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Abstract

Image restoration has been carried out by texture synthesis mostly for large regions and inpainting algorithms
for small cracks in images. In this paper, we propose a new approach that allows for the simultaneous fill-in
of different structures and textures by processing in a wavelet domain. A combination of structure inpainting
and patch-based texture synthesis is carried out, which is known as patch-based inpainting, for filling and
updating the target region. The wavelet transform is used for its very good multiresolution capabilities. The
proposed algorithm uses the wavelet domain subbands to resolve the structure and texture components in
smooth approximation and high frequency structural details. The subbands are processed separately by the
prioritized patch-based inpainting with isophote energy driven texture synthesis at the core. The algorithm
automatically estimates the wavelet coefficients of the target regions of various subbands using optimized
patches from the surrounding DWT coefficients. The suggested performance improvement drastically
improves execution speed over the existing algorithm. The proposed patch optimization strategy improves the
quality of the fill. The fill-in is done with higher priority to structures and isophotes arriving at target
boundaries. The effectiveness of the algorithm is demonstrated with natural and textured images with varying
textural complexions.
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1. Introduction

The two most commonly used graphical techniques for filling the gaps after object removals are
image inpainting and texture synthesis. Digital image inpainting refers to the inpainting process
performed on digitized images. Using an algorithm, the image with the mask is filled in such a way that
resulting image looks natural and undistorted. The image manipulation technique is the process of
removing objects from an image that starts with masking out the undesired object and making a gap in
the area occupied by that object. Then, this gap is filled using digital inpainting techniques. The
application of these methods for filling the gaps in an image is called constrained texture synthesis. It is
used for filling images that have more textured areas. It is observed that neither structural inpainting
nor texture synthesis alone can provide the ultimate solution. The combination of these two produces

good results. Image inpainting considers the image as the collection of structures, shapes, and objects
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that are separated from one another by sharp edges but where each one is smooth itself; whereas, the
texture synthesis considers the low stochasticity features of the image.

In this paper, we propose a technique of image inpainting in a discrete wave transformed domain by
using prioritized patch-based inpainting with performance improvement and patch optimization.
Filling the damaged region is done by estimating coefficients from the surrounding wavelet coefficient
in LL, LH, HL, and HH subbands.

2. Related Work

There are various approaches observed for image reconstruction in the literature based on image
inpainting and texture synthesis with their own advantages and limitations. These techniques are listed
as level lines, partial differential equation (PDE)-based inpainting, fluid interpolation, Euler’s elastic,

bounded variation, heat transfer, etc. [1-3].

(@

Fig. 1. Large object removal. (a) Original image. (b) Inpainted image

Texture replication and propagation is used to fill in the gaps in images. Different approaches have
been developed for synthesizing textures, including statistical and image-based methods. Art restorators
completes the missing part of the images by applying their knowledge and abilities to connect the
unknown part and complete it, which is described as the connectivity principle in neuropsychology [4-
6]. We used the same approach with minimum user interaction that is limited to the preparation of the
mask of targeted damaged areas. Our automatic algorithm does the rest. The proposed patch-based
inpainting approach overcomes many of the limitations of earlier approaches.

Automatic digital image inpainting was first brought into the field of image processing by [1]. This
algorithm imitates the traditional inpainting processes, such as identifying the area to be corrected,
marking the boundary of the region to be filled, and continuing the lines of similar color by using
anisotropic diffusion-based on PDEs over the fill front. Another PDE approach-based on vector field
regularization is used in [7]. These techniques are only effective for small scratches. These algorithms
work well with the images that are relatively smooth and that have low noise or texture. The process is
unable to fill in regions that are highly textured or contain a large amount of noise that leads to the non-

continuation and blurring of the edges. Since the time, there have been a number of algorithms
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proposed to solve the inpainting problem [2,3,8]. These algorithms are used to only fill narrow gaps in
images and they fail to reconstruct large damaged regions in the images. Motion estimation and auto
regressive models to interpolate losses in video stills from adjacent frames are used in [9]. The basic idea
was to copy the right pixels from neighboring frames into the gap. The technique couldn’t be applied to
still images or film, where the regions to be inpainted span over many frames.

The work in [10] decomposes the original image into two components, which are processed
separately by inpainting and texture synthesis. Finally, the outputs of the two are summed up as the
resultant image. This approach still remains limited to the removal of small image cracks and the
diffusion process used continues to blur the filled region. Drori et al. [11] describes an algorithm that
interweaves a smooth approximation with exemplar-based detail synthesis for image completion. Both
of these algorithms have been found to be extremely slow.

Harrison [12] was the first to propose the usage of exemplar-based synthesis specifically for object
removal. He proposed that the level of ‘texturedness’ of the pixel’s neighborhood determine the order in
which a pixel in the target region was filled. Although his intuition is sound, strong linear structures are
often overruled by nearby noise, reducing the value of the extra computation. A related technique in
[13] drove the fill order by the local shape of the target region, but this method fails to explicitly
propagate linear structures.

Several researchers have considered texture synthesis as a way to fill large image regions with ‘pure’
textures. Pure textures are defined as repetitive two-dimensional textural patterns with moderate
stochasticity. This is based on a large amount of research that has been carried out on texture synthesis.
This research has to replicate texture from the given small source sample of pure texture [14-16]. These
sample-based techniques cheaply and effectively generate new texture by sampling and copying color
values from the source [17-20]. It only contains the process to replicate textured areas in the images. In
the case of regular textures, sample-based inpainting works well, but it fails to replicate structures in the
still images.

In contrast with previous approaches, it was necessary to introduce the technique that does not
require the user to specify where the fill-in information comes from. It can be automatically
accomplished by the algorithm. The technique should allow to simultaneously fill-in numerous regions
containing completely different structures and surrounding backgrounds. In addition, no limitations
should be imposed on the topology of the region to be inpainted. Therefore, the patch-based approach
of Criminisi et al. [21] seems to be more appropriate. In continuation, we are proposing wavelet domain
processing driven by isophote energy and patch optimization. This results in an algorithm that has the
efficiency and qualitative performance of exemplar-based texture synthesis, as well as linear structure
inpainting, with the advantages of processing the edge details in various frequency bands at various
resolution levels separately.

The methods in [22,23] propagate the image texture in a semiautomatic way, where the user needs to
sketch the structure that must be preserved in the image. Afterwards, the algorithm just fills the region
with the appropriate textures. Such methods present good results, but at the cost of user intervention.

Image inpainting based on wavelet techniques started with the work of Chan et al. [24] and Rane et al.
[25], who used inpainting algorithms in order to recover lost wavelet coefficients by estimating
information from surrounding wavelet coefficients. The algorithm in [25] repairs sparse blocks of JPEG
image data lost in wireless communications. Their method fills 8x8 blocks of wavelet coefficients using

a specific approach for each DWT level detail. It is more like a denoising algorithm for blocking salt and
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pepper noise, rather than an actual inpainting algorithm. In fact, this type of technique is not exactly an
inpainting technique.

A technique focused on image inpainting in the wavelet domain was presented by Patwardhan and
Sapiro [26]. They used the projection-based convex sets (POCS). Their method projects the image in a
wavelet domain and estimates the target region pixel coefficients using surrounding wavelet coefficients
and projects it onto the original image to fill the missing region pixels by moving back and forth from
spatial to wavelet domains and vice versa. However, their method is not efficient due to the
computational overhead for filling the regions with complex textural information and a larger target
area.

The techniques proposed in [27] work with the DWT mask but leads to a diffusion blur in the case of
a large target region. The authors in [28] proposed CWT processing while the method proposed in [29]
works in wavelet transform with the fast marching method (FMM). The approaches proposed in [30-
32] used wavelet transform techniques for reproducing edge details with various techniques like total
variation (TV), divisional regularization, the fast optimization transfer algorithm, etc. mostly for
processing and restoring noisy images. They work better for simple textures and small cracks in images.
The method proposed in [33] uses structure propagation by level lines and Bezier curve approximations
to reproduce the edges, but it only works for small regions. Most of the algorithms proposed in [27-32]
reproduce edges and simple textures better for small damaged regions, but they lead to the existence of
artifacts in large regions and big object removal.

In this paper, we are proposing a prioritized patch-based image inpainting method applied to wavelet
transformed scaling and detailed subbands by providing an estimation of the patch’s isophote energy.
Since it was observed in our previous work on spatial domain inpainting [34,35] that the most effective
patch size for inpainting depends on various types details exist in the image under consideration. The
additional contribution of our current study is patch size optimization based on the best matching
distance in all subbands and RGB planes with a variational energy of wavelet coefficients in the

surrounding of the pixel to be filled.

3. Wavelet Domain Processing, A Brief Review

As a powerful mathematical tool, the wavelet transform (WT) finds several applications in computer

graphics and image processing. The continuous wavelet transform of a function f(x) € L>(R) is given

by:

Wy = {foey Wap (X)) (D
Weay = I fay X Wi p(x) dx 2)
Var () = 7= x 9 () 3)

where a, b are scaling and translation constants respectively. DWT is a discretized version in which the
spatial domain function f(x) can be expressed as a series expansion of the scaling and wavelet functions

as proposed in [36] and given below:
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() = X Wy Goy k) @ 1 () + X520 2k Wy (G, ) 4 () (4)

where, @; (x), ¥;,(x) represent the scaling and wavelet functions, respectively, and satisfy:
@ji(x) = Ty hy(n) 204072 @27+ x — ) )
Wi () = T hy )20+ (274 x —n) (6)

for all j, k € Z. The W, (jo, k) & Wy, (j, k) are the scaling, wavelet coefficients, respectively, and are given
by:
W, (k) = Xnhy(n — 2k) W,(j + 1,n) (7)

Wy, k) = S hy(n — 2k) W, (j + 1,7) 8)

where, hy,(n — 2k) and hy,(n — 2k) are the scaling and wavelet vector expansions, respectively, which
are basically forms of LPF and HPF filters. Egs. (7) and (8) reveal a remarkable relationship between the
DWT coefficients of adjacent scales. The scale j approximates and details coefficients that can be
computed by convolving the scale j+1 approximation coefficients W, (j + 1,n) with the time reversed
scaling and wavelet vectors h,(—n) and h,,(—n) and dyadic subsampling of the result. The low-pass
filtered approximation is resubmitted to this process to get the next level of decomposition. The process

for Level 1 decomposition is shown in Fig. 2 for a 2D image.

W, (,m,n)

Wy G,m,n)

Wi (j,mn)

W, (j,m,n)

(a) (b)

Fig. 2. (a) 2D image wavelet decomposition. (b) 2D image wavelet reconstruction.

The wavelet analysis is done by applying the dilation and translation of function 14 o(x), which is
also called the mother wavelet. The notion of scale is very important in the wavelet theory in that the
coarser the scale of analysis, the fewer details of the signal there are that are resolved. On the other
hand, a finer scale resolves more details of the processed signal or image. The implementation of DWT
in Fig. 2 is based on the pyramidal algorithm proposed by Mallat [37]. It applies 1D transform column-
wise and then row-wise to the image. The resultant coefficients are the scaling (LL), horizontal (HL),

vertical (LH), and diagonal (HH), respectively, which are detailed as:

W, (,m,n), W' (G, m,n), Wy (j,m,n), W (j,m,n) } 9)

An example of decomposition in two dyadic scales using DWT is illustrated in Fig. 3. It is important

to note that two properties of the DWT, on which this work is strongly based, are: that the
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approximation image is smooth, and that the detail images provide information on image edges that are
high frequency details, which are separated over various bands by the band pass filtering effect of DWT.
They can be separately tackled and superposed to obtain the final image.

Woo W1zlo
Wv’;’l
4
W¢0 Wul;)o
Wx[‘ﬁ Wl[ll)l
() (b)

Fig. 3. Two level wavelet decomposition (a) and the wavelet coefficients (b).

4. Proposed Algorithm (PBI_DWT)

Image inpainting and texture synthesis appear to be different, but they might actually complement
each other. If we could combine the advantages of both approaches, we would get a clear gap filling that
is the natural extension from the surrounding area. Criminisi et al. proposed the algorithm that does
exactly this [21]. They used the sampling concept from Efros and Leung’s approach [38]. The
improvement over Efros and Leung’s method was that Criminisi et al.’s approach took isophotes into
consideration and gave higher priority to the points that were on the boundary of a gap, as well as on
structures, isophotes, and corners, which led to them being naturally extended into the gap. To identify
these points, Criminisi et al. [21] assigned a priority value to all the pixels on the boundary of the gap.
The important points on structure and corners were then assigned higher priorities according to the

algorithm, and thus, the linear structures were extended first.

Fig. 4. Notation diagram.

The proposed model in this paper for digital image inpainting in the wavelet domain explores wavelet

coefficients to ensure the proper preservation of the image structure and the correct filling of the
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inpainting region with our prioritized patch based texture synthesis and patch optimization technique.
We are proposing the additive form of priorities, which is more linear than [21], and additionally uses
the variational isophote energy of the fill-front patches to decide the priorities along the fill-. The
notation used in the algorithm is shown in Fig. 4, where [ is an entire subband and ¢,,,, 2,,, .2,, are the
source region (undamaged portion of the image), the target region, and the target region boundary (fill-
front), respectively. For each pixel on the boundary, the patch 1, is constructed with the pixel at the
center, as shown in Fig. 4. The n, is a normal to the contour 0.2, of the target region (2, and I is the
isophote (direction and intensity) at point p. The source region is denoted by ¢, and the entire
subband is denoted with 1.

The algorithm is supplied with the damaged image I,, and the user defined mask image I. The mask
image is marked with the target area, 2, with any suitable color. The decomposition of both images is
done by the decimated DWT. The resulting LL approximation and HL, LH, and HH details the
subband’s target regions are then fill with our prioritized patch based algorithm with patch
optimization at every decomposition levels. The corresponding mask specifications are maintained
using the subbands of mask images. The approximation and detail subbands are processed separately.
The final image is reconstructed from these filled subbands using inverse DWT. The algorithm is

explained in the following section.

4.1 Prioritized Patch-Based Inpainting Algorithm with Patch Size Optimization in
a Wavelet Domain

To keep track of filling the DWT coefficients in the target region, the binary mask is prepared from
the mask image, with 1 at the positions of the pixels to be filled. The target region is cleared with 0 in
the input image I,, and subjected to wavelet decomposition. The border of this region creates an
artificial edge, which leads to generating nonzero coefficients in details wavelet decomposition. The
extension of this border edge is a function of the support of the chosen wavelet basis where compact
support wavelets present less of a spread and wider support wavelets produce more of spread of the
unwanted edge information in the target region. It is minimized by restricting to the compact support
db1 wavelet and by keeping the decomposition level in the range of 1-3.

As the DWT coefficients are position dependent on the subbands of the same and all other higher-
level decompositions, any shift in filling leads to a target region border visualization effect. This can be
tackled by the wavelet domain inpainting mask subband of the mask image I.

The algorithm identifies the fill-front pixels and stores their indices for subsequent processing. It
assigns the priorities to each pixel on the fill-front. The details of the priority computation are discussed
in the following sections. In our proposed algorithm, the patch’s priority is the weighted sum of three
elements: the confidence term Cl‘f,’p (p), the data term Dl‘;,’p (p), and the variational isophote energy E:,’fp ).
Their contribution is adjusted depending on the structural and textural complexity of the image. The
algorithm then finds the highest priority indexed patch ¥,c50, and searches the matching index patch

Yqeq,, to fill the pixel positions in Ypegowvpeq,, 3S:

Ipeanw,Vpe.QW = Iq,{Vqupqn¢W<->P€¢pnﬂw} (10)
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The one iteration of the filling process by the proposed algorithm is pictorially shown in Fig. 5, which
indicates (a) as original image I with €, as the region to fill, 9Q,, as the target region boundary (fill-
front), ¢, = I — Q,, as the source region; (b) as 1, the index patch to be filled centered @ p € 09,
(c) as the probable match of y,, along the isophote (e.g., 7 and ;); and (d) the unfilled portion of

Ypeq,, is filled from the best corresponding matching patch portion of Yaepunyy:

(a) (b) (d)
Fig. 5. Structure propagation by patch based synthesis. (a) Fill-front, (b) patch 1, (c) patch search, and
(d) fill-region filled.

4.2 Computation of Priorities

As pointed out by other authors in [1] and [21], the random or sequential fill order gives the onion
pill effect, which does not produce good results in general [35]. For plausible results we propose
selecting a patch with high variational isophote energy and high confidence as the highest priority
candidate to fill. In this work the priority is decided by three factors:

1) Variational isophote energy Ez‘f;vp (p): The area of higher variational energy is mostly due to more
structure and texture. Hence, it is of prime importance in the fill order.

2) Isophote strength and direction Dl‘f,’p(p): This term describes how strongly the isophote is hitting
the boundary. It boosts the priority of a patch that an isophote ‘flows’ into. DI‘/’,VP is especially
important since it encourages linear structures to be synthesized first and is propagated securely
into the target region. High strength isophotes need to be processed on priority. For better
restoration and continuity of image texture and structure, the strength and the direction of the
isophote in the neighborhood of the target region needs to be estimated so that the edges
“penetrate” the target region in the same direction as in the source area. This can be ensured by
the gradient and normal vector to the boundary at point p, as shown in Fig. 4.

3) Patch confidence Cl‘ﬁ’p (p): This term indicates how many pixels are already filled in the patch.
The pixels on sharp corners and tendrils are assigned high confidence via this term and are filled
on priority, which leads to the simultaneous propagation of the neighboring structure and

texture in the gap.

4.2.1 The variational isophote energy, E{,’j’p )

The DWT detail coefficients separate the high frequency variations from a smooth background. We

find the variational energy to be:

1190 | J Inf Process Syst, Vol.13, No.5, pp.1183~1202, October 2017



Rajesh P. Borole and Sanjiv V. Bonde

E¥(p) = z Wy jy®

vi,j

2
EY =ar max o (wg 11
¥p ®) & Wl dELH HLHH [Zd 2 61/:}{ b ( ‘l’p(u)) (an

where ng, d € LH,HL, HH denotes the DWT detail coefficient at a particular decomposition level and
Vi,j € Y, N ¢, denotes the pixels of patch 1, that lies in the source region containing valid

information. For a color image we consider the variational energy of three RGB plane patches.

4.2.2 The strength and direction, D},‘jp (»)

The strength in the direction of the isophote is given by data term as:

a

VIF(x,y)xn
D;,Vp(p) =P P 0< Dl‘;,; <1 (12)

where VI (x,y) is the magnitude along the normal to the fill-front at pixel p and a is a normalization
factor (e.g., @ = 255 for gray level images and a = 3 x 255 for RGB images).

As we know that the LH and HL details capture the edges in horizontal and vertical directions
respectively, we propose using them as the gradient components in horizontal and vertical directions.
Thus:

Wyl (x,y) 13)
W,

VIF(x,y) = [

g b (6 y)
with Eq. (13) and the unit normal vector, n,,, which are found from V operation on the logical mask
image, the proposed algorithm decides the isophote strength in the direction of the propagation for
processing the LH, HL, and HH coefficients. The estimation of the data term Dy, (») for the LL subband
is done by gradient operating on that subband. The data terms are estimated to be high for the pixel

patches on the isophote (indicated in green), as shown in Fig. 6(a).

4.2.3 The confidence

The proposed algorithm assigns high priorities to the pixels on corners and thin tendrils via a
confidence term similar to [21]. The confidence of the pixel is estimated by the status of the filled
neighborhood of the pixel. In Fig. 6(b), the pixels marked in the green area have a higher confidence to

that of the pixel in red colored area. The confidence of the pixel is estimated as:

Zqul’pnt;bw Clvﬁvp @

w i w
cy (p) = ™ , o=<cy <1 (14)

where Cl‘ﬁ/p (p) is the confidence of the already filled pixel g.
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(a) (b)

Fig. 6. Effects of confidence and data terms, modified from [21]. (a) Data terms and (b) confidence.

In the proposed algorithm, the confidence of the source region (¢,,) pixels is initially set to 1 and the
gap region (£,,) to 0. Once the boundary pixel patch 1, is filled, the newly filled pixels of the target

region of Ypypeq, ; Will be assigned the same confidence C&,"p (p) of the parent pixel.

4.2.4 The priorities

In the proposed algorithm the priority estimation is based on geometric aspects in the patch and the
isophote energy of the wavelet coefficients in the patch. It was observed in our implementation of the
algorithm by Criminisi et al. [21] that as the algorithm propagates deeper into the target region, the
confidence values drop exponentially. This makes the computed priorities undistinguishable and leads
to incorrect filling order as filling progresses deeper into the target region. Even if the data values
increase, the shape of the priority curve is dominated by exponential falling confidence values, which
leads to artifacts. The effect of this is more noticeable while filling a large target region. This intense
dominance is due to the effect of multiplicative priorities proposed in [21]. Thus, we proposed the
additive form of priority estimation as Eq. (15), which is more linear and stable to unexpected changes.
Eq. (15) also adds the patch variational energy to strengthen the structure propagation. The pixel

priorities are estimated as:
P(p) = Cf, (b) + DY, () + EY}. (p) (15)

The direct combination of C$’p (p) and Dl‘f,’p (p) is still unreasonable due to a significant difference in
their values. As the algorithm propagates, the falling rate of C$’p (p) is significant due its exponential

nature, as shown in Fig. 7. Therefore, it needs to be regularized as:
RCl‘,’,"p(p) =1-w)X Cl‘ffp(P) +w, 0<w<1. (16)

where, w is a regularsing factor.
The additional weights are incorporated to control the contribution of CI‘,’,"p (), Dl‘f,’p (p) and El‘f,’p (»)

in the estimation of priorities for various types of images as shown below:

P(p) = a X RCy, (p) + B x Dy, (p) + vEy, (P) (17)

where,
0<apfy<l&a+f=1
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We typically used @ = 0.7, = 0.3 & y = 0.5 in Eq. (16) for test results.
Finally, the first highest priority block is decided by:

P € argmaxpeag,, {P(p)} (18)

where, p € 02,, indicates the index of the highest priority patch @ p in the image.

4.3 Performance Improvement

It is also obvious that the best matching patch will be mostly found in the close vicinity of the target
patch. The complete source area search method in [21] has been found to have a large performance
overhead. Thus, we are proposing that the search area A; is bound around the target patch 1, either by
the n x m pixel or by empirical equations proposed in our earlier work [34] to improve the performance
of the algorithm. In our current work we are using A; = K X N x N, where K is a search area factor to

limit the search area and N X N is the size of the patch.

06 0.044 0.62 1
—~ s = — 06 i L RC(p)
S S oo =
S o4 5 D(p) = 058 3
8 £ 0038 — % s 06
S 03 = 3 P(p) g
g 1) [} 5 056 — E ~
= e £ 0036 =] S 04f N\
= 02 s S o S N
8 5 o £" = N @)
0.1 0.2
0.032 0.52 \&\
% 100 200 300 L 05 0
0 100 200 300 o 100 200 300 0 100 200 300
Iterations Iterations Iterations Iterations
(a) (b) () (d)

Fig. 7. Average fall of (a) Cl‘l’,vp, (b) D;;,’p, (c) priorities, and (d) regularized RCl‘i;Vp-

4.4 Patch Optimization

It has been observed that different kinds of images have varying texture and structure complexions
Therefore, the fixed patch size may not provide equally good results. In complex images, the patch size
needs to be varied in accordance to the structural and textural complexities around the target area.
Manually changing the patch size on every iteration is a difficult task. Thus, we are proposing the
automatic patch size optimization in the algorithm. The image values of the highest priority patch

corresponding to index patch 1, are given as:

~

1 _ 19
P(0))pednw viviedp Nw} (19)

The algorithm automatically decides the optimum patch size by testing the quality of the filling
source patch 7q with 7p, which is done by keeping the minimum sum squared error (SSE) patch. The
SSE is estimated only for the undamaged portion of the target patch by varying the patch size from
3 x 3 to 15 X 15 pixels. At each iteration, after the highest priority index patch 1, with a minimum
size is selected as the filling target, the best matching patch 1, is searched in the bounded area in the
neighborhood of 1, as the source patch. The highest priority index patch, lz;p{pea.{lw} is constructed

with the initial patch size of sz.
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The image patch iq{qe(,,wn 4 ) corresponding to index patch 1), is searched in the bounded area such
that:

Iy = argming¢3 15 [d Dpean,y Patgepnnag)] (20)

where, [, , I, are the image values corresponding to the index patches J)p and lf)q.
The estimation of distance d(lﬁp{peaﬂw}, lﬁq{qe¢wn 45)) is given by:
o S 2 4
() = Zvij(Tp(pvijeownas o pivijepwnas) (21)
#p(vpewnip)

SZ

For patch optimization, the distance metric d(,) is estimated over the LH, LL, and HH subband
portion of every best matching patch 1,4, < 1, in the bounded area by computing the SSE with the
automatic variation of a patch size from sz =3 x 3to5z = 15 X 15) by Egs. (20) and (21). Since a
bigger patch size leads to higher SSE, the normalization is done using number of patch pixels
#ppepny, involved in calculating Eq. (21). It is possible that multiple best matching patches I, are

found with the same distance d(,). In that case we computed the variance with respect to the mean of

Ipe% ng,, as:

2
V= Zii(latuplacow-vprimietq nowl ™) (22)
#wP{PE¢wm/1p}

M = Zi.j(’p(i,j){peanw,vi,vje@p n¢w}> (23)
#pepwnipp)

where, #1,, is the cardinality of the set.

4.5 Proposed Algorithm Pseudo Code

= Extract programmatically the initial fill front 8Q,,.
= Repeat{
For each level j {For (LH, HL, HH){
) Identify the fill front, 892%,. If 2, = 0, exit.
2) Compute priorities using Eq. (17).

—

For (sz to 5z){
3) Find patch, Y,eaq,,, with the maximum priority.
4) Search the bounded area, A; € ¢,,, for matching the patch, Tq S Y,
5) Apply patch automation optimization, Eq. (20,21).
}// Repeat steps (3-5) iteratively to find best sized patch, 7q.
6) Copy image data from optimized best matching source patch, iq corresponds to P,eq.
7) Update Confidence of newly filled pixels
8) Update the fill status of newly filled pixels.
1/ Repeat steps 1 to 7.
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11}/ Repeat step (1-8) until all pixels are filled
9) Repeat steps (1-8) for LL subband.
} until all the pixels are filled.
10) Reconstruct final image using IDWT

where ‘t’ indicates the iterator.

4.6 Implementation Details

The program will start with masked and degraded images. The mask image is prepared by the user
with any photo editing tool (e.g., MS Paint). It contains the object to be inpainted, marked with some
color. The isophote computation is done by the image gradients with a 90° gradient rotation and it is

normalized with o as:

VIIJ,' (x,y) = Vi, rotafxedby 90° (24)

a is a normalization factor (e.g., 255 for a typical grey level image and 255 X 3 for an RGB image).
The contour of the target region is found by convolving the target region with a Laplacian of Gaussian
(LoG) edge detector. The fill-front normals are calculated as normalized gradients at target boundary
pixels by using a binary mask image. The computation of the data term for each pixel on the boundary
is carried out by using Eq. (12).

The confidence of each pixel is calculated by constructing a patch 1, around that pixel on the fill-
front. Then, the array of pixel indices ,|p € 042, N ¢, is found. The confidence of the pixel is

determined as:

w Number of Pixels already filled in {p
cy = — (25)
P Total pixels in Yy

Using wap (p), wap (p) and E,‘Ij'p (p), the patch priority P(p) for boundary pixel is computed using Eq.
(17). The typical values of « = 0.2, B = 0.8 & w = 0.7 y = 0.5 are used as initial values.

The maximum priority pixel on the fill-front is found and the index patch is obtained around it as v,,,
as shown in Fig. 5(b). Part of Y,,¢q , in €, is to be filled at the first iteration of the filling process. The
global search is performed in A; € ¢,, for the best matching patch 1, as shown in Fig. 5(c). Only the
pixels of 1, corresponding to the target region will be filled from ¥4¢q,, in Fig. 5(d). The fill region
status of newly filled pixels is then updated. The confidence values of newly filled pixels are updated to
their parent pixels. If the newly filled region contains the isophote, this is to be considered in the next
iteration of the proposed algorithm. The algorithm is iterated until the entire fill region is covered in all
DWT subbands. The LL approximation is processed separately with the same algorithm without
variational patch energy. The final image is reconstructed from all {j} level results using an inverse
DWT. All experiments were run on a 3.2 GHz Intel I7 processor with 8 GB of RAM.

5. The Metric Used for Estimating Comparative Quality

Peak signal to noise ratio (PSNR):
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1

MSE = — Y% Xjso [h () — L3 DT (26)

MAX, = max[maxvi,j(|11|),maxvi‘j(|12|)] (27)
2

PSNR = 10.logy, [t | (28)

where, I; is the original image and I, is either the degraded or inpainted image.

6. Results

Fig. 1 shows the large object removal process. Figs. 8 and 9 shows comparative image results of our
proposed algorithm over the algorithm proposed in [21] and [39] respectively. The test results of the
proposed algorithm for a variety of natural are shown in Fig. 10. The corresponding quality measures
are listed in Table 1, which also lists the PSNR-D of the degraded image and the PSNR Cri of our
implementation of Criminisi et al. [21] algorithm. The last column of Table 1 lists the results of our
proposed algorithm. The comparative trend of our proposed algorithm and the results of the algorithm
in [21] are shown in Figs. 11 and 12 shows the visual results of our proposed algorithm for various
textured images. All of the textured images were taken from the STex Salzburg Texture Image Database.

Table 1 lists the quality measures for the textured images in Fig. 12. It also lists the PSNR-D for the
degraded image, the PSNR Cri for the algorithm in [21], and the PSNR PBI_DWT for our proposed
algorithm. The graphical comparison is shown in Fig. 13 for the textured images in Table 2. It was
observed that the proposed algorithm achieves a quality improvement of 5.16 dB to 12.1 dB in relation
to degraded images in the case of natural images and from 7.41 dB to 16.25 dB in the case of textured
images. The proposed algorithm achieved a comparative betterment of up to 3.28 dB and up to 3.81 dB

over the algorithm in [21] in the cases of natural and textured images, respectively.

Fig. 8. (a) Original images, (b) images by method [21], and (c) present result
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(@ (b) (c)

Img4
(a) (b) (0
Fig. 10. Natural images. (a) original, (b) mask, and (c) inpainted.
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Table 1. PSNR results in (dB) of, proposed algorithm & [21], for natural images

Name PSNR-D PSNR Cri PSNR PBI_DWT
Mountie 4.13 8.59 9.29
Elephant 3.18 9.28 10.01
Imgl 3.49 12.11 12.93
ILand256 2.86 11.59 14.88
Shark2 4.21 12.78 13.49
Img4 3.85 12.38 13.46
Rock 4.73 15.19 16.46

PSNR=peak signal to noise ratio.

Algorithm PBI_DWT: PSNR (natural images)

18.0 ,
16.0
5514'0
g 10
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Z 80
» 6.0
[a 4.0 0\‘___.\‘/0\.—/"
2.0
0.0
e £ B g £ 3 3
S < E S @ E <
S 2 c S
S o 3
Natural images
—e— PSNR-D PSNR Cri —e—PSNR PBI_DWT

Fig. 11. Comparative peak signal to noise ratio (PSNR) results natural images, of PBI_DWT over algorithm
of [21].

Table 2. PSNR results in (dB) of, proposed algorithm & [21], for textured images

Sr Name PSNR-D PSNR Cri [21] PSNR PBI_DWT
1 Bush2 4.66 11.44 13.31
2 Bush5 4.30 11.62 14.12
3 Bush0 3.55 12.43 14.62
4 Bark 6.50 13.46 13.91
5 Ratten2 7.30 16.76 18.33
6 Wood40 8.50 18.88 20.58
7 Fabricl5 10.65 20.62 24.43
8 Fabric2 6.78 21.71 23.03

PSNR=peak signal to noise ratio.

1198 | J Inf Process Syst, Vol.13, No.5, pp.1183~1202, October 2017



Rajesh P. Borole and Sanjiv V. Bonde

Wood40

Fabricl5
Fabric2
(a) (b) (c)

Fig. 12. Texture reconstruction (Salzburg Texture Image Database). (a) Original, (b) mask, and (c)
inpainted images.
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Fig.

Algorithm PBI_DWT: PSNR (Textures)
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o
=2
5 10.0
[a %
5.0
0.0 >
o wn o = (o] o wn o
£ % % & § I ©° ¢
S =3 S o0 += o = Q
[~} [~} [~} w o e} ©
o = K w-
Textures

PSNR Cri  —e—PSNR PBI_DWT —e—PSNR-D

13. Comparative peak signal to noise ratio (PSNR) results textures, of PBI_DWT over algorithm of [21].
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