWL-S was adopted as the semantic web service

markup in this paper, since OWL-S, as service ontology

written in OWL (Ontology Web Language)[8], enables

inferencing and allows the use of services more

intelligently. Relationships with the other various specifi-

cations can be found in [9] and [10].

In this paper, we present the methodology for automatic

generation of OWL-S service ontology, along with the

results. In particular, we focused on the OWL-S service

model ontology among three OWL-S ontologies (service

profile, service model and service grounding), since crucial

information on how to interoperate with other services is

described within the service model ontology. This kind of

information is essentially required to enable intelligent web

services such as automatic web services composition.

For automatic generation of the OWL-S service model

ontology, we extracted information related to atomic

services and their properties such as IOPE (Input, Output,

Precondition, and Effects) from the UML class diagram,

and retrieved information related to the composition of

services from the UML state-chart diagram. Then, XSLT

(Extensible Stylesheet Language Transformation) appli-

cations utilized the acquired information to generate the

OWL-S service model ontology through the defined

mappings in section 3 between OWL-S constructs for

composite services and UML state-chart primitives. For the

justification of generated ontology, we performed a few

available validation checks. The rationales behind our

approach are described in detail in section 3, and the

difference with existing UML approaches is addressed in

subsection 2.2.

Our service ontology generation method is not only fully

automatic but also general, to be applied in any case, and is

also effective in that it is performed in an environment

familiar to developers, and information needed to generate

service ontology is necessarily provided during service

development. This familiar environment means they use

only UML and do not need to use OWL-S to generate

OWL-S ontology. In addition, we propose a method for

modeling OWL-S condition expression with GUI in the

UML diagram instead of a complex language such as OCL

(Object Constraint Language). A detailed explanation on

this issue is addressed again in subsection 3.2.

Copyright ⓒ 2006 KIPS (ISSN 1738-8899)

Manuscript received April 4, 2006; accepted May 22, 2006.
Corresponding Author: In-Jeong Chung
* Dept. of Computer Science, Korea University, 208 Seochang-Li,
Chochiwon-Eup, YunkiGun, ChoongNam, Korea (grjinh@korea.ac.kr,
chung@korea.ac.kr)

Jin-Hyuk Yang, and In-Jeong Chung 115

The organization of this paper is as follows: Section 2

describes the semantic web services and introduction to

OWL-S, in brief. Also, the existing works for ontology

generation are addressed. Automatic generation of the

OWL-S service model ontology method is presented in

section 3. Implementation is presented in section 4, and

analysis and discussion are mentioned in section 5. Finally,

the conclusion and further works are described in section 6.

2. Related Works

2.1 Short Introduction to Semantic Web Services and

OWL-S

Semantic web services, often called ‘intelligent web

services’, first introduced in [4], enables web services to be

intelligent using ontologies which play an important role as

metadata for inferencing in semantic web. One reason for

semantic web services gaining recognition can be

attributed to limitation on intelligent utilization of web

service via its fundamental technologies such as WSDL

and UDDI. WSDL only exposes the information about

service’s signature and does not describe the specific

information related to service’s behavior. And, UDDI

makes it difficult for various users with different needs to

retrieve flexible and appropriate services, as it supports

keyword-based search APIs.

As a part of the efforts to overcome WSDL’s expres-

siveness problem, expressive markup languages (mostly

for composition) such as BPEL4WS, WSCI and OWL-S

have been published. Among these, OWL-S is service

ontology written in OWL. OWL is an AI-inspired markup

language and supports reasoning. Also, it has been adopted

by W3C as the standard for representing ontology.

Relationships and comparisons between OWL-S and other

various specifications can be found in [9] and [10].

The goal of OWL-S is to allow automatic services

discovery, execution, composition and interoperation. As

metadata for a service, OWL-S has three sub-ontologies for

describing the service: Service Profile ontology, Service

Model ontology and Service Grounding ontology. Service

Profile describes what the service does, including IOPE

information, and is used for automatic services discovery.

Service Model describes the conditions and constraints on

the service’s behavior, and Service Grounding describes

how to access the service.

2.2 Existing Ontology Generation-related Works

The main idea behind using ontology is to pursue

automation and intelligence via reasoning on metadata with

regard to resources. However, the task of creating ontology

is time-consuming and difficult as indicated in [11].

Therefore, automatic and effective ontology creation is

very important.

[12] describes an ontology creation method for database

design with some heuristics. [13] applies machine learning

and statistical techniques to automatically extract ontology

knowledge from documents. [14] uses hierarchical cluster-

ing to generate the concept hierarchy, and then generates

RDFS ontology. [15] uses a decision tree and a set of rules

acquired from the ID3 algorithm. [16] uses a knowledge

grid applied to the existing grid with data mining

techniques.

On the other hand, there are UML approaches for

ontology modeling and generation. [17] addresses the use

of a UML class diagram for ontology modeling. [18]

mentions ontology modeling for agent through

comparisons with description logic, which is the origin of

ontology markup. In particular, [19], as white paper

adopted in OMG ontology working group, proposes the

issues and solutions that occurred in modeling ontology

with UML. Also, [20] indicates these kinds of problems. In

[19] and [20], mapping definitions are described between

UML primitives and ontology markup languages such as

OIL and DAML+OIL. The recent MDA (Model Driven

Architecture)-based method for ontology modeling and

generation is introduced in [21] and [22]. [23] mentions the

current situation and future issues of UML approaches,

including reasons for using UML.

The main difference between our approach and the

existing ones is to not create domain ontology, but generate

service ontology. As described above, the domain ontology

creation approach can be divided into two kinds1: The

approach in the first category extracts the concepts and

relations from a number of documents (mostly unstruc-

tured) or database using domain analysis or data mining

techniques. The UML approach in the second category

uses a UML class diagram to model the domain concepts

and relationships, and then transforms to concrete ontology

markup automatically. However, modeling domain

ontology with a UML class diagram involves manual

processes (who will extract the domain concepts and

relationships?). On the other hand, the process of service

ontology generation focuses on the extraction of the

service’s interface and service’s composition infor-mation

required to be interoperable, rather than domain concepts

and relationships from a number of unstructured

documents. Note that our approach differs from the

existing UML modeling paradigm, though UML diagrams

are used in modeling; the UML class diagram and UML

state-chart diagram are necessarily created during the

service development lifecycle (developers first design the

model with UML and then apply coding), regardless of

generating the service ontology. Namely, extra effort and

time to model service ontology is not needed.

It can be found in [24] as related work on creating

OWL-S service ontology. [24] uses service’s auto-

1 Note that two kinds of methods are not exclusive, as UML modeling
approach simply mentions a representation scheme and has nothing to
do with any method of extraction itself. The extraction approach may
rely on the UML approach as its representation for the extracted
concepts and relations. Once done with UML modeling, various
techniques such as a transformation method can be applied to create
ontology based on the model.

116 A Method for Automatic Generation of OWL-S Service Ontology

generated WSDL document and annotates it. [25] uses a

UML activity diagram to generate service’s BPEL4WS

specification. However, [24] is semi-automatic, and as

such, is an annoyance to the developers. [25] is similar to

our approach with UML activity diagram and BPEL4WS,

rather than UML state-chart diagram and OWL-S.

Comparisons between OWL-S and BPEL4WS are

described in [9] and [10], and the reasons for using a UML

state-chart diagram instead of an activity diagram is

described in section 5.

The most remarkable approach is [42], which auto-

matically generates OWL-S ontology from the WSDL

document through the mappings between OWL-S and

WSDL. However, [42] enforces manual processing for

completing the OWL-S service model ontology when it

contains more than one atomic process (i.e., when the

service is a composite process). In fact, this is due to the

expressiveness of WSDL. Therefore, our research can be

regarded as a complementary approach to [42]. Moreover,

we present a way to express the condition with GUI instead

of a complex language such as OCL.

3. Automatic Generation

of OWL-S Service Ontology

3.1 Motivation and Design Principles

Service ontologies must be created in order to realize

semantic web services. If it is expensive and time-

consuming to create the service ontologies, this becomes

an obstacle to populating ontologies. Therefore, it is

desirable to create service ontologies that are automatic and

effective. Even some tools such as [26] and [27] provide an

ontology-editing environment, and they force modelers

(developers) to understand OWL-S. Moreover, extra time

and efforts are needed in modeling ontologies. Hereupon,

we decided on two design principles.

Principle 1: Service ontology must be generated in an

automatic manner. To populate the service ontologies

necessarily needed in the realization of semantic web

services, it is highly desirable to generate the service

ontologies in automatic form, as services’ WSDL

documents are automatically generated in Java and .NET

environment. In other words, information related to

existing services (or ones being created) should be

contributed to generate the service ontologies without

additional use of tools or extra time and costs.

Principle 2: Generation of service ontologies should be

easy and familiar to creators of service ontologies. Most

developers (service ontology creators) are unfamiliar with

OWL-S. It is a huge obstacle to populating service

ontologies, to have them create ontologies with an

unfamiliar markup language, not to mention syntax errors;

the task of generating the service ontologies is additional

work for them (they are usually programmers not AI

experts and need only to create services themselves). If the

task is difficult, they will be reluctant to create the service

ontologies. Therefore, the task must be performed in an

easy and familiar environment for developers.

We embody the following two approaches to reflect the

above principles.

We considered the XSLT application to generate the

service ontology. XSLT application takes an XML file as

input and can generate any type of document. It also allows

selecting, sequencing, arranging, correcting, adding,

sorting, and filtering XML data precisely at one’s

convenience. In addition, it is possible to access most XML

document components (element, attribute, comment, and

processing instruction). Moreover, it is allowed to use

variables and built-in functions as in a procedural

programming language. The main factor behind our

decision to use XSLT to generate service ontology

automatically is as follows: Acquired information related

to service model at the UML approach (as our second

decision principle, described below) is exported to XMI

(XML Metadata Interchange), and this is the XML

document; XMI is an OMG standard for exchanging

metadata.

In order to provide an easy and familiar generation

environment for developers, we chose UML, which is

widely adopted in software engineering as the GUI

standard for modeling. UML and UML CASE (Computer

Aided Software Engineering) tools are familiar to service

developers, as they design and analyze via UML and UML

CASEs. It is our main objective to extract information

needed to generate service ontology without any additional

effort or time from UML diagrams which are necessarily

created during the service development process. In order to

accomplish this objective, UML diagrams are exported to

XMI files which are used to generate service ontology in

XSLT applications through the defined mappings below.

3.2 Mapping Definitions Between OWL-S Constructs

for Composite Services and UML State-chart

Primitives

In this section, we will address several rules embodied in

the XSLT application used to generate the OWL-S service

model ontology. These rules are based on the mappings

between OWL-S constructs for composite services and

UML state-chart primitives.

We considered two separate processes in generating the

OWL-S service model ontology: The first process of

generating atomic services and their IOPE-related

attributes, and the second process of generating infor-

mation related to composite services. In other words,

information related to services’ attributes is extracted from

the UML class diagram in the first process, and compo-

sition information related to composite service is extracted

from the UML state-chart diagram in the second process.

The reason why we extracted different information from

different UML diagrams is because the UML class diagram

Jin-Hyuk Yang, and In-Jeong Chung 117

is suitable for describing the atomic services, as well as

their attributes and relationships with other atomic services,

while the UML state-chart diagram is suitable for model

services’ behavior and allows a description of composite

service composed of other composite services. Namely, the

UML class diagram cannot provide what the UML state-

chart can, and vice versa.

In the following, we only define the mappings between

OWL-S constructs for composite service and UML state-

chart diagram primitives, since mappings between

primitives of the UML class diagram and OWL-S’s

attribute-related information are simple and already defined

in [17-19].

• Sequence: OWL-S Sequence is a construct for

specifying the sequence of services. It is defined as

stereotyped2 transition.

sm OWL-SUnregistered Trial Version EA 4.1

Unregistered Trial Version EA 4.1
State1 State2Sequence

Fig. 1. Mapping definition for OWL-S Sequence

• Split and Split+Join: OWL-S Split and Split+Join are

constructs for modeling synchronization. They are

defined using the Fork/Join primitive.

sm OWL-S
Unregistered Trial Version EA 4.10 Unre

Unregistered Trial Version EA 4.10 Unre

Unregistered Trial Version EA 4.10 Unre

Unregistered Trial Version EA 4.10 Unre

Unregistered Trial Version EA 4 10 Unre

State2

State1 State3

State4

Split

Fig. 2. Mapping definition for OWL-S Split

sm OWL-S
nregistered Trial Version EA 4.10 Unregistered Trial Ve

nregistered Trial Version EA 4.10 Unregistered Trial Ve

nregistered Trial Version EA 4.10 Unregistered Trial Ve

nregistered Trial Version EA 4.10 Unregistered Trial Ve
State4

State3

State2

State1 State5Split+Join

Fig. 3. Mapping definition for OWL-S Split+Join

• Choice and AnyOrder: OWL-S AnyOrder and Choice

are constructs for modeling for selections. They are

2 UML profile for OWL-S constructs is described in subsection

5.3.

defined using Choice primitive.

sm OWL-S
Unregistered Trial Version EA 4.10 Unre

Unregistered Trial Version EA 4.10 Unre

Unregistered Trial Version EA 4.10 Unre

Unregistered Trial Version EA 4.10 Unre

Unregistered Trial Version EA 4 10 Unre

State2

State1

Choice

State3

State4

Choice

Fig. 4. Mapping definition for OWL-S Choice

sm OWL-S
0 Unregistered Trial Version EA 4.10 U

0 Unregistered Trial Version EA 4.10 U

0 Unregistered Trial Version EA 4.10 U

0 Unregistered Trial Version EA 4.10 UState4

State3

State2

State1

Choice

AnyOrder

Fig. 5. Mapping definition for OWL-S AnyOrder

• If-Then-Else: OWL-S If-Then-Else is a construct for

modeling conditional branching. It is defined using

Choice for branching. In addition, stereotyped class

and dependency are used.

sm OWL-S

g

0 Unregistered Trial Version EA 4.10 Unre

0 Unregistered Trial Version EA 4.10 Unre

0 Unregistered Trial Version EA 4.10 Unre

0 Unregistered Trial Version EA 4.10 Unre

0 Unregistered Trial Version EA 4.10 Unre

State3

State2

State1

Choice

Class1

If-Then-Else

Then

Else

Fig. 6. Mapping Definition for OWL-S If-Then-Else

• Iterate, Repeat-While and Repeat-Until: OWL-S

Iterate3 and its subclasses Repeat-While and Repeat-

Until are structured loop constructs. Repeat-While

and Repeat-Until are defined as combinations of

mapping definition used for OWL-S If-Then-Else

(for specifying condition) and stereotyped transition

primitive. Repeat-Until is defined in the same

manner.

3 This construct is abstract class, so we did not consider it when

defining mappings.

118 A Method for Automatic Generation of OWL-S Service Ontology

sm OWL-Segistered T ria l Vers ion EA 4.10 Unre

egistered T ria l Vers ion EA 4.10 Unre

egistered T ria l Vers ion EA 4.10 Unre

egistered T ria l Vers ion EA 4.10 Unre

egistered T ria l Vers ion EA 4.10 Unre

egistered T ria l Vers ion EA 4.10 Unre

S ta te 2

S ta te 1

Cho ice

Class1

Compos iteS ta te

In i t i a l

F in a l

Repea t-Wh i l e

If-T h en -E l se T hen

E lse

Fig. 7. Mapping definition for OWL-S Repeat-While

It is noticeable in the mapping definitions how the

OWL-S If-Then-Else construct is mapped to UML state-

chart diagram primitives. The reason for using class and

dependency beyond UML state-chart diagram primitives is

because of our decision to use GUI to represent condition.

Allowed languages for expressing condition in OWL-S

include SWRL (Semantic Web Rule Language)[28], RDF

(Resource Description Framework)[29], KIF (Knowledge

Interchange Format)[30], and PDDL (Planning Domain

Definition Language)[31]. Among these specifications, we

chose SWRL, since it is not only layered on top of OWL,

but is also considered the candidate standard for rule

expression by DAML.org. Atoms of SWRL can be created

using unary predicates (classes), binary predicates

(properties), equalities and inequalities. These SWRL

atoms are children of ruleml:_body and ruleml:_body

which have ruleml:_imp as their parent component in

RuleML [32]. Among the many constructs for various

SWRL atoms, we chose three first of all: classAtom,

individualPropertyAtom, and builtinAtom. However,

others can be similarly modeled in our approach.

Again, here is another reason for using class and

dependency to model OWL-S condition expressed with

SWRL. Condition (predicate) name and information

related to arguments and their types are needed to specify

the condition using the three above SWRL atoms. Some of

our considerations on describing the necessary information

for specifying condition in the UML state-chart diagram

include use of OCL and direct representation of SWRL

expression within note section. However, using OCL or

specifying note is forcing developers to understand OCL

and SWRL, and this approach is not considered automatic

because the represented condition expression in OCL or

SWRL must be parsed and manipulated again. In order to

solve this problem, we decided to use class and

dependency. Stereotyped dependency was used to represent

the SWRL atom type, while the stereotyped class was used

to describe the SWRL atom name. Attributes are used to

describe the condition’s arguments and their types within

the class. This approach makes it easy to express condition

with GUI in a UML state-chart diagram, and allows

transformation to be automatic and simple.

3.3 Transformation Algorithm

Based on the mappings in the previous subsection, we

address in this subsection transformation algorithm of

XSLT application, which takes the XMI file exported from

the UML state-chart diagram and generates one of the two

parts of the OWL-S service model ontology. The algorithm

on XSLT application for generating the remaining two parts

of the OWL-S service model ontology is not described here

because it is simple and published methods can be applied

in this case, as we mentioned in subsection 3.2.

Step 1: Extract and output the entire composite service

name.

Step 2: Perform the following for each case.

Step 2-1: Case: Sequence

// Find and print source and target state of Sequence in

order.

Identify source id and target id of Sequence transition

in XMI tree structure, and then output corresponding

names of states, respectively.

Step 2-2: Case: Split and Split+Join

// Find and print source state and associated target

sates of Split and Split+Join.

Identify state (Fork/Join primitive in UML state-chart

diagram) having target of Split (Split+Join) transition

as source in XMI tree structure, and then output the

names of target states of transitions having id of

identified state as source.

Step 2-3: Case: AnyOrder and Choice

// First, find and print source of AnyOrder (Choice)

// Second, find and print associated targets of Choice

(UML)

Identify state (Choice primitive in UML state-chart

diagram) having target of AnyOrder (Choice) transition

as source in XMI tree structure, and then output the

names of target states of transitions having id of

identified state as source.

Step 2-4: Case: If-Then-Else

Identify state (Choice primitive in UML sate-chart

diagram) having target of If-Then-Else transition as

source in XMI tree structure and store id of identified

state into temporary variable.

// If condition part

Identify and output the name of dependency having

value of temporary variable as source id.

Output the name of target (class) of identified

dependency as well as attributes’ names and their

types of the target.

// Then part

Identify Then-labeled transition having value of

temporary variable as source id.

Output name of target state of the identified transition

labeled with Then.

// Else part

Identify Else-labeled transition having value of

temporary variable as source id.

Output name of target state of the identified transition

labeled with Else.

Jin-Hyuk Yang, and In-Jeong Chung 119

Step 2-5: Case: Repeat-While and Repeat-Until

Identify target state of Repeat-While (Repeat-Until)

transition, and store id of that state (composite state)

into temporary variable.

Identify If-Then-Else transition having value of

temporary variable as id.

// While (Until) condition part

Apply If part of If-Then-Else case in same manner.

// Service to be repeated

Identify Then-labeled transition having value of

temporary variable as source id.

Output name of target state of the identified transition

labeled with Then.

Step 3: Output appropriate closing elements and terminate.

4. Implementation

4.1 Simple Scenario

As a simple scenario, we chose and adapted the one

introduced in [4], which introduced the semantic web

service first. This is about travel service: Someone wants to

travel from one place to another via airplane or automobile.

If the driving time from the departure place to the

destination takes greater than 3 hours, then he/she would

want to fly. Otherwise, he/she would rent a car.

Furthermore, we assume the entire travel service is

composed of two separate steps: (1) deciding on the

transportation means, and (2) selecting accommodation.

There are two possible transportation means: airplane and

automobile.

4.2 Design
4

Fig. 8 depicts our scenario mentioned in the previous

subsection. We used the class diagram to logically model

the travel service composed of three atomic services:

AirlineTicketing, CarRental and HotelReservation.

cd TravelServ ice

g g g

EA 4.10 Unregistered Trial Version EA 4.10 Unregistered Trial Version EA 4.10 Unregistered

EA 4.10 Unregistered Trial Version EA 4.10 Unregistered Trial Version EA 4.10 Unregistered

EA 4.10 Unregistered Trial Version EA 4.10 Unregistered Trial Version EA 4.10 Unregistered

EA 4.10 Unregistered Trial Version EA 4.10 Unregistered Trial Version EA 4.10 Unregistered

EA 4.10 Unregistered Trial Version EA 4.10 Unregistered Trial Version EA 4.10 Unregistered

EA 4.10 Unregistered Trial Version EA 4.10 Unregistered Trial Version EA 4.10 Unregistered

EA 4.10 Unregistered Trial Version EA 4.10 Unregistered Trial Version EA 4.10 Unregistered

EA 4.10 Unregistered Trial Version EA 4.10 Unregistered Trial Version EA 4.10 Unregistered

EA 4.10 Unregistered Trial Version EA 4.10 Unregistered Trial Version EA 4.10 Unregistered

AirlineTicketing

-/ Airl ineName: string

-/ DateandTime: string

-/ Start: string

-/ Destination: string

-/ BoardingTime: string

-/ TicketPrice: string

HotelReservation

-/ HotelRating: string

-/ Duration: string

-/ HotelPrice: stringIni tial
TransportationChoice

Final
CarRental

-/ RentalPrice: string

-/ CarRating: string

-/ Period: string

Junction

greaterThan

- DrivingTime: int

- 3: int

bui ltinAtom

sequence

else

then

If-Then-Else

Fig. 8. Class diagram for travel service

4 Note that extra labeling process is not needed when existing

UML diagrams are already labeled during the service development

process. This means the service ontology generation process can be

fully automatic. Otherwise, developers just import UML profile

for OWL-S and label onto UML diagrams being created. This

means simplicity and effectiveness.

Fig. 9 describes that the entire service is composed of

one composite service (Transportation) and atomic service

(HotelReservation). It also depicts that the entire service

must be executed in sequence. Fig. 10 is an expansion of

the composite service Transportation. Note how the

condition assumed in our scenario is modeled with UML

primitives. The condition GUI indicates if driving time is

greater than 3 hours (can be expressed as greater than
(DrivingTime, 3)), and then AirlineTicketing service
would be used, otherwise CarRental service.

sm TravelServ ice4.10 Unregistered Trial Version EA 4.10 Unregistered Trial Version EA 4.10

4.10 Unregistered Trial Version EA 4.10 Unregistered Trial Version EA 4.10

4.10 Unregistered Trial Version EA 4.10 Unregistered Trial Version EA 4.10

4.10 Unregistered Trial Version EA 4.10 Unregistered Trial Version EA 4.10

HotelReservation

Initial

Transportation

Final

Sequence

Fig. 9. State-chart diagram for entire travel (composite)

service

Fig. 10. State-chart diagram for Transportation service

4.3 Transformation

The UML class diagram and state-chart diagram are

exported to 2 separate XMI files, and then two separate

XSLT applications (written with the help of [41]) in Fig.

11 and Fig. 12 to produce output files. Finally, as shown in

Fig. 13, the generated OWL-S service model ontology is

produced as an integrated file.

Fig. 11. XSLT application for UML class diagram

sm Transportationstered Trial Version EA 4.10 Unregistered Trial Version EA

stered Trial Version EA 4.10 Unregistered Trial Version EA

stered Trial Version EA 4.10 Unregistered Trial Version EA

stered Trial Version EA 4.10 Unregistered Trial Version EA

stered Trial Version EA 4.10 Unregistered Trial Version EA

stered Trial Version EA 4.10 Unregistered Trial Version EA

AirlineTicketing

CarRental

EntryPoint ExitPoint
TransportationChoice

Transportation::

greaterThan

- DrivingTime: int

- 3: int

else

thenif-then-else

builtinAtom

120 A Method for Automatic Generation of OWL-S Service Ontology

Fig. 12. XSLT application for UML state-chart diagram

Fig. 13. Generated OWL-S service model ontology for

travel scenario

4.4 Validation

We validated and confirmed the generated service

ontology in several steps, since the OWL-S validator,

provided by standard organization such as W3C, was not

available. First, we used the site [33] available in W3C for

the RDF-level test. Fig. 14 shows a successful RDF test.

As W3C does not support beyond RDF, we had to use

other sites to validate our generated ontology. Fortunately,

a couple of OWL validators were available. Among them,

we used [34] and verified as shown in Fig. 15. With respect

to OWL-S validation, we found [35]. However, they do not

support OWL-S version 1.1. Moreover, their OWL-S

validator does not support all the OWL-S constructs for

composite service - they support only Sequence,
Unordered and Split. Therefore, we validated and
confirmed our generated ontology, with the exception of

the If-Then-Else construct part.
We decided not to perform semantic evaluation of the

generated ontology at this time due to the following two

reasons, and we attributed this validation to future works.

OntoClean [43] is a unique approach towards the formal

evaluation of ontologies. In order to make it work, it is

required to manually annotate a given taxonomy of

concepts with a set of meta-properties[44]. This fact

violates our principles of simplicity and automation.

And OntoClean methodology is not well suited for

evaluating service ontology 5 . In order to ensure the

correctness of the generated ontology, actual service

referred by the ontology be tested, and then the results be

checked against the intended ones. Real application use of

the generated service ontology can be semantic

matchmaking, which is another hot topic in the research

field of semantic web services. To show the use of the

generated service ontology (i.e., to verify the intended

semantics of the ontology) is beyond this paper’s topic.

Fig. 14. Successful RDF validation result

Fig. 15. Successful OWL validator result

5. Analysis and Discussion

In this section, we address and discuss several issues

with respect to generating service ontology.

5
 Note that as we already mentioned in subsection 2.2, there exist

differences between domain ontology and service ontology.

Jin-Hyuk Yang, and In-Jeong Chung 121

5.1 State-chart Diagram vs. Activity Diagram

We adopted a UML state-chart diagram to model

service’s composition. As a matter of fact, use of the state-

chart or activity diagram for modeling service ontology is

considered a future work in [20]. In practice, the activity

diagram is used to model service’s composition and

generate BPEL4WS specification in [25].

The reason for using state-chart instead of the activity

diagram is because the state-chart diagram not only has

well-defined semantics, but also basic flow constructs such

as sequence, conditional branching, structured loops,

concurrent threads and synchronization primitives, as in

most process modeling languages[36]. These features

facilitate applying formal manipulation techniques to the

state-chart model, and guarantee that state-chart can be

adapted to other web service modeling languages such as

BPEL4WS and WSCI[36].

5.2 Generality of Transformation Algorithm

Our transformation algorithm described in subsection

3.2 works not only in our scenario, but also in general

cases. To explain this, we look first at the XMI tree

structure exported from the UML state-chart.

Since all of OWL-S constructs for composite service are

stored at UML:Transition elements in the XMI file, the

algorithm works, in general, for any (composite) service

composed of complex composite services.

We used EA [37] as the UML CASE and exported to

XMI version 1.2. One thing noticeable is that our XSLT

application may not work if a different UML CASE tool

other than EA is used. This is due to the fact that XMIs

exported from different UML CASE tools have different

tree structures. In other words, EA, ArgoUML [38], and

IBM Rational Rose [39] use their own methods (i.e.,

element naming) to generate XMI from the UML diagram.

Even if we use the same UMAL CASE tool, a different

XMI may be generated with a different XMI version.

In order to cope with the above issues, we considered

possible solutions as follows: The XMI version issue is

simple if we agree on using the same XMI version.

Another problem arising from a different UML CASE tool

forces one to build a new XSLT application. This is a

critical problem, not because we need to create another

XSLT application, but because different XMI files from the

same model prevents sharing and reuse of the metadata

(XMI). However, this kind of problem can be resolved if

we define mappings between the two XMI files. Namely,

we can create another XSLT that takes XMI from one

UML CASE tool and transforms to the other XMI, which

conforms to XMI from another UML CASE tool. In fact,

these kinds of issues, as well as the possible solutions we

recommended, are precisely mentioned in [40].

5.3 UML Profile

To maintain interoperability with UML specification, we

created a UML profile where stereotyped transitions used

in defining mappings in section 3 are described. Fig. 16

depicts the contents of the profile imported in the design

phase. We used the stateflow type for OWL-S constructs

for composite service, dependency type for three kinds of

SWRL Atoms, and class type for instances of built-
inAtom. Use of the dependency type rather than the
stateflow type was due to the fact that the target type is not

state, but class.

Fig. 16. UML profile for stereotyped OWL-S control

constructs for composite services.

6. Conclusion and Future Works

We proposed a method for generating OWL-S service

model ontology where service’s behavior was described.

First, we extracted information related to atomic services

and their attributes, including IOPEs, from the UML class

diagram UML, and extracted information related to

service’s composition from the UML state-chart diagram.

Then, these two metadata were exported to two separate

XMI files. Next, we generated the OWL-S service model

ontology through XSLT applications based on the

predefined mappings between UML diagram primitives

and OWL-S constructs. Our approach for generating

service ontology is general and fully automatic, as well as

effective, in that it is performed in a familiar environment

and information needed to generate service ontology is

provided necessarily during service development. Another

122 A Method for Automatic Generation of OWL-S Service Ontology

contribution may be representing condition using GUI

rather than a complex language such as OCL. For the

justification of generated ontology, we performed several

available validation checks.

As future works, we considered the method of

expressing with GUI complex condition where more than

one predicate are represented. Simply, several dependency

and class types can be used to express the complex

condition. However, we may encounter a case where it is

necessary to carefully consider the evaluation order of the

individual condition of the complex condition expression.

References

 [1] WSDL, http://www.w3.org/TR/2004/WD-wsdl20-

primer-20041221/

 [2] UDDI, http://www.uddi.org/

 [3] SOAP, http://www.w3.org/TR/2003/REC-soap12-

part0-20030624/

 [4] Sheila A. Mcllraith, Tran Cao Son, Honglei Zeng,

Semantic Web Services, IEEE Intelligent Systems,

pp.46-53, 2001.

 [5] BPEL, http://www-128.ibm.com/developerworks/

library/specification/ws-bpel/

 [6] WSCI, http://www.w3.org/TR/wsci/

 [7] OWL-S, http://www.daml.org/services/owl-s/1.1/

 [8] OWL, http://www.w3.org/TR/owl-features/

 [9] http://www.daml.org/services/owl-s/1.1/related.html

[10] http://www.daml.org/services/daml-s/0.9/survey.pdf

[11] Michele Missikoff, Roberto Navigli, Paola Velardi,

The Usable Ontology: An Environment for Building

and Assessing a Domain Ontology, ISWC 2002,

LNCS 2342, pp.39-53, 2002.

[12] Vijayan Sugumaran, Veda C. Storey, Ontologies for

Conceptual Modeling: Their Creation, Use, and

Management, Data & Knowledge Engineering 42,

pp.251-271, 2002.

[13] Melania D., Vasileios H., Building Automatically a

Business Registration Ontology, Proceedings of the

2002 National Conference on Digital Government

Research, 2002.

[14] Patrick C., Padraig C., Conor H., Ontology Discovery

for the Semantic Web using Hierarchical Clustering,

Trinity College Dublin Computer Science Depart-

ment, Technical Reposts, 2001.

[15] Armin W., Oliver W., Josef M. Joller, Siu Cheung

Hui, Data Mining for for Ontology Building, IEEE

Intelligent Systems, 2003.

[16] Mario C., Carmela C., A Data Mining Ontology for

Grid Programming, 1st Workshop on Semantic in P2P

and Grid Computing at the 12th Internal WWW

Conference, 2003.

[17] Cranefield S., Purvis M., UML as a Ontology

Modeling Language, Proc. Of the Workshop on

Intelligent Information Integration, 16th Int. Joint

Conference on AI(IJCAI-99), 1999.

[18] Cranefield, S., Haustein, S., and Purvis, M., UML-

Based Ontology Modelling for Software Agents,

Proceedings of the Workshop on Ontologies in Agent

Systems, 5th Internal Conference on Autonomous

Agents, pp.21-28, 2001.

[19] K. Baclawski, M. Kokar, P. Kogut, L. Hart, J. Smith,

W. Holmes, J. Letkowski, M. Aronson, P. Emery,

Extending the UML for Ontology Development,

SOSYM 2002, Software System Model(2002) Vol.1,

pp.1-15, 2002.

[20] K. Falkovych, M. Sabou, H. Stuchenschmidt, UML

for the Semantic Web: Transformation-Based

Approaches, Knowledge Transformation for the

Semantic Web, IOS Press, pp.92-106, 2003.

[21] D. Duric, D. Gasevic, V. Devdzic, A MDA-based

Approach to the Ontology Definition Metamodel, In

Proc. Of the 6th International Conference on

Information Technology, pp.193-196, 2003.

[22] Gannod C., Timm J., An MDA-Based Approach for

Facilitating Adoption of Semantic Web Service

Technology, In Proc. Of the 8th IEEE Enterprise

Distributed Object Computing Conference Workshop

on Model-Driven Semantic Web, 2004.

[23] P. Kogut, S. Cranefield, L. Hart, M. Dutra, K.

Baclawski, M. Kokar, J. Smith, UML for Ontology

Development, Knowledge Engineering Review

Journal Special Issue on Ontologies in Agent Systems

Vol.17, 2002.

[24] A. H., E. J., and Nicholas K., ASSAM: A Tool for

Semi-automatically Annotating Semantic Web

Services, ISWC 2004, LNCS 3298, pp. 320-334,

2004.

[25] Keith Mantell, From UML to BPEL: Model Driven

Architecture in a Web Services world, http://www-

128.ibm.com/developerworks/webservices/library/ws

-uml2bpel/

[26] Protégé, http://protege.stanford.edu

[27] http://staff.um.edu.mt/cabe2/supervising/

undergraduate/owlseditFYP/OwlSEdit.html

[28] SWRL, http://www.daml.org/2004/04/swrl/

[29] RDF, http://www.w3.org/TR/2004/REC-rdf-concepts-

20040210/

[30] Knowledge Interchange Format: Draft proposed

American National Standard(dpans). Technical

Report 2/98-004, ANS, 1998.

[31] M.Ghallab et al., Technical Report, report CVC TR-

98-003/DCS TR-1165, Yale Center for

Computational Vision and Control, 1998.

[32] RuleML, http://www.ruleml.org/

[33] RDF validator, http://www.w3.org/RDF/Validator/

[34] ConsVISor, http://www.vistology.com/consvisor/

[35] http://www.mindswap.org/2004/owls/ validator/

[36] Lianzhao Zeng, Boualem Benatallah, Marlon Dumas,

Jayant Kalagnanam, Quan Z. Sheng, Quality Driven

Web Services Composition, WWW2003, pp.411-421,

2003.

[37] EA, http://www.sparxsystems.com.au/

[38] ArgoUML, http://argouml.tigris.org/

[39] http://www-306.ibm.com/software/ rational/

Jin-Hyuk Yang, and In-Jeong Chung 123

[40] Kovse J., Harder T., Generic XMI-Based UML

Transformations, In Proc. 8th Int. Conf. on Object-

Oriented Information Systems(OOIS’02), pp.192-198,

2002.

[41] Stylus Studio XML, http://www.stylusstudio.com/

[42] Massimo Paolucci, Naveen Srinivasan, Katia Sycara,

Takuya Nishimura, Towards a Semantic Choreography

of Web Services: form WSDL to DAML-S, In

Proceedings of First Internal Conference on Web

Services(ICWS’03), pp.22-26, 2003.

[43] N. Guarino and C. A. Welty, A Formal Ontology of

Properties, In Knowledge Acquisition, Modeling and

Management, pp.97-112, 200.

[44] J. Volker et al, Automatic Evaluation of Ontologies,

ISWC 2005, LNCS(3279), pp.716-731, 2005.

Jin-Hyuk Yang

He received the B.S. and M.S. degrees

in Computer Science Dpt. from Korea

University in 1998 and 2000, respect-

tively. He is now Ph.D. candidate student

in Korea University. His research

interests include semantic web,

ontology, web services and ubiquitous

computing.

In-Jeong Chung
He received the B.S. and M.S. degrees

in Computer Science Dpt. from Seoul

National University in 1978, and Korea

Advanced Institute of Science and

Technology in 1980, respectively. He

received Ph.D. from University of

Iowa in 1989. He is now professor in

Korea University. His research interests are in the area of

intelligent web services, semantic web, ontology engineering,

home network and ubiquitous computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 2400
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 2400
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

