
58 International Journal of Information Processing Systems, Vol.2, No.1, March 2006

Monitoring Systems for Embedded Equipment in
Ubiquitous Environments

Ji-Hye Bae*, Hee-Kuk Kang*, Yoon-Young Park**, and Jung-Ho Park**

Abstract: Accurate and efficient monitoring of dynamically changing environments is one of the
most important requirements for ubiquitous network environments. Ubiquitous computing provides
intelligent environments which are aware of spatial conditions and can provide timely and useful
information to users or devices. Also, the growth of embedded systems and wireless communication
technology has made it possible for sensor network environments to develop on a large scale and at
low-cost. In this paper, we present the design and implementation of a monitoring system that collects,
analyzes, and controls the status information of each sensor, following sensor data extracted from each
sensor node. The monitoring system adopts Web technology for the implementation of a simple but
efficient user interface that allows an operator to visualize any of the processes, elements, or related
information in a convenient graphic form.

Keywords: Ubiquitous Computing, Monitoring System, Sensor Network

1. Introduction

Embedded Systems are systems that contain embedded

hardware and software designed to control special-purpose
hardware that operates as a component of a large system
[1]. They are utilized in a variety of specialized control
systems from major power plants to those used for vehicle
and house systems. The wide variety of control systems for
complex industrial objects is an important application of
embedded systems. Embedded systems are usually a
complex combination of hardware and software modules
with a built-in operational environment, a close architecture,
specific interfaces, and a unique organization of external
and internal data flow. For large industrial applications
such as a power turbine, these control systems are often
implemented as multiprocessor distributed systems. With
the recent growth of embedded systems, the studies
conducted on ubiquitous computing are gaining attention.

Ubiquitous computing is able to perceive its surroun-
dings and provide an intellectual environment that offers
timely and useful information to users and user devices.
This is made possible by composing a co-network of ultra-
small embedded computers with integrated communication
devices positioned in the surrounding objects and environ-
ments. This means that although users are physically at a
distance, they can be provided with specific and status-
perceived information services by tracing or recognizing

the situational variations of a wanted time and space. The
growth of ubiquitous computing technology and wireless
communication technology has enabled the development of
large-scale and low-cost sensor network environments [5, 6].

With the development of ubiquitous computing
technologies and the subsequent maturity of these
technologies, wireless sensor networks have become
available for connecting large amounts of data from
various sensor devices that are distributed over a wide area.
These sensor devices can now be connected to application
servers through a wireless sensor network consisting of
small devices called sensor nodes that can sense data
through various sensors. It also has a processor to format
the sensor data and a wireless transmission system to
transfer the formatted data and any required control signals
from the sensors to the main server or vice versa. Unlike
previous networks that acted solely as a communication
medium, the purpose of a sensor network is to collect
information about the sensor environments. The ongoing
progress and research activity in wireless communication
technologies have resulted in low-priced, ultra-minimal,
and low-powered devices, which have facilitated the
development of several wireless sensor networks to suit the
requirements of many communities. Wireless sensor
networks are now used extensively in the development of
applications in a wide range of fields such as science,
medicine, the military, and commerce [7, 8].

This paper presents our proposed monitoring system
architecture that collects, analyzes, and displays the
information state from the wireless sensors. It also
describes our communication mechanism to store and
transfer large amounts of status and efficient monitoring
systems, which uses a remote shell to collect the status data
of embedded devices and to send control data to hub nodes
and sensor nodes.

Embedded systems should present a sensor object’s

Manuscript received February 10, 2006; accepted March 3, 2006.
This research was supported by the MIC (Ministry of Information and
Communication), Korea, under the ITRC (Information Technology
Research Center) support program supervised by the IITA (Institute of
Information Technology Assessment)(IITA-2005-C1090-0502-0031)
Corresponding Author: Ji-Hye Bae
* Department of Computer Science, Graduate School, Sun Moon

University, Asan, Korea ({angdoo98, comhero}@sunmoon.ac.kr)
** Division of Computer and Information Sciences, Sun Moon

University, Asan, Korea ({yypark, jhpark}@sunmoon.ac.kr)

Copyright ⓒ 2006 KIPS (ISSN 1738-8899)

Ji-Hye Bae, Hee-Kuk Kang, Yoon-Young park, and Jung-Ho Park 59

information state to an operator and also react promptly to
instructions from an operator. A user interface is necessary
for an embedded system to display information and to
interact with operational personnel. The development of
these complex user interfaces can be both a time- and
labor-consuming task. Hardware-dependent components
and unique software modules are often used in the
development of such interfaces, and problems can also
occur in the timely distribution of software to client
workplaces. Since the worldwide number of embedded
systems is increasing rapidly, new approaches are needed
for embedded systems operations, especially in a
distributed environment. To solve this problem, our
monitoring system has adopted Web technology for the
implementation of a simple but efficient user interface.

Web technology is an efficient and cost-effective
technology for embedded systems interface development
and for remote object monitoring and management. It
allows for various standardized templates for user interface
organization including formatted textual display and
examples of various types of tables, lists, the display of
graphic images (for example, of a block of the controlled
entity), and other required formats. Our monitoring system
interface allows any process, element, or other form of
information to be visualized by the operator in a
convenient and easily interpreted form. Therefore, system
operational personnel do not have to be computer experts
to use the system. Furthermore, it presents a unified
interface to the operator and affords that person the
opportunity to control complex devices over an intranet or
the Internet.

In this paper, we also developed a monitoring system
using a kernel wrapper, which is a software module that
enables us to monitor the state information of any
embedded device without any modification to the kernel.
By employing this wrapper, we can increase the portability
of our system to other platforms and also reduce the time
required to write software-monitoring modules.

The remainder of this paper is structured as follows. In
the next section, we will introduce related works on
embedded monitoring systems and sensor network
middleware and data services in the sensor network. Then,
in section 3, we describe the design to monitor the
information state from sensor nodes, while in section 4 we
demonstrate this design and implementation of the
monitoring system architecture. In section 5, we will
discuss how to solve problems in our design and
implementation, and present future research regarding our
approach to the sensor network environment.

2. Related Work

In this section, we introduce existing works on sensor

network middleware and data services in the sensor
network that relate to this paper. Also, we describe several
cases which touch on the monitoring system and the
existing monitoring tools used to evaluate embedded kernel

performance in ubiquitous environments. Ongoing research
into the provision of wide-area data services has advanced
in the field of sensor networks. Sensor data management is
considered important because sensor data has to be
formatted into a proper form through server and hub nodes,
and is displayed and monitored by users.

The most well-known research system regarding data-
centric middleware, MiLAN, is being developed as a
sensor network middleware for smart medical homes for
managing health conditions at the Univ. of Rochester [2].

PADS (Power Aware Distributed System) is being
developed as a sensor network middleware at UCLA/USC.
This system implements suitable methods for managing
organic energy management functions among CPU, RF
modules and sensor modules for energy reduction. It
manipulates dynamic CPU voltage and RF modulation
scales at the proper time with RTOS schedule methods, and
then accomplishes program execution, sensor management,
and message transmission using minimal energy [3].

An example of a project using monitoring in the
applicable field of sensor networks is Habitat Monitoring.
In this project, an in-depth study of the application of
wireless sensor networks to real-world habitat monitoring
was undertaken. The project also develops a specific
habitat monitoring application that is largely representative
of the domain. It presents a collection of requirements,
constraints, and guidelines that serve as the basis for a
general sensor network architecture for many such
applications. The College of the Atlantic (COA) is field
testing for a habitat monitoring project, and is conducting
ongoing field research programs on several remote islands.
Great Duck Island (GDI) has well established on-site
infrastructure and logistical support [4].

One of the monitoring systems in the ubiquitous
environments, “Tornado”, is an integrated development
environment that has embedded operations, development
environments, and execution environments, all of which
are being used in real-time applications simultaneously; it
has various development tools and provides an easy and
consistent development environment to users by connecting
each tool. Also, these tools are suitable for use in several
development phases and they support several different
target systems. Tornado uses VxWorks as its real-time
operating system (RTOS). This RTOS has a very small
kernel but it still provides multitasking environments, inter-
process communications, and process synchronization. To
communicate between a host machine and a target machine,
Tornado provides various means of communication such as
Ethernet, serial communication, ICE (in circuit emulator),
or ROM emulator [9]. However, Tornado is a very
expensive solution and it is difficult for a novice to learn
the basic skills necessary to use the internal functions.

Qplus-P Esto is an IDE (Integrated Development
Environment) for developing application software that
executes on Qplus-P, an embedded operating system.
Qplus-P is a process-based operating system founded on
embedded Linux. Esto (Embedded Systems Tool) provides
an IDE with a GUI (Graphic User Interface) for both Linux

60 Monitoring Systems for Embedded Equipment in Ubiquitous Environments

and Windows system hosts, and enables embedded
application program developers to perform several
functions such as coding, compilation, execution, debugging,
and monitoring on a single host platform [10]. Therefore,
users of this IDE can develop new application programs
conveniently. Esto includes a library, a target agent, and a
target application program based on the Qplus Embedded
Linux RTOS for the target. Furthermore, it also has a wide
variety of application development tools such as a host
agent based on the Linux/Windows operating system, a
target builder, a cross compile tool-chain, a project
manager, a remote shell, a remote debugger, a remote
monitor, and an instrument for measuring power
consumption on the host side. However, it would be
desirable for Esto to have a user interface that is
implemented by Eclipse. Therefore, we would need a great
amount of expertise in Qplus-embedded Linux and in
constructing Eclipse applications.

The Momentics IDE (Integrated Development Environ-
ment) for Neutrino RTOS from QNX supports several host
platforms such as Windows, Linux, and Solaris. Compared
to other OSs, Momentics is powerfully flexible and can
produce RTOS images with the Neutrino Kernel, which has
only one multiple-thread application process for very
small-embedded systems. Also, its process manager can
execute several application programs and it can execute on
a distributed network of very large symmetric multi-
processing (SMP) clusters. QNX Momentics is a
generalized package that integrates both enforced
productivity methodology and analysis tools into one
Eclipse-based IDE [11, 12]. However, QNX Momentics is
too expensive and inflexible when compared to general
purpose embedded Linux.

3. The Design of Our Monitoring System for
Embedded Equipment

In this section, we describe the architecture of our

monitoring system, which collects data obtained from
wireless sensor nodes in ubiquitous network environments.

Sensor nodes consist of sensor, data processing, and
communication components. When these components are
connected by a network, they form a sensor network. A
sensor network is composed of several sensors that are
densely deployed either inside the nodes or very close to
them [13]. Since we have used RF communications to
communicate among the various and potentially vast
number of sensor nodes, it is necessary to monitor them to
determine the reliability and the fault tolerance of a sensor
network and to conduct a network traffic analysis of a
sensor network.

3.1 The Architecture of a Monitoring System in

Ubiquitous Computing Environments

Ubiquitous network environments are divided into

servers for monitoring and control, targets that are the

objects to be monitored, and the clients who use the system.
Generally speaking, the targets are implemented as
embedded equipment, although the servers can be
implemented either as embedded equipment or as a
separate server system. Fig. 1 shows the basic architecture
of a monitoring system.

Fig. 1. The Basic Architecture of a Monitoring System

There are often several types of sensor nodes that are

usually embedded into many kinds of devices. These
sensor nodes collect the raw data. Hub nodes collect the
raw data from the sensor nodes and deliver it to the servers.
The servers receive the data from the hub nodes and send
control data back to the hub nodes. The hub nodes, which
are usually implemented as embedded equipment,
communicate with the sensor nodes using RF
communications. The raw data containing the status
information of a sensor node is delivered to a hub node and
transformed into the proper data format for onward
transmission. A common Network File System (NFS) is
used to connect the hubs and the server. To measure the
performance of the hub node’s internal kernel, we
developed application programs to evaluate the status of
each process. The collected information is provided to
users through a GUI in the server system. Our monitoring
system allows users to manage and control monitoring
information in mobile environments.

The characteristics of the sensor nodes, the hub nodes,
and the server are as follows:
▪ Sensor Node: It gathers various types of raw data from

numerous sensors and delivers them to the hub nodes.
▪ Hub Node: It is an embedded equipment that gathers

data delivered from sensor nodes, reformats it, and
delivers it to the server. It also mediates between the
server and the sensor nodes.

▪ Server: It collects, stores, and analyzes the status
information from the hub nodes and houses the web
server for monitoring and controlling this information.

Fig. 2 describes the connection structure of the monitoring

components, the server, the hub nodes, and the sensor
nodes in a ubiquitous network environment. The hub nodes
communicate with the server in many ways using a target

Ji-Hye Bae, Hee-Kuk Kang, Yoon-Young park, and Jung-Ho Park 61

shell. The server retrieves and controls information from
the hub nodes by using a remote shell implemented with
SNMP (Simple Network Management Protocol). These
types of shells have an agent for communication, which
performs all of the communication that is conducted
between the server and the hub nodes and is connected
using NFS and SNMP. Our system uses NFS and SNMP to
deliver sensor information to a server. In our system, we
implemented several tracing devices and SNMP as
important middleware to enable us to perform a
performance evaluation of the kernel in the hub nodes.
With this middleware, the server can collect a variety of
information from the hub nodes to measure the
performance of an embedded hub kernel. Sensor nodes in
the sensor fields use RF communications to communicate
among themselves and the hub nodes.

Fig. 2. The Network Architecture of the Monitoring

Components

3.2 The Basic Design of our Monitoring System

In this section, we present the basic design of our

monitoring system. Our monitoring system displays both
the collected events data and the results of any event
analysis that have been requested on any running
embedded equipment or sensor nodes. Several events and
the information that has been collected from the hub nodes
and sensor nodes are stored in the form of files on NFS
server systems.

By using our monitoring system’s hypertext references,
an operator can navigate simply between pages, data input
forms, and the specifications of communication protocols
to a server. Thus, an operator can easily control any entity
in the system. Our monitoring system’s user interface
allows the operator to conveniently visualize any process,
element, or other aspect of system information without
having to be a computer expert. Furthermore, it provides
the operator with a unified interface through which he or
she can easily manipulate complex systems over an
intranet or the Internet.

Many events and information collected from the hub
nodes and the sensor nodes are stored in the form of files
on NFS server systems.

Fig. 3 shows the design plan for the monitoring system.
There are several instances of embedded equipment items
(target nodes) that are all treated as separate objects in our
monitoring system. The embedded equipment sends the

monitoring information on various systems such as Process,
Memory, CPU, Traffic, Command, Kernel Trace, and
Sensor to the server.

Fig. 3. The Design Plan of the Monitoring System

The “Kernel Trace” is composed of an “Event Graph”

and a “Process Analysis.” The “Sensor” is composed of
Status, Operation, and the Sensor OS. All data is presented
to the operator through the Web interface on the server.

3.3 The Kernel Wrapper of the Monitoring System

This section describes the kernel wrapper mechanism

employed to build the applications that are necessary to
obtain the kernel information in an easy and efficient
manner.

Fig. 4. The Architecture of the Kernel Wrapper

Fig. 4 describes the architecture of the kernel wrapper

used for gathering and monitoring a variety of data about
the embedded kernel. Loadable modules or libraries that
need to communicate with the embedded kernel do so
using the kernel wrapper. It gathers information about the
kernel such as the frequency of primitive operations and
the execution time of a particular process. We can extract
any piece of kernel monitoring information using this
kernel wrapper without modifying and recompiling the
embedded kernel. By using the concept of a loadable

62 Monitoring Systems for Embedded Equipment in Ubiquitous Environments

kernel module, we can construct the kernel wrapper in the
form of a dynamic library that we can then easily add to
the embedded kernel even though we do not have any
detailed knowledge about the embedded kernel itself. This
allows us to conveniently extract a variety of modules
constructed by the kernel wrapper call sys_our_open() that
is implemented by the kernel wrapper instead of the
general system call sys_open(). Therefore, we can trace
which files a user has opened.

4. Implementation

In this section, we describe the implementation details of

our monitoring system and the results that we obtained
using our system.

4.1 The Monitoring Information of Embedded

Equipment

Since there are various types of monitoring data

obtained by embedded equipment, we divided the
monitoring data into three categories: system resource,
network resource, and sensor resource [15].

4.1.1 System Resource

“System Resource” data is related to information on the
performance evaluation of the embedded kernel. Its five
types of data are:

 PROCESS: Information about the running processes;
 CPU: Information about CPU usage and CPU idle

time;
 MEMORY: Memory information used by operators or

memory resident daemon processes;
 COMMAND: Information obtained by a remote shell.

A remote shell consists of many functions that are
executable commands used to obtain information
related to the system, such as directory information,
running processes, memory usage, and disk contents.
It has a simple menu structure through which we can
obtain many pieces of information about embedded
equipment. The information that can be obtained by a
remote shell menu includes the following:

- Directory information shows information about the
files in a directory. It includes information about
hidden files and detailed information such as file
format, access authority, and file size.

- Process Information shows information about a
running process including environment variables that
are related to the relevant process and the inheritance
relationships among relevant variables.

- Memory Information shows a menu that can be used
to display the memory status of system outputs.

- Disk Information; there is no disk in the embedded
equipment but data is stored on the file system of the
server by the NFS. Therefore, this item shows a menu
that represents disk information, which describes
detailed file information in a directory as well as basic

directory information.
 KERNEL TRACE: This is the data for the kernel
performance evaluation that is created during a kernel
trace. We implemented several application programs
to trace the internal kernel system and to evaluate the
performance of the embedded kernel. Kernel patches
were also used for tracing. In general, these
application programs were applied based on the /proc
file system. The purpose of the kernel evaluation is to
estimate both the side effects and the interference
problem that might occur when the hub nodes and
server receive a large amount of sensor data
simultaneously. The “Kernel Trace” includes the
following components:

- The Event Graph displays processes or system
behaviors that are generated by the kernel. Fig. 5
shows the number of system calls with a time unit of
μs (microseconds). The left side of the system call
viewer shows all of the running processes and the
right side displays the occurrences of a particular
system call (e.g. read() and write()) that are issued by
these processes. There is a system tracing utility for
Linux, Linux Trace Toolkit (LTT) [1], which is used
for analyzing a subset of process execution and for
recording some important system events. The kernel-
tracing tool in LTT is based on the GTK library.
However, in our system we based the event viewer on
GDI Plus from Microsoft. Since our event viewer is
based on a Windows platform, we implemented the
viewer with ActiveX technology. Fig. 6 consists of
magnified figures of Fig. 5. It shows the running
processes list, a graph that is used by these processes,
and system call information respectively. This system
has many useful functions including the characteristics
of a simple interface, an easily recognizable graph,
easy installation, and originality. In (Fig. 6), the
running processes list includes the process id and
time-ordered the process name, and the system calls
used by these processes are presented in a graph. The
menu of the “System Call Info” includes the
information about current time, time length, and each
system call name. The description of each system call
is shown by the menu of the “System Call Desc” in
(Fig. 5).

Ji-Hye Bae, Hee-Kuk Kang, Yoon-Young park, and Jung-Ho Park 63

Fig. 5. Event Graph of an Embedded Kernel System

Fig. 6. A Magnified Figure of Fig.5

- The Process Analysis provides the per-process

statistics and system statistics. It shows the CPU time,
the execution time for a running application program,
the I/O waiting time, and information about the
system calls by each application program.

4.1.2 Network Resource

Network resource has a single type of data called
TRAFFIC, which analyzes network traffic.

 TRAFFIC: This data consists of information about the
network traffic that is delivered from the server to the
embedded equipment. We can calculate the amount of
packets that are composed of received packets,
transmitted packets, error packets, dropped packets,
collision packets, etc.

4.1.3 Sensor Resource

Sensor resource consists of the sensor data that are
gathered from the sensors. In our system, we designed the
hub nodes to collect the sensor information. Then, our
monitoring user interface displays this information in the
form of a graph. The information from the sensor nodes is
as follows:

Table 1. Monitoring Information and Description of the Embedded Equipment
Resources Components Function Descriptions

PROC Info Process information about USER, PID. PPID, ST, NAME, CPU, VMEM, TTY,
TIME, CMD, PRI, ADDR PROCESS

PROC Time Process analysis time

CPU Usage Rate CPU usage rate

CPU Usage Time CPU usage time (Maximum, Average, Present)

CPU Idle Time The amount of time spent in idle process (Maximum, Average, Present)
CPU

CPU Info CPU information

Total Memory Size Total memory size installed in the system

Cached Memory Cached memory size in run time

Available Memory Available memory (Maximum, Average, Present)
MEMORY

MEM Info Memory information about memory pages allocated and memory pages free.

System Information about the system obtained by a remote shell (e.g. Hostname,
System, Kernel information, Date information)

COMMAND

General Command Information obtained by general commands (ls, ls -al, ps -ef, free, du -a, etc.)
using a remote shell

Event Graph Traced kernel information (running processes, system behavior)

System
Resources

Kernel
Trace Process Analysis Traced kernel information related to a process (process statistics, system

statistics)

Received Packet Total number of packets received by a network device

Transmitted Packet Total number of packets transmitted by a network device

Error Packet Total number of errors detected by a device driver

Dropped Packet Total number of packets dropped by a device driver

Network
Resources TRAFFIC

Collision Packet Number of collisions detected on the interface

Status Information about the status of sensor nodes

Operation Information about the behavior of sensor nodes
Sensor

Resources
Sensing

Data

OS Information about the sensor operating system of sensor nodes

64 Monitoring Systems for Embedded Equipment in Ubiquitous Environments

 Sensor Status describes the current status of the
various sensors connected to the hub nodes.
 Sensor Operation indicates the behavior status of
various sensors. Operators can directly control the
sensors through the GUI.
 Sensor OS (Kernel Status) shows any necessary data
concerning the kernel that is built into the sensor
operating system.

Table 1 summarizes these various types of monitoring

information [14, 15].

4.2 The Display of Monitoring Information

Fig. 7 shows various types of monitoring information

about embedded equipment generated by our monitoring
system. We placed the menu frame on the left side to
facilitate the use of the many functions related to process,
CPU, memory, traffic, command, kernel tracing, and sensor
data from the embedded equipment.

Fig. 7. The Sensor Status Display of the Monitoring System

In (Fig. 7), we can see the required information from the

monitored embedded equipment. We can also obtain the
status information of the sensors connected to the hub
nodes. In this example screen, we can see the control
information for street lamps with illumination sensors. If
the value of illumination exceeds some pre-selected value
as shown in Part A, the button in the No.1 area is turned on
as shown in Part B. Then, the operation time starts to be
recorded as shown in Part C. Detailed information on the
street lamps, such as the position, the status, the operation
time, and the manager of the street lamps is displayed in
Part C.

5. Conclusion

Accurate and efficient monitoring of dynamically

changing environments is one of the most important
requirements for ubiquitous network environments. To

exploit these ubiquitous environments, we designed and
implemented a monitoring system that can obtain sensor
data transmitted from sensor nodes to the hub nodes in
embedded equipment, and also implemented some
application programs on a server system to control many
hub nodes. Our monitoring system adopts Web technology
for the implementation of a simple but efficient user
interface. Web technology is an efficient and cost-effective
technology for both embedded systems interface
development and remote object monitoring and
management. Our system interface allows an operator to
conveniently visualize any process, element, or other piece
of information using a GUI. This gives a clear and simple
presentation of the data to an operator who does not have
to be a computer expert, and who can receive unified
access to control devices and operate complex control
systems via an intranet or the Internet. This enables the
operator to monitor the control system anytime and
anywhere using any available PC or any mobile computer
equipment such as a PDA as long they are connected to a
network. We developed our monitoring system using a
kernel wrapper mechanism. A wrapper is a software
module or library that enables us to monitor the
information state of several embedded devices without
modifying the relevant kernel. By employing this type of
wrapping method, we were able to increase the portability
of our monitoring system to other platforms while reducing
the time required to write a monitoring software module.
For our future work, we hope to develop debugging tools
that will make it possible to find and fix some software
bugs and system errors. We also plan to develop an IDE for
our system.

References

 [1] Ji-Hye Bae, Yoon-Young Park, Jeong-Bae Lee,
Sung-Hee Choi, Chae-deok Lim, “A Study on the
Design of the Monitoring Architecture for Embedded
Kernels based on LTT,” Proceedings of 4th Asia
Pacific International Symposium on Information
Technology, Gold Coast, Australia, pp.68~71, Jan.,
2005.

 [2] W.B.Heinzelman, A.L.Murphy, H.S.Carvalho, and
M.A.Perillo, “Middleware to Support Sensor Network
Applications,” IEEE Network, Vol.18, No.1, pp.
68~71, Jan., 2005.

 [3] Power Aware Distributed System, Homepage, http://
pads.east.isi.edu/

 [4] A.Mainwaring, J.Plastre, R.Szewczyk, D.Culler and
J.Anderson, “Wireless Sensor Networks for Habitat
Monitoring,” In ACM International Workshop on
Wireless Sensor Networks and Application
(WSNA ’02), Atlanta, GA, USA, Sept., 2002.

 [5] G.Chen and D.Kotz, “A Survey of Context-Aware
Mobile Computing Research,” Dartmouth Computer
Science Tech Report TR2000-381, 2000.

 [6] M.Satyanarayanan, “Pervasive computing: vision and

Ji-Hye Bae, Hee-Kuk Kang, Yoon-Young park, and Jung-Ho Park 65

challenges,” IEEE Personal Communications, pp.10-
17, Aug., 2001.

 [7] D.Y.Kim, “Sensor Networks(v) Sensor Network
Middleware,” FA Journal, Jul., 2 004.

 [8] K.Romer, O.Kasten, and F.Mattern, “Middleware
Challenges for Wireless Sensor Networks,” ACM
SIGMOBILE Mobile Computing and Commu-
nications Review, Vol.6, No.4, Oct., 2002.

 [9] Yoon-Young Park, A Study on the Monitoring Model
of Distributed Objects, ETRI, Korea, 2000.

[10] Embedded Software Technology Center, Q+ Esto
Manual, ETRI, Korea, 2003.

[11] QNX Homepage, http://www.qnx.co.kr
[12] Eclipse Homepage, http://www.eclipse.org
[13] Ian F.Akyildiz, Weilian Su, Yogesh

Sankarasubramaniam, and Erdal Cayirci, “A Survey
on Sensor Networks,” IEEE Communications Magazine,
pp.102~114, 2002.

[14] Hyo-Sung Kang, Jong-Mu Choi, Jai-Hoon Kim,
Young-Bae Go, “Agent-Based Embedded Monitoring
System for Ubiquitous Networks Environments,”
Proc. of the 2004 International Conference on Parallel
and Distributed Processing Techniques and
Application (PDPTA 04), Las Vegas, USA, Jun.,
2004.

[15] Ji-Hye Bae, Yoon-Young Park, Jung-Ho Park, “A
Study on the Design of the Monitoring Architecture
for Embedded Kernels based on LTT,” International
Journal of Information Processing Systems (IJIPS),
Vol.1, No.1, pp.1~8, Dec., 2005.

[16] Ji-Hye Bae, Hee-Kuk Kang, John Y.Kim, Yoon-
Young Park, “Monitoring Systems for Embedded
Equipments in Ubiquitous Environments,” Proceedings
of 5th Asia Pacific International Symposium on
Information Technology, Hangzhou, China, pp.123~
126, Jan., 2006.

Ji-Hye Bae
She is a post-graduate Ph.D. student in
the Department of Computer Science,
graduate school, Sun Moon University,
Korea. She received her MS degree in
computer science at Sun Moon
University in 2005. She majored in
embedded systems and her current
research interests are ubiquitous

computing and sensor network environments.
Department of Computer Science, Graduate School, Sun
Moon University, Asan, Chungnam, 336-708, Korea

Hee-Kuk Kang
He is a post-graduate Ph.D. student in
the Department of Computer Science,
graduate school, Sun Moon University,
Korea. He received his MS degree in
computer science at Sun Moon
University in 1999. He was in charge
of the department of developing web
technologies at Julynet Co., Ltd. from

1999 to 2004. He majored in distributed systems and his
current research interests are ubiquitous computing and
sensor network environments.
Department of Computer Science, Graduate School, Sun
Moon University, Asan, Chungnam, 336-708, Korea

Yoon-Young Park
He is a professor in the Faculty of
Computer and Information Sciences,
Sun Moon University, Korea. He
received his MS and Ph.D. degrees in
computer science from Seoul National
University in 1985 and 1994, respectively.
His main majors are distributed operating
systems and real time systems. His

recent research includes sensor networks and ubiquitous
computing. He is a member of KIPS (Korea Information
Processing Society).
Division of Computer and Information Sciences, Sun
Moon University, Asan, Chungnam, 336-708, Korea

Jung-Ho Park
He is a professor in the Faculty of
Computer and Information Sciences,
Sun Moon University, Korea. He
received his MS and Ph.D. degrees in
computer science from Osaka University
in 1987 and 1990 respectively. His
current research interests are distributed
algorithms and electronic commerce.

Recently, he has developed an interest and takes an active
part in Internet Ethics. He is a member and vice president
of KIPS (Korea Information Processing Society).
Division of Computer and Information Sciences, Sun
Moon University, Asan, Chungnam, 336-708, Korea

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

