
International Journal of Information Processing Systems, Vol.2, No.2, June 2006 67

ASVMRT: Materialized View Selection Algorithm in Data Warehouse

Jin-Hyuk Yang*, and In-Jeong Chung*

Abstract: In order to acquire a precise and quick response to an analytical query, proper selection of
the views to materialize in the data warehouse is crucial. In traditional view selection algorithms, all
relations are considered for selection as materialized views. However, materializing all relations rather
than a part results in much worse performance in terms of time and space costs. Therefore, we present
an improved algorithm for selection of views to materialize using the clustering method to overcome
the problem resulting from conventional view selection algorithms. In the presented algorithm,
ASVMRT (Algorithm for Selection of Views to Materialize using Reduced Table), we first generate
reduced tables in the data warehouse using clustering based on attribute-values density, and then we
consider the combination of reduced tables as materialized views instead of a combination of the
original base relations. For the justification of the proposed algorithm, we reveal the experimental
results in which both time and space costs are approximately 1.8 times better than conventional
algorithms.

Keywords: Materialized views, Data Warehouse, and Clustering

1. Introduction

Much time is required to respond to users’ analytical and

time-serial queries in an RDB (Relational Data Base)
designed mainly for transactions such as bank operations.
Therefore, in order to better support a CEO’s decision-
making through market analysis, the trend is to build a data
warehouse which is a new concept against the traditional
OLTP (On-Line Transaction Processing)-oriented RDB,
and subject-oriented, integrated, non-volatile, and time
variant features.
The view in a data warehouse is derived from a base

relation or other view. It is a virtual relation that is recom-
puted whenever it is referenced. Summarizing and storing
these view tuples results in materialized views. The reason
for using the materialized views is to rapidly process
analytical queries in a data warehouse that contains time-
serial data. However, the more we use materialized views,
the more storage space is needed in a data warehouse.
Therefore, effective selection of materialized views should
properly satisfy the factors of response time and storage
space.
There are related works of view selection algorithms such

as [1], [2], and [3]. Only aggregate functions are considered in
[1]. A heuristic-based greedy method that uses AND, OR, and
AND-OR graphs is proposed in [2]. However, evaluation of
this approach is omitted. An algorithm called HAMVD is
proposed in [3]. However, too much time is required to
produce an MVPP (Multiple View Processing Plan), which
is an input variable of HAMVD. Therefore, in this paper we

propose an algorithm that improves the speed and space
problem existing algorithms have.
In the proposed algorithm, which uses the clustering

technique to select materialized views for rapid query
response in a data warehouse, once clusters are found on
the basis of the relative density of relation dimensions, a
reduced table is then generated as the produced clusters are
referenced. The generated reduced tables are the relations
used for producing an MVPP in the ASVMRT (Algorithm
for Selection of Views to Materialize using Reduced
Table). After we produce an MVPP using the generated
reduced tables, we then process and select the views
effectively in the produced MVPP using the ASVMRT.
For the justification of the proposed algorithm, two
separate experimental results are presented: The ‘pubs’
database used for educational purposes, and large database
used for Information System for Telecommunications
Technical Regulations (http://tris.etri.re.kr) in the ETRI
(Electronics and Telecommunications Research Institute,
http://www.etri.re.kr). We reveal the experimental results
in which both time and space costs were approximately 1.8
times better than conventional algorithms.
The organization of this paper is as follows: Section 2

describes a data warehouse and related works on selection
of materialized views. ASVMRT is proposed in section 3,
and section 4 compares ASVMRT and conventional
algorithms through experimentation. Finally, we conclude
and suggest future works in section 5.

2. Data Warehouse and Related Works on

Materialized View Selections

In this section, we provide a brief introduction of the

Copyright ⓒ 2006 KIPS (ISSN 1738-8899)

Manuscript received April 4, 2006; accepted April 27, 2006.
Corresponding Author: In-Jeong Chung
* Dept. of Computer Science, Korea University, 208 Seochang-Li,
Chochiwon-Eup, YunkiGun, ChoongNam, Korea (grjinh@korea.ac.kr,
chung@korea.ac.kr)

68 ASVMRT: Materialized View Selection Algorithm in Data Warehouse

data warehouse and related works on selection of
materialized views used for increasing the effectiveness of
the data warehouse.

2.1 Data Warehouse

The data warehouse is defined as data storage for

supporting enterprise decision-making, which has subject-
oriented, integrated, non-volatile, and time-variant features
[4, 5]. As RDB based on ER (Entity-Relationship) model
for OLTP purposes has not facilities for enterprise
decision-making through statistical and analytical query, a
data warehouse under construction will satisfy the requests
of the user which requires the OLAP (On-Line Analytical
Processing) function.

2.2 Existing Algorithms for Selecting Materialized

Views

A view is a relation derived from the base relation or

other view. As a virtual relation, it is recomputed whenever
it is referenced. Summarizing and storing these view tuples
results in materialized views[6]. Indexing on the
materialized views enables much faster query processing
than re-computation of views for response to an analytical
query.
A materialized view selection algorithm in the lattice

structure is proposed in [1]. In this work, a data cube is
transformed into lattice structure in which views to
materialize is selected. Expression B(v, S) used in their
paper indicates total benefit resulting from selecting view v,
and the algorithm selects views to materialize in the
direction of maximizing the total benefit of B(v, S). After
finishing selection of all the views to materialize, the
algorithm terminates and the materialized views are
returned.
A view selection algorithm using AND-OR graph is

proposed in [2]. The AND-OR view graph has two kinds of
graphs: The AND view graph has a single query processing
plan, and the OR view graph has multiple queries-
processing plans. In the AND view graph, a global plan for
the given queries is produced using a multiple query
optimizer. The generated global plan corresponds to the
AND view graph. After a query processing plan is
produced, nodes (views) consisting of it are considered for
materialization. The global query processing plan is
divided into several small queries, and then each query is
processed and merged again.
This algorithm is a greedy algorithm which does not

include update cost for views and selects a set of
materialized views, M, within the space constraint S. The
algorithm, within the bounds of the materialized view
space constraint S(M), selects views to materialize one
after another as maximizing benefit. When the value of
space constraint S exceeds the given value, the algorithm
stops and returns the materialized views set M.
The AND-OR view graph in a data cube is an OR view

graph because there are several ways to create the views

from other views in a data cube. The solution method of
selecting views to materialize in a data cube environment is
the general form of the approach taken in [1].
MVPP[3] is a DAG (Directed Acyclic Graph) in which

root nodes are queries and leaf nodes are base relations. It
indicates the query processing plan for views in a data
warehouse. It consists of six elements: M=(V, A, Cqq, Cmr,
fq, fu). V represents a set of nodes, and A is a set of directed
arcs in which the order relation between the nodes is
presented. Cqq and Cmr are the costs for query processing
and maintenance, respectively, and fq and fu are query
access frequency and update frequency, respectively.
This research offers the following heuristic to reduce the

search space: Under a situation where view v1 and view v2
are related, and v1 is a child of v2, if materializing v1 has
not produced any benefit, then v2 is not considered to be
materialized. This heuristic is analogous to closure
property used in the Apriori[7] and DHP[8] algorithms for
association rule mining among data mining techniques.
The algorithm takes LV, a set containing all the nodes, and
M, a set of targets to materialize, as inputs, and selects the
materialized views which are contributed to produce
benefit against the cost. It continues until there are no
views to consider (i.e., until LV is an empty set). When it
terminates, it returns materialized views set M.
As other works, [9] proposes operators which can be

used in a data cube, [10] addresses the multiple view
maintenance problem for the first time, [11] proposes an
algorithm considering indexing on the views in a data cube,
and [12] proposes a method for materialized view in a
multidimensional database.

3. ASVMRT (Algorithm for Selection of Views to

Materialize using Reduced Tables)

In a different manner of conventional algorithms, we

present an algorithm for selecting views to materialize
using the clustering method among data mining techniques
[13, 14, 15, and 16].

3.1 Motivation and Example

We select and materialize the views for rapid response to

analytical query in a data warehouse containing time-serial
data. However, there are non-related tuples for responding
to the given query among the total tuples consisting of
materialized views. Therefore, we extract (make clusters)
only related tuples with the given query and stored them as
materialized views. The proposed algorithm for selection
of materialized views guarantees not only a faster
computation time of tuples, but also less storage space
against the conventional materialized views selection
algorithms. The following example supports this concept.
Assume that there is a salary relation (containing 700

tuples) with six dimensions and an age relation (containing
500 tuples) with eight dimensions. Through the following
query, an enterprise manager can not only analyze and

Jin-Hyuk Yang, and In-Jeong Chung 69

predict the current market trend, but also establish a new
management strategy from the predicted results: What kind
of car is preferred by those in their 20s with a salary of
greater than $30,000 per year?
In conventional approaches, the select operation is

performed from the joining of 700×500 tuples. If we create
reduced tables from the salary and age relations (assume
that there are 350 earners with a salary of greater than
$30,000 in the salary relation, and 250 people in their 20s
in the age relation), we can perform the select operation on

only 350×250 tuples. As shown in this virtual example, the
approach with reduced tables allows for 4 times faster
speed and 2 times less storage space against approaches in
which relations on the whole are considered to be
materialized. In the simple and virtual example, only 2
relations are addressed. However, there are a number of
views in a data warehouse environment. Therefore, it is
crucial to improve and save on both response time and
storage space as close to 2 times in terms of performance
of a data warehouse.

3.2 ASVMRT

In general, the proposed algorithm has 4 steps:

• Step 1: Find high-density clusters from k-dimensional

relations.

• Step 2: Produce reduced tables using upper and lower

bound values of the clusters found.

• Step 3: Establish MVPP using reduced tables.

• Step 4: Select materialized views while considering

improvement of query response time and view
maintenance cost.

ASVMRT(τ, n, T, Q, SC, UDT, UET) {

/* τ : user’s input threshold */
/* n: number of queries or tables */
/* T: set of target tables */
/* Q: set with n queries */
/* SC: user’s input space constraint */
/* UDT: user’s input clustering dimensions which must be
included */

/* UET: user’s input clustering dimensions which must be
excluded */

C=∅; /* set of clusters */

RT=∅; /* set of reduced tables */

VP=∅; /* set of views used in query processing plan */

MV=∅; /* set of views to be materialized */
for (i=0; i<n; i++) {

C = C ∪ find_cluster(τ, n, Ti, UDT, UET); }
for (i=0; i<n; i++) {

RT = RT ∪ generate_reduced_table(Ci, Ti, RTi); }
make_mvpp(n, Q, RT);
select_view(VP);

return MV;
}
/* step 1 */

find_cluster((τ, n, Ti, UDT, UET) {
T=Ti;
target=0; /* variable for attributes’ reflection density */
for (i=0; i<n; i++)
for (j=0; j<n; j++) {
/* primary key, foreign key, and user’s input

dimension of tables are excluded */
if (Ti.dj == primary_key || Ti.dj == foreign key ||

Ti.dj == UETi.dj) continue;
/* if a dimension is user’s specified input

dimension, it is included */
if (Ti.dj == UDTi.dj) {
for (k=0; Ti.di.low[k] != NULL; k++) {
/* select a range of lower bound and upper

bound for cluster */
C.i = Ti.di.low[k], Ti.di.high[k]; }

break; } /* move to the next table */
/* is a reflection of dimension i over dimension j
dense? Is it denser than existing reflection? */

 /* operator ∏ reflects first element over second
element, and returns reflection density */

else if (∏(Ti.di, Ti.dj) > τ && [C.i] > target) {
target = [C.i];
for (k=0; Ti.di.low[k] != NULL; k++) {
C.i = Ti.di.low[k], Ti.di.high[k]; }

}
}

return C;
}
/* step 2 */
generate_reduced_table(Ci, Ti) {

/* operator ← returns index */

tmp ← Ti.Ci.low[0];
for (k=0; Ti.Ci.low[k] != NULL; k++) {
/* [tmp] is returns the value which tmp index indicates.*/

while ([tmp] ≥ Ti.Ci.low[k] && [tmp] ≤ Ti.Ci.high[k])
{
Copy tuple from Ti to RTi;
tmp++; }

}
return RTi;

}
/* step 3 */
make_mvpp(n, Q, RT) {
for (i=0; i<n; i++) {
/* produce n view processing plans using reduced

tables as base relations */
Make vpi using Q and RT as base relation instead of T;
Count the number of nodes in vpi and save into NNi;

/* NN is set containing the number of nodes of each vpi */
}
for (i=0; i<n; i++)
for (j=0; j<NNj; j++)
for (k=0; k<NNk; k++) {

VP = VP ∪ vpi;

70 ASVMRT: Materialized View Selection Algorithm in Data Warehouse

/* if a common node is found, query frequency is
increased */

if (vpi.nodej == VPi.nodek) VPi.nodek.fq++; }
return VP;

}
/* step 4 */
select_view(VP) {
/* for n queries, compute query processing time cost(Ca),
query maintenance cost(Cm), and total cost(Cv) of
nodes of VP in case of materializing each node */

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
VPi.Ca = VPi.Ca + VPi.nodej.Ca;
VPi.Cm = VPi.Cm + VPi.nodej.Cm;
VPi.Cv = VPi.Cv + VPi.Ca + VPi.Cm; }

VP.Ca = VP.Ca + VPi.Ca;
VP.Cm = VP.Cm + VPi.Cm;
VP.Cv = VP.Cv + VP.Ca + VP.Cm; }

/* sort the elements of VP in ascending order according
to the value of Cv */

Sort(VP);
/* select views within the bound of specified SC */
for (i=0; i<n; i++) {

/* operator ∑ returns storage space */

if (∑TMV < SC) {

MV = MV ∪ VPi;
 MV.Cv = MV.Cv + VPi.Cv; }
else break;

}
return MV;

}

3.3 ASVMRT Example

In this section, we show each step of the ASVMRT

through an example. We chose the SQL Server 7.0’s
‘authors’ table of the pubs database, which is broadly used
for educational purposes. Fig. 1 and 2 show the pubs
database schema and authors table consisting of pubs,
respectively.
Relative density for the attributes of authors relation is

described in tables 1 and 2. In order to facilitate

Fig. 1. Pubs database schema

Fig. 2. Authors table of pubs

computation of relative density conceptually, the scope in
tables 1 and 2 range from 0 to 9 for the dimensions with
numerical values, and from a to z for the dimensions with
non-numerical values (i.e., alphabetic), respectively. More
range values are required in real data warehouse relations
containing a large number of records. The density value is
computed as normalization of the number of records that
belong to the corresponding scope among all records. And,
among all records, for example, the relative density value
of tuples with a value of 9xxxx in zip dimension is a
percentage of ratios (0.06957) on the number of all tuples
(16/23) divided by normalization factor (10) which is used
to normalize the dimensions with numerical values. In this
case, the density value of the tuples with 9xxxx in the zip

dimension against the entire table is 69.57%(6.957×10). If

the density threshold variable τ coming from the user’s
input is 60%, zip dimension is considered a candidate.
Assume that the user inputs the zip and contract
dimensions as UDT and UET, respectively.

Table 1. Relative density of authors table with numerical
values

scope au_iddensityphone densityaddressdensity zip densityscope contract density

0 1 0.435 0 4 8.696

1 1 0.44 4 1.739 1 19 41.3

2 4 1.14 1 0.435 3 1.304 1 0.435

3 1 0.44 1 0.435 6 2.609 1 0.435

4 4 1.74 13 5.652 1 0.435 2 0.87

5 1 0.44 1 0.435 5 2.174

6 2 0.87 2 0.87 3 1.304 1 0.435

7 5 2.17 2 0.87

8 4 1.74 2 0.87 2 0.87

9 1 0.44 1 0.435 16 6.957

In tables 1 and 2, we can see that the relative density of
contract dimension has the highest density value. However,
we do not consider this dimension for clustering, since
contract dimension is registered in UET. And, the au_id
dimension is excluded for clustering because it is a primary
key. We consider the zip dimension for clustering since it
is specified in UDT. If no variable is specified in UDT, zip
dimension is selected because its relative density value,

Jin-Hyuk Yang, and In-Jeong Chung 71

6.957, is the highest. Once zip dimension is selected for
clustering, we can produce the reduced table containing
only the tuples that belong to the corresponding range. Fig.
3 shows the reduced table of authors relation.

Table 2. Relative density of authors table with alphabetic
values

scope au_lnamedensityau_fnamedensity city densitystatedensity

a 5 0.835 2 0.334

b 2 0.334 1 0.167 2 0.334

c 1 0.167 2 0.334 2 0.334 15 2.505

d 3 0.501 2 0.334

e

f

g 3 0.501 1 0.167

h 1 0.167 1 0.167

I 1 0.167 1 0.167

j 1 0.167

k 1 0.167 1 0.167

l 1 0.167 1 0.167 1 0.167

m 2 0.334 5 0.835 1 0.167 2 0.334

n 1 0.167

o 1 0.167 5 0.835 1 0.167

p 1 0.167 2 0.334

q

r 2 0.334 3 0.501 1 0.167

s 3 0.501 1 0.167 4 0.668

t 1 0.167

u 2 0.334

v

w 1 0.167 1 0.167

x

y 1 0.167

z

Fig. 3. Reduced table for authors relation

The same method results in reduced tables for all

relations in a data warehouse. In the third step of
ASVMRT, we established MVPP using the reduced tables.
For an illustration of the third step of the algorithm, assume
there are 4 queries.

• Q1: What is the average on year-to-date sales of CA

residents with a value of greater than 80 in royalty
per?

• Q2: What are the top 3 kinds of bestseller books from

1993 to 1995 in CA region?

• Q3: Among the books with high value of royalty per,

what are the titles of the books which are about
economics and with price greater than $15?

• Q4: What are the books printed by an American

publisher which are about psychology, and the author
of the book is in CA region?

rt_tmp1

rt_authors rt_titleauthor rt_titles rt_publishers rt_sales rt_stores

Q1 Q3 Q2Q4

σroyaltyper>80

σstate=CA

σavg(ytd_sales)

σstate=CAσ qty >= 40 and

ord_date > 93-01-01

σ type

rt_tmp2

rt_tmp3

rt_tmp4

σprice>15 and

type=business

rt_tmp9

rt_tmp12
rt_tmp11

rt_tmp13

rt_tmp14 rt_tmp10

rt_tmp15

rt_tmp16

rt_tmp5 rt_tmp6

rt_tmp7

rt_tmp8

σtitle σtitle

σcountry=USA

σtype=psychology

Fig. 4. MVPP for 4 queries

Fig. 4 above is MPVV for 4 queries. In Fig. 4, �

indicates a base relation, ο is for intermediary value, and •
is used for a query. Once an MVPP is established as shown
in Fig. 4, views to be materialized are selected considering
cost. The base unit of cost estimation used in the paper is
the number of tuples as adopted in [1] and [3].
If we select the rt_tmp3 relation as the materialized view,

the total cost Ct is an addition of view processing time-cost
Ca(12)(the number of tuples of rt_tmp3(6) and rt_tmp4(6),
since only rt_tmp3 and rt_tmp4 are used to process Q1)

and view maintenance cost Cm(2×56=112)(when rt_tmp3 is
stored as materialized view, maintenance cost of rt_tmp3 is
multiplied by 2, after addition of rt_tmp3(6), rt_tmp1(15),
rt_tmp2(10), rt_authors(15), and rt_titleauthors(10)).
Multiplication by 2 is due to the fact that if there is any
update in rt_tmp3, all the children of it(rt_tmp1, rt_tmp2,
rt_authors, and rt_titleauthors) should be recomputed.
Total cost T is an addition of the total cost of Q1, Q2, Q3,
and Q4. In a similar manner, we can fill in table 3. When
SC is given by 10 in the third step of ASVMRT as shown
in table 3, intermediary views rt_tmp6, rt_tmp5, rt_tmp7,
rt_tmp8, and rt_tmp9 are selected. In this case, the
additional space needed for materialization is 8.
The first column in tables 3, 4, 6, and 7 indicates the

relations used in MVPP, the second column is the query
frequency(fq), the third is the number of tuples(t#), and the
fourth, fifth, and sixth are view processing time-cost(Ca),
view maintenance(Cm), and total cost(Ct), respectively. The
final column represents total cost(T) for all the queries.

72 ASVMRT: Materialized View Selection Algorithm in Data Warehouse

Table. 3. Cost computation for 4 queries with reduced
tables

Ca Cm Cv

fq t# Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 T

rt_authors 1 15 42 54 0 0 42 54 96

rt_titleauthor 2 10 64 42 68 0 0 0 64 42 68 174

rt_titles 5 18 120 95 105 180 0 0 0 0 120 95 105 180 500

rt_publishers 1 6 29 0 29 29

rt_sales 1 11 14 0 14 14

rt_stores 1 3 8 0 8 8

rt_tmp1 2 15 54 78 60 60 114 138 252

rt_tmp2 2 10 44 22 40 40 84 62 146

rt_tmp3 1 6 12 112 124 124

rt_tmp4 1 6 6 124 130 130

rt_tmp5 1 1 3 24 27 27

rt_tmp6 1 3 5 12 17 17

rt_tmp7 1 1 2 38 40 40

rt_tmp8 1 1 1 40 41 41

rt_tmp9 1 2 3 40 43 43

rt_tmp10 1 1 1 81 82 82

rt_tmp11 1 6 23 24 47 47

rt_tmp12 1 5 22 46 68 68

rt_tmp13 1 5 17 80 97 97

rt_tmp14 1 6 24 92 116 116

rt_tmp15 1 6 18 140 158 158

rt_tmp16 1 12 12 220 232 232

3.4 Analysis and Features of ASVMRT

In the first step of the algorithm, the high-density cluster

for target base relations is found using the clustering
method among data mining techniques. For each
dimension of the table, the dimension with the maximum
density value is selected, which is exceeding the user’s

input threshold τ. The lower and upper bound values for
the selected dimension are stored, and these data are used
in the second step of ASVMRT. As a novel approach
which is not considered in conventional algorithms, this
kind of technique with clustering is crucial from the
standpoint of providing an opportunity to implicitly utilize
important information overlooked. Again, by using the
clustering technique, the benefits of not only providing
potentially useful information, but also improving query
processing time and saving view storage space can be
achieved. And, any dimension of a table to be reflected in
the algorithm can be included for clustering at the user’s
discretion. The user’s input dimension for clustering
(specified in the UDT variable of the algorithm) has top
priority against other dimensions with a value greater than
a given threshold. Granting this ability guarantees that if a
dimension contains important information, even a small
quantity of data in appearance can be included and
reflected for clustering. The user’s external input capability
of dimension excludes the possibility of destroying
important information.
In the second step of the algorithm, reduced tables

containing the only corresponding tuples (i.e., example
shown in the previous subsection, tuples with 9xxxx value
in zip dimension) are produced by using the lower and
upper bound values of the selected dimension for each
table. While traditional algorithms consider all the tuples of

a base relation for materializing 1 , the targets of
materializing are restricted to the tuples of the reduced
tables in the proposed algorithm ASVMRT. Therefore, it
can achieve the goals of improvement in query response
time and saving of storage for views. Note that it requires
larger storage space (for intermediary reduced tables) and
takes more time for clustering. However, off-line tasks of
the clustering phase and production step of reduced tables
do not lower the performance of a data warehouse system,
since it is almost impossible2 to process tasks such as
updating and maintaining views on-line in a data
warehouse containing scores of terabytes of data.
In the third step of the algorithm, we produced an MVPP

by using the reduced tables generated in the previous step.
The existing algorithm[3] proposed the 0-1 integer
programming method and HAmvpp for establishing MVPP.
While this 0-1 integer programming technique produces
optimal MVPP, it takes too much time to implement. In
our algorithm, we propose the off-line procedure for
establishing MVPP using query frequency.
In the fourth step of the algorithm, the views which can

derive benefits in the case of materialized ones were
selected within the bounds of the user’s input space
constraint, while considering view processing time cost
and view maintenance cost in the produced MVPP. The
conventional algorithms consider only the cost for join
operation and restrict query frequency to the query itself.
We argue that these cost estimation methods leave out
some important factors in cost. In the ASVMRT, cost for
the select operation is supplemented to cost estimation
formulation. Also, we imposed query frequency on all the
tuples consisting of the query rather than the query itself
because we considered the fact that the views consisting of
the query can be used in another query.

4. Implementation Results and Analyses

In this section, we first present the implementation

results on the pubs database, and then reveal the
experimental results of applying ASVMRT to Information
System for Telecommunications Technical Regulations in
ETRI in order to improve the response time of the article
keyword-based search method.

1 Note that the conventional algorithms also consider partial

materializing, which means they select a portion of views

rather than all the views in a data warehouse. However, be

aware of the difference between partial materializing and our

approach; our approach is novel from the standpoint that a

portion of the tuples of each base relation is extracted and

reduced tables are generated. Then, partial materializing is

applied to reduced tables rather than base relations.
2 Note that there are researches on on-line updating and

maintaining strategy. However, most data warehouse systems

perform the updates and maintenance of views off-line because

the data warehouse is mainly for read-only and these kinds of

tasks require much time.

Jin-Hyuk Yang, and In-Jeong Chung 73

4.1 Experimentation and Results in Pubs Database

Taken from conventional algorithms, the cost estimation

approach for 4 queries (same queries as in section 3)
without reduced tables is presented in table 4. Table 5
results from referencing the entire queries log and
summarizing tables 3 and 4. For a comparison of the
conventional approach with ours, we assumed that the
space constraint variable SC from the user’s input is not
specified.

Table 4. Cost computation for 4 queries without reduced

tables
Ca Cm Cv

fq t# Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 T

authours 1 23 50 89 0 0 50 89 139

titleauthor 2 25 94 72 152 0 0 0 94 72 152 318

titles 5 18 120 105 105 260 0 0 0 0 120 105 105 260 590

publishers 1 8 36 0 36 36

sales 1 21 30 0 30 30

stores 1 6 15 0 15 15

tmp1 2 15 54 132 72 72 126 204 330

tmp2 2 10 44 22 70 70 114 92 206

tmp3 1 6 12 158 170 170

tmp4 1 6 6 170 176 176

tmp5 1 3 9 48 57 57

tmp6 1 3 9 18 27 27

tmp7 1 3 6 72 78 78

tmp8 1 3 3 78 81 81

tmp9 1 2 3 40 43 43

tmp10 1 1 1 112 113 113

tmp11 1 6 28 28 56 56

tmp12 1 5 27 46 73 73

tmp13 1 5 22 84 106 106

tmp14 1 17 57 180 237 237

tmp15 1 17 34 250 284 284

tmp16 1 17 17 464 481 481

Table 5. Performance comparison on the pubs database

Conventional

algorithms
ASVMRT

Materialized

views

tmp5, tmp6,

tmp7, tmp8

rt_tmp5,

rt_tmp6,

rt_tmp7,

rt_tmp8

Total cost 243 125

Partial

materialization

case

Storage space 12 6

Materialized

views
ALL ALL

Total cost 3,646 2,441

Full

materialization

case
Storage space 220 149

As shown in table 5, the case of materializing views

partially indicates that the proposed method against the
conventional approach shows 1.944(243/125) times and
2(12/6) times better performance in query response time
and view storage space, respectively. Even in the other
case of materializing all the intermediary views (i.e., when
the appropriate algorithm for selection is not applied) our
approach shows 1.493(3,646/2,441) times and 1.476(220/
149) times better performance in query response time and
view storage space, respectively. This 1.5 times increase is
somewhat different from the 1.8 times improvement shown

in the next subsection. This is because the number of
records in the pubs database is inadequate.

4.2 Experimentation and Results in Information Sys-

tem for Telecommunications Technical Regulations

In this section, we present experimentation on a database

with a large quantity of data rather than a small database
such as the pubs database. The target database is used in
Information System for Telecommunications Technical
Regulations (http://tris.etri.re.kr) in ETRI (http://etri.re.kr).
The database schema of the information system is shown in
Fig. 5.

Law

Enforcement

Ordinances

Enforcement

Regulations Rule 1 Rule 2 Rule 3

Notices

Past information on

Law, Enforcement Ordinances,

Enforcement Regulations, and

Rules

Past Notices

Fig. 5. Database schema of the Information System

In this section, we present the results of an experiment

on the law of radio waves among the 14 laws of ordinances
consisting of the law of information and communication of
Korea, since the number of tuples of that law is highest. As
one of 4 search strategies supplied by the information
system, an article keyword-based search takes the keyword
from users, compares it with a title of an article of the law,
and then returns the retrieval results. In order to improve
the response time of article keyword-based searches, we
considered the articles of the law containing the related
notices as clustering targets. After generating the reduced
tables on the law of radio waves, we produced the MVPP
as referencing for the queries log. Assume the following
query.

• Q5: Among the articles related to the law of radio and
waves, list all the articles of the law which are based
on the notices related to the law of radio and waves.

The query Q5 retrieves all the queries related to the
involved notices. Though a user inputs an arbitrary
keyword, the results of query Q5 embody the user’s query
results. Therefore, query Q5 is representative of all the
queries for the notice-related information retrieval, since it
includes all the possible range of results returned from the

74 ASVMRT: Materialized View Selection Algorithm in Data Warehouse

notice-related information retrieval. Fig. 6 shows an MVPP
for the query Q5.

Q5

rt_tg rt_tg_si rt_tg_sk rt_k1 rt_k2 rt_k3tg_gs

∪ rt_tmp7

rt_tmp1 rt_tmp2 rt_tmp3 rt_tmp4 rt_tmp5 rt_tmp6

σ all

σ code = basecode

Fig. 6. MVPP for the query Q5

Table. 6. Cost computation for the query Q5 with reduced

tables
Ca Cm Cv

fq t# Q5 Q5 Q5

tg_gs 1 119 48,810 0 47,405

rt_tg 1 71 8,682 0 8,682

rt_tg_si 1 72 8,752 0 8,752

rt_tg_sk 1 116 14,032 0 14,032

rt_tg_k1 1 77 9,352 0 9,352

rt_tg_k2 1 29 3,592 0 3,592

rt_tg_k3 1 26 3,232 0 3,232

rt_tmp1 1 8,499 8,611 17,378 25,989

rt_tmp2 1 8,568 8,680 17,518 26,198

rt_tmp3 1 13,804 13,916 28,078 41,994

rt_tmp4 1 9,163 9,275 18,718 27,993

rt_tmp5 1 3,451 3,563 7,198 10,761

rt_tmp6 1 3,094 3,206 6,478 9,684

rt_tmp7 1 112 112 94,402 94,514

Table 6 resulting from ASVMRT shows the cost

estimation with reduced table. The approach taken from
conventional algorithms results in table 7, which is for cost
estimation without reduced tables. If the user’s input
variable SC is given by 30,000, then rt_tmp6, rt_tmp5,
rt_tmp1, and rt_tmp2 are selected in sequence as material-
lized views. In this case, view storage space is 23,612. As
shown in table 8, our algorithm achieves 1.754(127,417/
72,632) times and 1.768(41,769/23,612) times better
performance in terms of response time and view storage
space, respectively.
Summarizing and distinguishing tables 6 and 7 results in

table 8. When a user’s input variable SC is not given, our
proposed algorithm shows 1.786 (593,591/332,180) times
and 1.794 (84,713/47,201) times improvement, on average,
in terms of query response time and view storage space,
respectively.

Table 7. Cost computation for the query Q5 without
reduced tables

Ca Cm Cv

fq t# Q5 Q5 Q5

tg_gs 1 119 84,036 0 84,039

tg 1 121 14,634 0 14,634

tg_si 1 132 15,954 0 15,954

tg_sk 1 219 26,394 0 26,394

tg_k1 1 134 16,194 0 16,194

tg_k2 1 49 5,994 0 5,994

tg_k3 1 49 5,994 0 5,994

tmp1 1 14,399 14,513 29,278 43,791

tmp2 1 15,708 15,822 31,918 47,740

tmp3 1 26,061 26,175 52,798 78,973

tmp4 1 15,946 16,060 32,398 48,458

tmp5 1 5,831 5,945 11,998 17,943

tmp6 1 5,831 5,945 11,998 17,943

tmp7 1 114 114 169,426 169,540

Table. 8. Performance comparison on the database of
Information System (http://tris.etri.re.kr)

Conventional

algorithms

ASVMR

T

Materialized

views

tmp1, tmp2,

tmp5, tmp6

rt_tmp1,

rt_tmp2,

rt_tmp5,

rt_tmp6

Total cost 127,417 72,632

Partial

materialization

case

Storage space 41,769 23,612

Materialized

views
ALL ALL

Total cost 593,591 332,180

Full

materialization

case
Storage space 84,713 47,201

5. Conclusion and Future Works

The proposed algorithm ASVMRT, firstly, finds high
density clusters from the dimensions of the given tables,
and secondly, produces the reduced tables using the found
clusters. Next, the MVPP is produced using the reduced
tables, and finally, materialized views are selected from the
MVPP in accordance with cost estimation.
The technique of materializing views is required to

increase the query response time in a data warehouse,
which provides guidelines to enterprise managers through
the analysis of market trends by supporting various OLAP
capabilities. As a technique of materializing views,
ASVMRT is proposed in this paper, which adopts one of
the data mining techniques (i.e., clustering method). In the
proposed algorithm, the user can specify a dimension for
mandatory clustering. This function excludes the
possibility of leaving out the important information. The
user can also specify the threshold value that indicates the
compression strength of clusters. Finally, the user is able to
input a space constraint value within which materialized
views are selected. These kinds of user interfaces are not

Jin-Hyuk Yang, and In-Jeong Chung 75

found in conventional algorithms.
As shown in the experimental results, the proposed

algorithm achieves almost 1.8 times better performance in
terms of both query response time and storage space of
materialized views. Even in the case where the value of the
space constraint variable is not specified (i.e., when we
assume there is no space constraint), our algorithm shows
1.5 times and 1.8 times better performance in the pubs
database and database for Information System of ETRI,
respectively.
Broadly, there lie two issues with the data warehouse.

The first is selection of materialized views, and the other is
maintenance of the views for consistency of a data
warehouse. ASVMRT in this paper is in regards to the first
issue. As future works, we will focus on how to update and
maintain the reduced tables when there occurs any update
in the source data.

References

 [1] Harinarayan V., Rajaraman A., and Ullman J.,

“Implementing data cubes efficiently”, In Proc. of the
ACM SIGMOD International Conference of
Management of Data, Canada, June 1996.

 [2] Gupta H., “Selection of views to materialized in a
data warehouse”, In ICDT, 1997

 [3] Yang J., Karlapalem K., Li Q., “Algorithms for
materialized view design in data warehousing
environment”, In Proc. of VLDB’97, pp.136-145.

 [4] Inmon W., “Building the Data Warehouse”, 2/e, John
Wiley and Sons. Inc., 1996.

 [5] Red Brick System, “Ins & Outs(and everything in
between) of Data Warehousing”, Red Brick Systems
white paper, 1996.

 [6] Gupta A., Mumick I., “Maintenance of Materialized
Views: Problems, Techniques, and Applications,
IEEE Data Engineering Bulletin, Special Issue on
Materialized Views and Data Warehousing, 18(2),
pp.3-18, June 1995.

 [7] Agrawal R. and Srikant R., “Fast algorithms for
mining association rules”, In Proceedings of the 20th
VLDB Conference, Santiago, Chile, Sept. 1994.

 [8] Park J.S., Chen M.S., and Yu P.S., “An effective
hash-based algorithm for mining association rules”,
In Proceedings of ACM SIGMOD Conference on
Management of Data, pp.175-186, SanJose,
California, May, 1995.

 [9] Gary J., Bosworth A., Layman A., Pirahesh H., “Data
Cube: A Relational Aggregation Operator
Generalizing Group-By, Cross-Tab, and Sub- Totals”,
Micro soft Technical Report No. MSR- TR-95-22.

[10] Ross K.A., Srivastava D., and Sudarshan S.,
“Materialized View Maintenance and Integrity
Constraint Checking: Trading Space for Time”, In
Proc. ACM SIGMOD ’96, pp.447-458, Montreal,
June 1996.

[11] Gupta H., Harinarayan V., Rajaraman A., Ullman
J.D., “Index Selection for OLAP”, Proceedings of the
International Conference on Data Engineering,
pp.208-219, Binghamton, UK, April, 1997.

[12] Baralis E., Paraboschi S., Teniente E., “Materialized
View Selection in a Multidimensional Database”,
Proc. VLDB ’97, pp.156-165.

[13] Chen M.S., Han J., and Yu P., “Data Mining: An
Overview from Database Perspective”, IEEE Trans.
on Knowledge and Data Engineering, 1997.

[14] Agrawal Rakesh, Imielinski Tomasz, and Swami
Arun, “Database Mining: A Performance Per-
spective”, IEEE Transactions on Knowledge and
Data Engineering, Vol.5, No.6, pp.914-925,
December 1993.

[15] Berson and Smith J., “Data Warehousing, Data
Mining & OLAP”, McGraw-Hill, 1997.

[16] Fayyad U. M., Piatetsky-Shapiro G., Smyth P and
Uthurusamy R., “Advances in Knowledge Discovery
and Data Mining”, Cambridge Ma: AAAI Press/MIT
press 1996.

Jin-Hyuk Yang

He received the B.S. and M.S. degrees
in Computer Science Dpt. from Korea
University in 1998 and 2000, respect-
tively. He is now Ph.D. candidate student
in Korea University. His research
interests include semantic web,
ontology, web services and ubiquitous

computing.

In-Jeong Chung
He received the B.S. and M.S. degrees
in Computer Science Dpt. from Seoul
National University in 1978, and Korea
Advanced Institute of Science and
Technology in 1980, respectively. He
received Ph.D. from University of
Iowa in 1989. He is now professor in

Korea University. His research interests are in the area of
intelligent web services, semantic web, ontology engineering,
home network and ubiquitous computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 2400
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 2400
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

