Search Word(s) in Title, Keywords, Authors, and Abstract:
Person Identification
A Multi-Level Integrator with Programming Based Boosting for Person Authentication Using Different Biometrics
Sumana Kundu and Goutam Sarker
Page: 1114~1135, Vol. 14, No.5, 2018
10.3745/JIPS.02.0094
Keywords: Accuracy, Back Propagation Learning, Biometrics, HBC, F-score, Malsburg Learning, Mega-Super-Classifier, MOCA, Multiple Classification System, OCA, Person Identification, Precision, Recall, RBFN, SOM, Super- Classifier
Show / Hide Abstract
Fuzzy-Membership Based Writer Identification from Handwritten Devnagari Script
Rajiv Kumar, Kiran Kumar Ravulakollu and Rajesh Bhat
Page: 893~913, Vol. 13, No.4, 2017
10.3745/JIPS.02.0018
Keywords: CPAR-2012, Devnagari, Fuzzy Membership, Handwritten Script, Writer Identification
Show / Hide Abstract
A Survey of Face Recognition Techniques
Rabia Jafri and Hamid R Arabnia
Page: 41~68, Vol. 5, No.2, 2009
10.3745/JIPS.2009.5.2.041
Keywords: Face Recognition, Person Identification, Biometrics
Show / Hide Abstract
A Multi-Level Integrator with Programming Based Boosting for Person Authentication Using Different Biometrics
Sumana Kundu and Goutam Sarker
Page: 1114~1135, Vol. 14, No.5, 2018

Keywords: Accuracy, Back Propagation Learning, Biometrics, HBC, F-score, Malsburg Learning, Mega-Super-Classifier, MOCA, Multiple Classification System, OCA, Person Identification, Precision, Recall, RBFN, SOM, Super- Classifier
Show / Hide Abstract
A multiple classification system based on a new boosting technique has been approached utilizing different
biometric traits, that is, color face, iris and eye along with fingerprints of right and left hands, handwriting,
palm-print, gait (silhouettes) and wrist-vein for person authentication. The images of different biometric
traits were taken from different standard databases such as FEI, UTIRIS, CASIA, IAM and CIE. This system is
comprised of three different super-classifiers to individually perform person identification. The individual
classifiers corresponding to each super-classifier in their turn identify different biometric features and their
conclusions are integrated together in their respective super-classifiers. The decisions from individual superclassifiers
are integrated together through a mega-super-classifier to perform the final conclusion using
programming based boosting. The mega-super-classifier system using different super-classifiers in a compact
form is more reliable than single classifier or even single super-classifier system. The system has been
evaluated with accuracy, precision, recall and F-score metrics through holdout method and confusion matrix
for each of the single classifiers, super-classifiers and finally the mega-super-classifier. The different
performance evaluations are appreciable. Also the learning and the recognition time is fairly reasonable.
Thereby making the system is efficient and effective.
Fuzzy-Membership Based Writer Identification from Handwritten Devnagari Script
Rajiv Kumar, Kiran Kumar Ravulakollu and Rajesh Bhat
Page: 893~913, Vol. 13, No.4, 2017

Keywords: CPAR-2012, Devnagari, Fuzzy Membership, Handwritten Script, Writer Identification
Show / Hide Abstract
The handwriting based person identification systems use their designer’s perceived structural properties of handwriting as features. In this paper, we present a system that uses those structural properties as features that graphologists and expert handwriting analyzers use for determining the writer’s personality traits and for making other assessments. The advantage of these features is that their definition is based on sound historical knowledge (i.e., the knowledge discovered by graphologists, psychiatrists, forensic experts, and experts of other domains in analyzing the relationships between handwritten stroke characteristics and the phenomena that imbeds individuality in stroke). Hence, each stroke characteristic reflects a personality trait. We have measured the effectiveness of these features on a subset of handwritten Devnagari and Latin script datasets from the Center for Pattern Analysis and Recognition (CPAR-2012), which were written by 100 people where each person wrote three samples of the Devnagari and Latin text that we have designed for our experiments. The experiment yielded 100% correct identification on the training set. However, we observed an 88% and 89% correct identification rate when we experimented with 200 training samples and 100 test samples on handwritten Devnagari and Latin text. By introducing the majority voting based rejection criteria, the identification accuracy increased to 97% on both script sets.
A Survey of Face Recognition Techniques
Rabia Jafri and Hamid R Arabnia
Page: 41~68, Vol. 5, No.2, 2009

Keywords: Face Recognition, Person Identification, Biometrics
Show / Hide Abstract
Face recognition presents a challenging problem in the field of image analysis and computer vision, and as such has received a great deal of attention over the last few years because of its many applications in various domains. Face recognition techniques can be broadly divided into three categories based on the face data acquisition methodology: methods that operate on intensity images; those that deal with video sequences; and those that require other sensory data such as 3D information or infra-red imagery. In this paper, an overview of some of the well-known methods in each of these categories is provided and some of the benefits and drawbacks of the schemes mentioned therein are examined. Furthermore, a discussion outlining the incentive for using face recognition, the applications of this technology, and some of the difficulties plaguing current systems with regard to this task has also been provided. This paper also mentions some of the most recent algorithms developed for this purpose and attempts to give an idea of the state of the art of face recognition technology.