
International Journal of Information Processing Systems Vol.1, No.1, 2005 1

A Study on the Design of the Monitoring Architecture for Embedded
Kernels based on LTT

Ji-Hye Bae*, Yoon-Young Park*, and Jung-Ho Park*

Abstract: Embedded systems are used in many fields such as home appliances, terminals, controls,
communications, etc. So, to manage, control, and test these embedded systems, monitoring programs
have been developed variously. In this paper, to overcome the characteristic faults of embedded
systems which have resource restrictions, we implemented a development environment based on NFS
and designed a monitoring tool that can evaluate and analyze kernel performance in embedded
equipment by using LTT(Linux Trace Toolkit). Also, we designed a method to show monitoring data
collected by using a monitoring tool, called MONETA 2.0, through the web-page.

Keywords: Monitoring tool, NFS, LTT, MONETA 2.0

1. Introduction

As an embedded system simultaneously requires charac-

teristics of time restriction and logical accuracy, tech-
nologies related to computer science (such as semi-
conductor technology or communications networks) are
growing rapidly and many application fields of embedded
systems are variously extended.

Embedded systems are systems that contain embedded
hardware and software designed to control special-purposed
hardware that operate as components of a large system.
Embedded softwares, unlike general softwares, are com-
posed of system softwares and middlewares that are loaded
on a microprocessor of each piece of control equipments,
information equipments, and sensor equipment that
requiring characteristics of real-time, high-reliability and
low-power, etc.

Also, it is reqwired to use the monitoring system in an
embedded system at the level of testing and customizing.
Particularly, the monitoring system has various functions
to execute many tasks such as debugging, testing, evalua-
ting performance of computer programs, controlling the
system and managing the whole system. Because the
monitoring system collects, analyzes and manifests dyna-
mically various status information of systems or processes,
it is required to manage and test many embedded
systems[5]. Applications of the monitoring system are
various, we'd like to describe about system monitoring in
particular.

In this paper, we applied LTT(Linux Trace Toolkit),
which is the main system tracing utility to a monitor kernel
an embedded system. Since LTT traces interaction between

application programs and other software com-ponents, it
can resolve the problems using common symbolic
debugging. In addition to reconstructing the system's
behavior using the data generated during a trace run, the
user utilities provided with LTT allow you to extract
performance data regarding the system's behavior during
the trace interval[1].

In section 2, existing system monitoring tools are
reviewed and described, and in section 3, we examine the
method about the design of monitoring tools using LTT. In
section 4, we demonstrate about the architecture and
implementation “MONETA 2.0” which is the monitoring
tool for embedded equipments applied NFS and SNMP,
and we describe about reconstructed LTT in the Java
environment. Finally, the conclusion and future work are
given in section 5.

2. Related Works

In this chapter, we explain the features of existing
system monitoring tools. A system monitoring tool is able
to evaluate the performance of individual computers for
measuring of the system status such as available disk space,
CPU usage and network capability. The system perfor-
mance depends on how to mediate current system re-
sources effectively regarding requirements of many
programs. Generally, most important system resources are
CPU, memory and disk I/O, and because of the generali-
zation of the internet service, the portion of the network is
also important, currently.

Among monitoring systems in distributed environments,
the system “Tornado” system means an integrated
development environment(IDE) that has simultaneously
embedded operations and both a development environment
and an execution environment which are used for real-time
applications. Tornado has various tools to develop and
provides easy and consistent development to users by

Manuscript received September 30, 2005; accepted November 8, 2005.
This research was supported by the MIC(Ministry of Information and
Communication), Korea, under the ITRC(Information Technology Research
Center) support program supervised by the IITA(Institute of Information
Technology Assessment) (IITA-2005-C1090-0502-0031)
* Department of Computer and Information Science, Sun Moon

University, Asan, Korea ({angdoo98, yypark, jhpark}@sunmoon.ac.kr)

ISSN 1738-8899 ⓒ 2005 KIPS

2 A Study on the Design of the Monitoring Architecture for Embedded Kernels based on LTT

connecting each tool. Tornado uses VxWorks as an
operating system, it has a very small-sized kernel that
provides multitasking environments, interprocess communi-
cations and synchronizations[9].

Qplus Esto means IDE(Integrated Development En-
vironment) to develop application softwares executed on
an embedded operating system, called Qplus. Qplus is an
operating system using processes based on embedded linux,
and Esto(Embedded Systems Tool) provides both the
Linux system host and the Windows system host as IDE
based on GUI(Graphic User Interface). Esto enables things
to work (such as coding, compile, execution, debugging
and monitoring) for embedded application program
developers on a single host platform as an integrated
environment and then enables to increment for users
convenience of application programs development. Qplus
Esto includes a library, target agent, target application
program based on a Qplus real-time operating system at the
target side. On the other hand, it is composed of appli-
cation development tools such as host agent(based on
Linux/Windows operating system), target builder, cross
compile tool-chain, project manager, remote shell, remote
debugger, remote monitor and measuring an instrument for
measuring power consumption at the host side[4].

Big Brother (http://www.bb4.com) is a monitoring
program that practices different access methods to the
system monitoring. It can construct a Big Brother Client to
various hosts as well as monitor many services (such as POP,
HTTP) from central server. Big Brother Client actively
monitors the measurement criteria such as disk space, CPU
usage and existing process, and then, the results are reported
to the Big Brother Server. Using these capabilities, we can
assumptively monitor the remote server[6].

DCPI provides a detailed analysis of different processes
running on a system down to pipeline stalls. In order to
provide its highly detailed data, DCPI uses a very high
frequency interrupt. Similarly, Morph uses the clock
interrupt to gather data in order to optimize applications
off-line. Both systems fail to provide their user with
information on the interactions of the different processes.
Neither enables the user to understand the dynamics of the
observed system[3].

Path Profiler, contrary to DCPI and Morph, is an
instrumentation approach to data sampling. Path Profiler is
much like GProf but is much richer in detail. The problem
is the overhead. On a normal running system, this is often
not tolerable. Quantify uses techniques similar to Path
Profiler to provide profiling information, but its capa-
bilities remain confined to analyzing one process at a time.
Moreover, its overhead is unpublished. All these profiling
systems provide detailed analysis of one or many processes,
but fail to provide information on system dynamics[3].

Apart from these, there are quite a few tools for
measuring the kernel's performance. The most famous is
probably LMbench (http://www.bitmover.com/lmbench/).
LMbench is micro benchmark that measures hyper-
threading effectiveness of linux API including measurements
of latency and bandwidth. At these of measurements, file

read, memory copy(bcopy), memory read/write, latency,
pipe, context switching, networking, create/delete file
system, create process, signal processing and processor
clock latency are cached. LMbench checks components
such as scheduler, process management, communication,
networking, memory map, file system and low-level kernel
primitive. LMbench, however, requires a C compiler and
the Perl interpreter. It is therefore not well adapted for use
in embedded systems.

Another tool for measuring kernel performance is
Kernprof. Kernprof has functions such as profiling based
on time, profiling based on performance counter and
ACG(annotated call graph) of kernel space(http://oss.
sgi.com/projects/kernprof/). Though it can generate output
that can be fed to gprof, it involves the use of a kernel
patch and works only for x86, ia64, sparc64, and mips64.
As you can see, most embedded architectures are not
supported by Kernprof.

We are left with the sample-based profiling functionality
built into the kernel. This profiling system works by
sampling the instruction pointer on every timer interrupt. It
then increments a counter according to the instruction
pointer. Over a long period of time, it is expected that the
functions where the kernel spends the greatest amount of
time will have a higher number of hits than other functions.
Though this is a crude kernel profiling method, it is the
best one available at this time for most embedded Linux
systems[1].

Also, there are a few differences between existing
monitoring tools and our monitoring tool in this paper.
First, the Tornado system for RTOS is one of the solutions
that are not free release, and users might be a little difficult
to practice many application programs for development.
But, our monitoring system is made up of very simple
constructions and there is no cost for developing system
performance. Second, Esto based on Qplus embedded linux
has to be connected with the GUI application program on
the host system implemented by the Java environment on
the Eclipse platform, and users have to practice some
application programs on Eclipse platform with the whole
contents of Qplus embedded linux. On the other hand,
users can easily use the monitoring system in this paper
because this monitoring system is composed of very simple
application programs using only web pages. Third, the
above indicated system monitoring tools(like LMbench or
Kernprof) are not well adapted for embedded systems
because these tools have inadequate requirements for
embedded systems (such as interpreter, architecture types).
And in case of Path Profiler, it has an overhead problem,
but our monitoring system includes LTT functions that the
entire process has very little impact on the system's
behavior and performance. Extensive tests have shown that
the tracing infrastructure has marginal impact when not in
use and an impact lower than 2.5% under some of the most
stressful conditions[1].

On the above-indicated various monitoring tools, using
profiling functions is well adapted for use in embedded
systems. For this reason, in the next chapter, we will

Ji-Hye Bae, Yoon-Young Park, and Jung-Ho Park 3

describe the design of the monitoring architecture using
LTT, which has many profiling functions.

3. The Design of the Embedded Kernel Monitoring
Tool

In this section, we describe the 3-layer distributed

monitoring system model for monitoring of embedded
kernels running on distributed environments and the design
of MONETA 2.0 with the architecture of LTT.

3.1 The 3-layer Distributed Monitoring System Model

The Embedded System generally doesn't exist in the

form of a single equipments, but distributed system
architectures comprise many kinds of embedded pieces of
equipments that are connected by wire or are wireless.
These distributed environments are divided into servers for
monitoring, targets that are to be subjects of monitoring,
and clients who can use the system. Generally speaking,
targets are embedded pieces of equipment and the server is
composed of one of the embedded pieces of equipment or a
separate server system. In this paper, we define the
monitoring architecture of a distributed system as the
distributed monitoring system of 3-layer architecture, and
following (Fig. 1) is showed these.

Fig. 1. The Distributed Monitoring System of 3-layer

Architecture

Fig. 1 shows the distributed monitoring system of 3-

layer architecture about distribution and real-time moni-
toring architecture in embedded system environments. The
target and host are basically connected by NFS (Network
File System). Furthermore, we separately installed LTT(the
main system tracing utility for linux) to the target and
constructed the architecture where tracing data is trans-
mitted from the target through NFS in the LTT visuali-
zation tool of the server system. Also, we designed the
architecture using SNMP(Simple Network Management
Protocol), which enables us to get each kind of application
information or monitoring data between the target and host
by using simple SNMP commands. To graphically show
information from LTT or SNMP on web pages, we
constructed a web server on the host PC. Finally, we
designed the mobile environment to control and manage
the monitoring data.

3.2 The Design of the Kernel Monitoring Tool based
on LTT

In this chapter, we'd like to describe the LTT architecture

and the method of designing the monitoring tool-named
MONETA-that we have implemented for this study.

3.2.1 The Architecture of LTT
The main system tracing utility for Linux is the Linux

Trace Toolkit(LTT), which is used for analyzing subsets of
executed processes and recording important system events.
In contrast with other tracing utilities such as strace, LTT
does not use the ptrace() mechanism to intercept
applications' behavior. Instead, a kernel patch is provided
with LTT that instruments key kernel subsystems. The data
generated by this instrumentation is then collected by the
trace subsystem and forwarded to a trace daemon to be
written to disk. The entire process has very little impact on
the system's behavior and performance. Extensive tests
have shown that the tracing infrastructure has marginal
impact when not in use and an impact lower than 2.5%
under some of the most stressful conditions. In other words,
the loss of system performance caused by interference
status is hardly anything[1].

LTT is composed of independent software modules. The
kernel trace facility requires tracing for the trace module
and acts as a link between the trace module and the
different kernel facilities. The trace module stores the
incoming event descriptions and delivers them efficiently
to the trace daemon. Also, the trace module has additional
information such as time, CPU ID and sets the event mask
and tracks a given PID/GID/UID. To efficiently deal with
the large quantity of data generated, the trace module uses
double-buffering. The trace daemon can retrieve additional
information from the trace module and save these at given
files. The trace daemon uses double-buffering like the trace
module[3].

Tracing data files generated by the trace daemon, called
'*.trace' and '*.proc', are shown by using a visualization
tool on the host PC. To implement these LTT functions,
LTT's operation is subdivided into four software components.
▪ Modified Kernel : It is added the macro that delivered

to the kernel module about occurrence of events on
each event process part of the kernel. It is the kernel
instrumentation that generates the events being traced.

▪ Kernel Module : It sends a signal to the trace daemon
after saving kernel events in the buffer. It is the tracing
subsystem that collects the data generated by the kernel
instrumentation into a single buffer.

▪ Daemon : It saves data collected by the kernel module.
It is the trace daemon that writes the tracing sub-
system's buffers to disk.

▪ Viewer : It is used on the host PC and displays tracing
data in the form of various formats. It is the visualiz-
ation tool that post-processes the system trace and
displays it in a human-readable form.

The first two software components are implemented as a

4 A Study on the Design of the Monitoring Architecture for Embedded Kernels based on LTT

kernel patch and the last two are separate user-space tools.
While the first three software components must run on the
target, the last one, the visualization tool, can run on the
host[1]. To analyze tracing data, the program made up on
the basis of GTK library, and Trace Visualizer is used to
show the tracing data.

3.2.2 The Design of the Monitoring Tool
MONETA(Distributed MONitoring for Embedded

TArget System) is a monitoring tool that shows the
collection and analysis of various events issued on running
of embedded equipment through web pages in a distributed
environment. Between target system and server system are
connected by NFS, and many events or data from the target
system which is being monitored are saved in the form of
files on server system[5]. MONETA 2.0 is implemented by
adding LTT functions to the existing monitoring tool,
called MONETA. In the following, we describe the method
of design for addition of LTT functions in MONETA 2.0.
The following Fig. 2 shows the design plan of MONETA
2.0 in the monitoring server system.

Fig. 2. The Design Plan of the Monitoring Tool in the

Monitoring Server System

In Fig. 2, there are many pieces of embedded equipment

(being targets) which are composed of separate objects in
this monitoring tool. These embedded pieces of equipment
send the monitoring information (such as process, memory,
cpu, traffic, command, LTT) to web pages through
MONETA 2.0. As you see the flow of arrows about each
kind of information such as process, memory, etc in
MONETA 2.0, each kind of information is to detailed
functions of MONETA 2.0. Also, being one of the pieces
of information, LTT's detailed functions are composed of
event trace, process analysis, and raw trace. Eventually, the
client gets these data and controls many target systems.

4. Implementation

In this chapter, we describe the architecture and the

method of implementation of the monitoring tool of
embedded equipments which is called MONETA 2.0 and
applied analysis of tracing files created by LTT. Also, we

changed the original LTT visualization tool based on the
GTK library into an LTT viewer using Java swing
reconstructed by Java environments, and we designed the
LTT viewer in the form of a plug-in project on the Eclipse
platform(Java Integrated Development Environment).

Fig. 3. The Esto Development System Architecture

The development environment using LTT is related to

the real-time software development environment, called
Esto, which is currently being developed by ETRI. (Fig. 3)
shows the Esto Development Architecture[4][8]. The cross
compiler is the GNU compiler for C programs, and it
includes the collection of the tool-chain: gcc, make, ld, as,
and binary utilities. While the cross compiler doesn't need
any communication with the target, other tools need to
communicate with the target.

4.1 The Monitoring Information in MONETA 2.0

In this section, we describe the monitoring information

as each system resource. The system resource part is a part
about information of embedded kernel performance evalu-
ation, and it has many components including PROCESS,
CPU, MEMORY, COMMAND, Kernel Trace of embedded
equipments. Also, it can obtain return values about this
information using the monitoring system.

① PROCESS : Information about processes running on
systems

② CPU : Information about CPU usage and CPU idle
time

③ MEMORY : Memory information that is used by
users or daemon processes in a whole memory
system

④ COMMAND : Information obtained by using remote
shell. Remote shell constructs many functions which
are executable commands to obtain information
related to the system(such as directory, process,
memory, disk, etc) as a simple menu, and then, we
can get results that server sends simple commands to
embedded equipments. Information obtained by
using remote shell is like this:
- Directory Information : Menu that can represent

files in directory. Described hiding files and
detailed information such as the form of a file,
usage authority, file size, etc.

Ji-Hye Bae, Yoon-Young Park, and Jung-Ho Park 5

- Process Information : Menu that can represent the
process information running on systems. Described
an environment variable information related to
relevant process and hierarchical relations.

- Memory Information : Menu that can print memory
status using on system as outputs.

- Disk Information : There is no disk to read data
basically in embedded equipment but data is stored
on a file system of a server by using NFS. So, we
made a menu that can represent disk information.
This menu shows detailed file information in
directory as well as basic the directory information.

⑤ Kernel Trace : It is the information for kernel perfor-
mance evaluation as the created information during
kernel traced. In addition to each measuring perfor-
mance information obtainable from embedded equi-
pments, we implemented many application programs
as the method to trace the kernel’s internal system
and to evaluate embedded kernel performance.
Basically, these application programs are imple-
mented based on the proc file system, and they are
made up through kernel patches to create a tracing
module of the kernel’s internal system. The purpose
for evaluating kernel performance is to effectively
solve a little traffic problems or lots of interference
status when various sensor information is collected
by users from many pieces of embedded equipments.
The component of Kernel Trace includes the following
functions:
- Event Graph : It expresses processes or system

behaviors that are executed by using kernel tracing
information as the form of a graph. (Fig. 4) shows

(a)

(b)

Fig. 4. Event Graph of Embedded Kernel System

a graph that is presented at a µs unit about system
call usage of each process in the embedded kernel.
Fig. (b) is an expanding graph, which extends Fig.
(a). The left menu frame presents every running
process and the other side shows orderly several
system calls(like read(), write(), etc) which are
used by these processes. The main system tracing
utility for Linux is the Linux Trace Toolkit (LTT),
which is used for analyzing a subset of executed
processes and recording important system events.
Like (Fig. 4), LTT provides an event graph which
views a list of all the processes that were active
during the trace and a graph that characterizes the
behavior of the system[1]. The kernel tracing tool
in LTT is based on the GTK library, but we
implemented the event viewer in (Fig. 4) using the
basis of GDI Plus in Microsoft Inc. Because the
viewer of the figure is based on Windows, we
implemented to operate in web environments by
using ActiveX technology.

- Process Analysis : It provides the per-process
statistics and system statistics. It mainly presents
CPU time, consumption time of running real appli-
cation programs, I/O waiting time and information
about system calls by each application program.

Next Table 1 briefly shows about the monitoring

information[11].

Table 1. The Monitoring Information and Description in
Embedded Equipment

Resources Components Function Descriptions

PROC Info

Process information about
USER, PID. PPID, ST,
NAME, CPU, VMEM,
TTY, TIME, CMD, PRI,
ADDR

PROCESS

PROC
Time Process analysis time

CPU
Usage
Rate

CPU usage rate

CPU
Usage
Time

CPU usage time
(Maximum, Average,
Present)

CPU Idle
Time

The amount of time spent
in idle process out of the
uptime of the system
(Maximum, Average,
Present)

CPU

CPU Info CPU information
Total

Memory
Size

Total memory size
installed in the system

Cached
Memory

Cached memory size in run
time

System
Resources

MEMORY

Available
Memory

Available memory
(Maximum, Average,
Present)

6 A Study on the Design of the Monitoring Architecture for Embedded Kernels based on LTT

MEM Info Memory information about
page allocate, page free.

System

Information about system
obtained by remote
shell(Such as Hostname,
System, Kernel
information, Date
information, etc) COMMAND

General
Command

Information obtained by
general commands(ls, ls -
al, ps -ef, free, du -a, etc)
using remote shell

Event
Graph

Kernel information
traced(displayed by a graph
about running processes,
system behaviors at tracing
system time)

Kernel
Trace

Process
Analysis

Kernel information
traced(process statistics,
system statistics)

These kinds of monitoring information are composed so

that results for users can be simply understood through
MONETA 2.0.

4.2 LTT Operations in MONETA 2.0

In Fig. 5, we can show the kernel information through

the LTT visualization menu in MONETA 2.0 that is added
LTT functions to the existing original MONETA tool.

Fig. 5. Event Trace in MONETA 2.0

In Fig. 5, on the screen of MONETA 2.0, we can show

the frame on the host PC regarding monitoring information
of embedded equipment using LTT functions. The left side
of MONETA 2.0 is the menu frame with information about
individual embedded equipment and the right side shows
information about event trace, which is one of the LTT
functions.

The information obtained by using LTT is composed of
the event trace, the process analysis and the raw trace. On
the event trace frame, we can show a list of all the
processes that were active during the trace and a graph that
characterizes the behavior of the system. The process
analysis provides the per-process statistics and system

statistics. Finally, on the raw trace frame, we can easily
identify applications' interaction with the rest of the system.

4.3 Reconstructed LTT in Java Environment

In this paper, we implemented the LTT visualization tool

based on the GTK library into the LTT viewer using Java
swing reconstructed by Java environments, and we
designed LTT viewer as a form of plug-in project on the
Eclipse platform(Java Integrated Development Environ-
ment).

The following Fig. 6 is the design drawing regarding
analysis of tracing files created by using LTT in a Java
environment.

Fig. 6. LTT design to analyze in a Java environment

The explanation about Fig. 6 follows.
▪ Creation of tracing data in kernel which is provided by

LTT patches. Then, the *.proc file and the *.trace file
are created.

▪ Analysis of necessary tracing data from the *.proc and
the *.trace files. Analysis results from the C library
have to be sampled, and then, by using JNI interface,
sampled data is converted to a Java environment.

▪ Displayed the information about extracted results by
using Java swing through the graphic interface.

In this paper, we implemented the LTT visualization tool

by using Java swing based on the design in (Fig. 6) and

Fig. 7. LTT visualization tool re-implemented by Java swing

Ji-Hye Bae, Yoon-Young Park, and Jung-Ho Park 7

(Fig. 7) and it shows the frame of LTT execution in the
Java application environments. The functions are the same
as with the LTT visualization tool based on the GTK
library provided by the LTT package, but the implement-
tation of Java swing is to be different. LTT visualization
implemented by Java swing also includes LTT functions
such as event trace, process analysis, and raw trace.

The purpose of analyzing in the Java environment is to
change the LTT viewer based on the GTK library into an
Eclipse plug-in project based on Java IDE as well as the
simple implementation of the Java application. In this
paper, we designed the Java application program as the
form of the plug-in on Eclipse platform.

Fig. 8 is the frame of virtual implementation that is to be
the plug-in LTT viewer on Eclipse platform. In Eclipse
workbench, if you click the LTT icon and menu, all of the
LTT functions are shown on the Eclipse execution frame
[10].

Fig. 8. The Eclipse plug-in development of LTT viewer

In this paper, the purpose of the Eclipse plug-in regar-

ding the LTT viewer is to provide more convenient
monitoring development environments to developers and
users for kernel system monitoring.

5. Conclusion and Future Work

In this paper, we described the design and implement-

tation regarding the monitoring system of embedded
equipment using LTT with system profiling functions.
Also, to analyze performance of embedded equipments, we
described the method of monitoring for embedded
equipment using application programs with system pro-
filing functions indicated in the monitoring system model.
So, we implemented the monitoring tool with LTT fun-
ctions, MONETA 2.0, which is reconstructed MONETA
based on NFS and SNMP and we implemented the method
to graphically show monitoring information of embedded
equipment on web-pages[5].

Because MONETA 2.0 is basically the basis of the web,
it has an advantage that it is enabled to use system
monitoring anywhere and anytime on PCs constructed by
networks. But it has no function that automatically
modifies and resolves many problems or bugs of systems,
and in the case of LTT, it wasn't yet implemented for a

real-time monitoring system. We need to make additions to
new functions that enable us to solve these problems.

References

 [1] Karim Yaghmour, “Building Embedded Linux
Systems”, O'Reilly.

 [2] Opersys Homepage, http://www.opersys.com/LTT
 [3] Karim Yaghmour and Michel R.Dagenais, “Mea-

suring and Characterizing System Behavior using
Kernel-Level Event Logging”, Proceedings of 2000
USENIX Annual Technical Conference, San Diego,
California, USA, June 18-23, 2000.

 [4] Embedded Software Technology Center, “Q+ Esto
Manual”, ETRI, Korea.

 [5] S.H.Kim, “A Study on the Monitoring System for
Embedded Device based on the NFS”, Proceedings of
the 21st KIPS Spring Conference, vol. 11, no. 1, pp.
899-902, May, 2004.

 [6] H.J.Shin, “Unix System Construction and Manage-
ment”, SungAn-Dang.

 [7] Douglas R.Mauro, “Essential SNMP”, O'Reilly.
 [8] S.W.Son, C.D.Lim, H.N.Kim, “Debugging Protocol

for Remote Cross Development Environment”, IEEE,
pp. 394~398, 2000

 [9] Yoon-Young Park, “A Study on the Monitoring
Model of Distributed Objects”, ETRI, Korea.

[10] Eclipse Homepage, http://www.eclipse.org
[11] Hyo-Sung Kang, Jong-Mu Choi, Jai-Hoon Kim,

Young-Bae Go, “Agent-Based Embedded Monitoring
System for Ubiquitous Networks Environments,”
Proc. of the 2004 International Conference on Parallel
and Distributed Processing Techniques and Appli-
cation (PDPTA 04), Las Vegas, USA, Jun, 2004.

Ji-Hye Bae
She is a graduate student in the
Department of Computer Science,
Ph.D. course, the graduate school, Sun
Moon University, Korea. She received
her M.S degree in computer science at
Sun Moon University in 2005. Her
major is in embedded systems and her
current research interests are ubiqui-

tous computing and sensor network environments.
Department of Computer Science, the graduate school, Sun
Moon University, Asan, Chungnam, 336-708, Korea

8 A Study on the Design of the Monitoring Architecture for Embedded Kernels based on LTT

Yoon-Young Park
He is a professor in the Faculty of
Computer and Information Sciences,
Sun Moon University, Korea. He
received his M.S and Ph.D. degrees in
computer science from Seoul National
University in 1985 and 1994, respect-
tively. His main majors are distributed
operating systems and real time

systems. Recently, his research interests are sensor
networks and ubiquitous computing. He is a member of
KIPS(Korea Information Processing Society).
Faculty of Computer and Information Sciences, Sun Moon
University, Asan, Chungnam, 336-708, Korea

Jung-Ho Park
He is a professor in the Faculty of
Computer and Information Sciences,
Sun Moon University, Korea. He
received his M.S and Ph.D. degrees in
computer science from Osaka Uni-
versity in 1987 and 1990, respectively.
His current research interests are
distributed algorithms and electronic

commerce. Recently, he has an interest and takes an active
part in Internet Ethics. He is a member and vice president
of KIPS(Korea Information Processing Society).
Faculty of Computer and Information Sciences, Sun Moon
University, Asan, Chungnam, 336-708, Korea

