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Abstract

A prototype selection method chooses a small set of training points from a whole set of class data. As the data
size increases, the selected prototypes play a significant role in covering class regions and learning a
discriminate rule. This paper discusses the methods for selecting prototypes in a classification framework. We
formulate a prototype selection problem into a set covering optimization problem in which the sets are
composed with distance metric and predefined classes. The formulation of our problem makes us draw
attention only to prototypes per class, not considering the other class points. A training point becomes a
prototype by checking the number of neighbors and whether it is preselected. In this setting, we propose a
greedy algorithm which chooses the most relevant points for preserving the class dominant regions. The
proposed method is simple to implement, does not have parameters to adapt, and achieves better or
comparable results on both artificial and real-world problems.
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1. Introduction

In pattern classification, the concept of dissimilarity is widely taken up as a simple and intuitive
metric for assessing how different two data points are. The classes of two points are in the same class if
the dissimilarity of two patterns is small or in the different classes otherwise. In classification,
prototypes are a number of representatives per class from a prepared set of training data, but might be
much more informative for training and predicting. A prototype classification is based on the
dissimilarity among pre-collected points. The class of a test point is assigned to that of its nearest
prototype. Nearest neighbor rule is one of the simplest but most effective method in building a
prototype selection method [1,2]. Practically speaking, the learning capability of a classification
algorithm is not increased when the amount of training data is insufficient against its model
complexity. As the size of training data increases, the learning complexity of a nearest neighbor
algorithm increases especially in view of learning time. Moreover, a training data might contain
spurious data that is redundant or noisy, increasing the model complexity.

A prototype selection method has been studied to select a handful of informative points from the

# This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which
permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Manuscript received October 6, 2016, first revision February 15, 2017; accepted May 18, 2017.

Corresponding Author: Daewon Kim (drdwkim@dku.edu)

* Dept. of Software, Dankook University, Yongin, Korea (dshwang@dankook.ac.kr)

**Dept. of Applied Computer Engineering, Dankook University, Yongin, Korea (drdwkim@dku.edu)

www.kips.or.kr Copyright© 2017 KIPS
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training set so that all training points are not necessary for classification and spurious data do not harm
the learning capability [3-5]. A prototype selection makes an original problem a new learning task with
a relatively small set of selected data. A prototype classification framework takes the two steps. In the
first step, a prototype selection method is applied to select a handful of prototypes per class. We assume
that the set of selected points reflect the distribution of the original data or it is enough for learning
classification rules with the intended classifier. Secondly the classifier exploits discrimination rules from
the new simple task in pursuit of low storage requirement, low computational cost, and equivalent
generalization compared to those results of the original problem [4,5]. When the number of training
data is too large, the conciseness of training data plays an important role for interpreting a predicted
result. The selected prototype helps to shorten the learning time and on why a given prediction has been
made [6]. Therefore, prototype learning takes advantages of data sparsity and fast learning as well as
prediction explanation without degrading generalization performance. Several prototype selection
methods have been reviewed with editing prototypes [7,8], sphere cover prototype [6,9-13], and
boundary prototypes [14,15]. Learning vector quantization (LVQ), k-means, and k-memoir are the
most widely used prototype methods which edit prototypes [1]. Restricted coulomb energy (RCE)
[9,10], randomized sphere cover (RSC) [12] and set covering finding [11,16] select prototypes that
cover class region by considering data hyper spheres and their classes. Another prototype classifier try
to find a set of border or component patterns that are used in constituting a discriminate rule. Gaussian
mixture model (GMM) [1] models the class-conditional densities as a Gaussian mixture and a class
decision rule of support vector machine (SVM) depends on border patterns [14,15]. A prototype
classifier suffers from some drawbacks: the unpredictable number of prototypes and the sensitivity to
data order. The appropriate number of prototypes has to be determined by re-running the algorithm
several times along with the evaluation of selected prototypes. A prototype selection method is sensitive
to the presenting order of data points. Each run selects a different set of prototypes. In this work, we
present a new deviation, based on sphere cover prototype, which chooses the most relevant points for
preserving the class discrimination regions. The proposed method always selects a set of prototypes,
including all the training data, and does not require any predefined parameters. This paper is organized
as follows. In Section 2, some works related to prototype selection methods are discussed. Section 3
proposes our method for prototype selection and Section 4 presents the experimental results that
examine the effectiveness of the proposed approach and compares it to a nearest-neighbor algorithm.

Finally, in Section 5, we summarize our work and give the directions for future work.

2. Related Background

The RCE network is a classification algorithm using a set of region covering prototypes into which
the feature space is divided [9]. The algorithm selects a subset of training points to cover regions of
different classes in the training phase. A training point becomes a new prototype if it is not chosen and
its covering region doesn't have the instances of other classes. The training procedure stops and outputs
the set of prototypes where their covering regions contain all the training points. A radius of a
prototype is controlled between preselected minimum and maximum values in the training process.
Depending on the preselected minimum radius, the new prototype might include other class points.

The greedy sphere covering (GSC) algorithm extends the RCE network in view of adapting the radii of
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prototypes and minimizing the number of prototypes [10]. The choice of prototypes is based on a
greedy method using the largest number of uncovered points in the hope of minimizing the size of
prototypes so that the union of the chosen sphere regions covers all the training examples. The
randomized sphere cover (aRSC) classifier computes the radius of a prototype in a similar way to the
GSC method, but controls the number of instances covered by a potential prototype with parameter
[12]. In addition, the parameter a has a smoothing effect around the decision boundary by filtering out
noises or excluding outliers. The GSC and aRSC methods do not have the training points of other
classes in constituting sphere covering regions. The set covering machine (SCM) uses data-dependent
balls to select prototypes from the training examples and constructs a Boolean function that is the
smallest conjunction (or disjunction) of positive prototypes (or negative prototypes) [16]. The center
instances of selected balls become prototypes and are used for a Boolean classification rule. The radius
of a prototype is controlled with a very small value so that the ball of a prototype doesn't include the
instances of other class. Since the SCM is applicable only to 2-class tasks, we must adopt the algorithm
in one-versus-one or one-versus-all fashion for k-class problems (k>2). In [17], a class cover problem is
formulated by finding a small number of sphere prototypes covering all the training examples in one
class without having other class examples. Based on a class cover problem, the class cover catch digraph
(CCCD) of instance x is defined by including the homogeneous instances within the minimum distance
to other class instances but centered at x [13]. The CCCDs of all training points divide the feature space
into covering regions and are represented by a directed graph. The prototype selection follows a greedy
method to find a near-minimal dominating set. The set of prototypes forms a CCCD classifier using a
nearest neighbor rule that scales distances by the calculated radii. In [6], they adapt a prototype
selection problem to a set covering problem in optimization theory. Depending on a pre-chosen radius,
the feature space is divided into sphere covering regions centered at training points. The sphere of a
training point allows for having or not having the other class points. Based on a set covering
optimization, the algorithm finds a feasible solution that partially covers the training points. Their
algorithm has the following properties: covering as many training data of the same class as possible,
covering as few other class data as possible, and minimizing a number of prototypes [6,17]. They
embody these properties to a set covering optimization and propose a greedy algorithm for solving the
constrained optimization problem. The set of sphere covering regions makes up of the set of prototypes
by minimizing the number of prototypes and the number of other class points within covering spheres
among prototypes. We summarize the discussed studies with three factors: how to define a sphere
covering region of prototype, how to compute the radii of prototypes, and how to select prototypes. A
sphere covering region depends on the inclusion of other class points and the radius of a training point
is easily estimated through the nearest neighbor rule. The RCE network and the prototype selection
with a fixed radius allow sphere covering regions to include training points with other classes. The
aRSC and GSC, SCM, and CCCD approaches do not allows for including other class points in building
sphere covering regions. The reviewed methods select prototypes in brute-force or greedy strategy [18].
The RCE, aRSC and the CCCD approach randomly choose a potential prototype, estimate its radius
and, in brute-force manner, consider if it becomes a prototype or not. A greedy approach is preferable
for the GSC, SCM and the prototype selection with a fixed radius. The sphere covering algorithm we
propose get motivated by the prototype selection with a fixed radius, but differs in that a sphere
covering region does not allow for the embodiment of training points with other classes and controls

the radius of a prototype. This change in constituting sphere covering region takes advantages of self-

J Inf ProcessSyst, Vol.13, No.5, pp.1345~1357, October 2017| 1347



Nearest Neighbor Based Prototype Classification Preserving Class Regions

adapting radii of training points, class-wise prototype selection step and the direct design of our greedy

algorithm.

3. Prototype Selection Method

We consider a prototype selection method as a set covering problem from a given classification
problem. Every training example can be a prototype covering the partial area of its own class but not
covering the points of different classes. The prototype selection method finds the smallest number of
class covering points from one class, which leads to take advantages of storage and computational
requirement in practice. In this setting, a set of class prototypes should capture the whole structure of
class distribution so that the generalization error should close or equal to that of the original problem.
In a typical classification problem, we are given a training set consisting of pre-categorized points.
Suppose that we have a classification problem X={(x;,¥;)|i = 1,...,n} with x; € R and their class
labels y; € {1, ..., c} and the data of c class sets is described by X; = {(x;,)|i = 1, ...,n;} where the size
of X;isn; = |X;| and };{_; n; = n. The output of a prototype selection method is a prototype set
P={P|l=1,..,c} where P, € X, for class | and|P;| < |X;|. We begin with the notation of
neighborhood by considering a sphere S(x) centered at a training data (x, y). A desirable prototype of
class I constitutes a sphere which covers as many training examples of the same class as possible, and
does not include training examples of other classes. The covering area of a prototype is decided with its
own radius that is computed by the class labels of nearest neighbors. The radius of x is adopted from the
margin concept of SVM, reminding that the optimal boundary of two points with different classes is a
midpoint between them. Given a classification problem X and any distance metric d(:,) in a vector

space R%, we constitute the sphere S(x) for any (x,y) € X with radius v,.

S(x) = {z|d(x,2) < yx}
Here, the radius vy, of x is computed by the followings:
d(x,z;) <d(x,z;) < - <d(x,z,)
[ = argmax; (x)=i(z)d(x, z;)

I = argming (- 1(;pd(x, 7;)

l1 L2

2

zi +z;
Yx = d(X, Zypiq), Where zy;q=———

Thus S(x) constitutes a subset of training points with the same class that are covered within y,. The
goal of our method is to find the smallest subset of prototypes P c X such that P can cover X: every
x; € X is included withiny,; of some pointx; in P. The problem becomes an integer problem by

introducing indicator variables &= (y, X, -, ;) for each x; € X.
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oc__{ 1, ifx € P
Lo, otherwise

Therefore, ), jaies(e) @ 1 the number of occurrences that x; is covered by S(x;). Requiring that this

sum be positive for each x; € X enforces that P induces a cover of X. Our problem is equivalent to the

following integer problem.

Min,, Z’;:l a;
s.t Zj,xiES(X,') aj > 1,in EX

(1)

A feasible solution of (1) is one of a set covering problem which chooses a subset of class data points.
Set covering problem is NP-hard in the strong sense and there is no polynomial time approximation
method unless NP = P[18]. Since S (xj) doesn't include the data points of other classes, the problem of
(1) can be solved independently for each class! € {1, ...,c}. Thus, the problem leads to c separate
integer sub-problems. Let a} € {0,1} indicate whether xj’ is chosen in P; to be a prototype for class I. By

! counts the number of spheres

covering a training space with selected prototypes, the sum ), jateseh %

in which x/ is included. We then solve the following integer problem for class /.

. np l
Min,,. 2}-:1 o

2
st YL N af1(xf €S(x)) =1, @

where, 1(b) is 1 if b is true and 0 otherwise. The solution of (2) is to find a minimal set of sphere
covering prototypes. The normal way of its solution requires a linear problem (LP) solver like GLPK
package [19], but we have checked that the use of an LP solver can be slow and memory-intensive for
large data. Thus, our method is based on greedy approach that has been applied for solving set covering
problems [18]. The proposed method is deterministic and computationally simpler than the case of an
LP. In our greedy method, a prototype is selected with the ratio of cost to the number of points that
newly covered. The solution of (2) is easily found by selecting the larger size of S (x}) and,
simultaneously, maximizing the number of uncovered points in x; € X'. After computing all the class
spheres for x € X, we try to solve the solution of X\,1=1,2,...,c. For xl-l D' xl-l is added to P, if it has
the maximum number of uncovered points in X!. The step from {Py,..., P, .., P.} to {Py,...,P,U

{x}3, ..., B.} is proceeded by maximizing Aobj (x}).
Aobj(x]-l) =|X'n S(xil)\ux%epl S(xD)| (3)

If the number of S(xj) is relatively small, x; is positioned around boundary or within class
overlapped region. We manage to control those with parameter T. This parameter has an effect on
controlling the number of prototypes and removing the prototypes of small sphere on the decision

boundary. The proposed algorithm is presented in Algorithm 1.
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Algorithm 1. Select the set of class prototypes P;,l = 1,2, ..., ¢
SelectPrototype(X, S, ¢, 1)
P=0¢
for/=1to cdo
Pp=¢
while Aobj(x}) > 0 and S(x]-l) > 7do

j= argminxl;EXlebj (x})
P =PU {le }
for x]l € X; do
S(xi) = S(x)\xj)
end for
end while
P=PUP,
end for

return P

If the prediction rule follows the 1-nearest neighbor, the class of test point x is predicted with the class

of the nearest prototype.
y = argmin;min,.p, d(x, z)
The nearest prototype z provides a clue that can explain why a given prediction has been made.

Drawing graph with variable radii Drawing graph with radius 1.50
T

g

(b)
Fig. 1. The examples of greedy algorithms for a 2-class toy problem. (a) A case of Prop with T = 0. (b) A
case of the Fixed with y = 1.5.

Fig. 1 shows the illustrative examples of the proposed algorithm (Prop), and the prototype classifier

with a fixed radius (Fixed) [6] in 2-dimensional cases. The toy problem is artificially generated with 2

classes. In Fig. 1, (a) shows a case of Prop with T = 0 while (b) is that of the Fixed with y = 1.5. The
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chosen prototypes are marked in bold circle or cross point with their covered spheres. The Prop method

selects 7 prototypes, not including other class points, and the Fixed selects 19 prototypes.

Training accuracy for toy examples

Test accuracy for toy examples
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Fig. 2. The comparison of greedy algorithms for the 2-class toy problems. (a) Training accuracy. (b)
Testing accuracy.

No. of prototypes with toy examples

Il Fixed
160 I Prop.
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No. of prototypes
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200 400 600 a00 1000 1200 1400 1600 1800 2000
Data size

Fig. 3. The comparison of greedy algorithms for the number of prototypes.

Figs. 2 and 3 compares the two methods of Prop and Fixed in terms of generalization capability and
prototype number. The training data was artificially generated for 2-class classification problems
varying the sizes from 200 to 2000. The separable complexity of a problem depends on about 10% to
30% overlapped points among two classes. The k-nearest neighbor algorithm was used for comparison.
Each trial was run 5 times by a stratified 10-fold cross validation along with k = 3, 5. The average
accuracy and the number of prototypes are shown in Figs. 2 and 3. The Fixed algorithm tends to
depend on the predefined radius and the selected prototype tends to embed other class points. Also, it
couldn't select the prototypes covering all the training points. Our method Prop selects the prototypes
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with all points by self-adapting the radii. It tends that the radii of boundary prototypes is much smaller
than those of within-class prototypes. The simulation results are compared to those of the nearest
neighbor without prototype selection.

Fig. 2(a) shows that the training accuracy of Prop is between that of the nearest neighbor and that of
Fixed. While the training accuracy of the nearest neighbor is higher than those of the prototype
methods, the testing results of all three approaches are similar in Fig. 2(b). The standard nearest
neighbor shows a large difference in training and testing. The use of a prototype selection method can
reduce a gap in training and testing. The number of prototypes varies due to the data distribution along

with learning complexity and the way to constitute class spheres in Fig. 3.

4. Experimental Results

In order to assess the performance of the proposed algorithm Prop and Bien’s algorithm Fixed, we
run them on about twenty problems available from the UCI Machine Learning Repository [20] and the
KEEL data set repository [21]. There are 3 problems only with nominal data, one problem of nominal
and numeric data, and the other problems only with numeric values. The simulation results are
compared to those of k-nearest-neighbor (k = 3, 5). The experiments of the nearest-neighbor classifier
retain all the training points as prototypes. In Table 1, the main characteristics of the chosen problems
are summarized in terms of task name (Problem), data size (No), data type (numerical [Num]) and
nominal [Nom]), the total number of attributes (Attr), and the number of classes (Cls). We adopt a
stratified 10-fold cross validation for each task and select 2/3 of each data set for training and use the
remainders for testing. The Euclidean distance is chosen for dissimilarity metric. Each problem is
compared by use of accuracy and prototype rate. Tables 2 and 3 report the training and testing accuracy
of the experiments. In Table 3, the radius r of Fixed is chosen for maximizing the accuracy of the testing

set and r is stepped by 0.2 from the shortest distance to the longest distance.

Table 1. The benchmark problems for the empirical evaluation

Problem No Attr Num Nom Cls | Problem No Attr Num Nom Cls
Abalone 4177 8 8 0 3 Ionosphere 351 34 34 0 2
Adultala 1605 123 0 123 2 | Liver disorder 345 6 6 0 2
Australian 690 7 7 0 2 | Mammographic 961 5 2 3 2
Breast cancer 683 9 0 9 2 Pendigits 7494 16 16 0 10
Car evaluation 1728 6 0 6 4 Segment 2310 19 19 0 7
Diabetes (Pima) 768 8 8 0 2 | Svmguidel 3089 4 4 0 2
DNA 2000 180 0 180 3 Vehicle 846 18 18 0 4
Fourclass 862 2 2 0 2 Vowel 990 13 13 0 11
Glass 214 9 9 0 7 Wine 178 13 13 0 3
Heart 270 13 13 0 2 Wila 2477 300 0 300 2
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Table 2. The 10-fold cross-validation accuracy in training

3-NN 5-NN Fixed Prop

Problem

Mean SD Mean SD Mean SD r Mean SD
Abalone 0.74 0.01 0.68 0.01 0.49 0.02 1.0 0.84 0.00
Adult ala 0.89 0.01 0.87 0.01 0.67 0.13 0.3 0.81 0.01
Australian 0.90 0.00 0.88 0.01 0.81 0.02 0.5 0.85 0.01
Breast cancer 0.98 0.00 0.98 0.00 0.95 0.02 0.3 0.96 0.00
Car evaluation 0.99 0.00 0.99 0.00 0.84 0.01 1.2 0.86 0.01
Diabetes (Pima) 0.90 0.01 0.80 0.01 0.69 0.01 0.4 0.78 0.02
DNA 0.88 0.01 0.86 0.02 0.60 0.02 0.3 0.93 0.00
Fourclass 1.00 0.00 1.00 0.00 0.72 0.07 1.0 0.75 0.06
Glass 0.81 0.02 0.76 0.02 0.56 0.01 0.3 0.83 0.02
Heart 0.89 0.01 0.84 0.02 0.71 0.08 1.0 0.81 0.02
Ionosphere 0.91 0.01 0.87 0.01 0.79 0.07 0.7 0.81 0.06
Liver disorder 0.83 0.02 0.77 0.02 0.58 0.03 0.2 0.86 0.02
Mammographic 0.91 0.00 0.88 0.01 0.81 0.01 0.5 0.85 0.01
Pendigits 1.00 0.00 1.00 0.00 0.98 0.00 1.0 0.97 0.00
Segment 0.98 0.00 0.97 0.00 0.92 0.00 3.0 0.93 0.01
Svmguidel 0.98 0.00 0.97 0.00 0.94 0.01 0.5 0.94 0.01
Vehicle 0.85 0.01 0.82 0.01 0.65 0.02 0.1 0.86 0.00
Vowel 0.99 0.00 0.97 0.01 0.74 0.03 0.3 0.87 0.03
Wine 0.98 0.01 0.97 0.01 0.92 0.03 1.0 0.96 0.01
Wila 0.98 0.00 0.98 0.00 0.96 0.03 1.5 0.96 0.02

Table 3. The 10-fold cross-validation accuracy in testing

Problem 3-NN 5-NN Fixed Prop
Mean SD Mean SD Mean SD Mean SD
Abalone 0.74 0.01 0.68 0.01 0.48 0.02 0.84 0.01
Adultala 0.89 0.01 0.87 0.01 0.67 0.12 0.80 0.02
Australian 0.83 0.03 0.85 0.03 0.81 0.03 0.85 0.03
Breast cancer 0.96 0.01 0.97 0.02 0.95 0.02 0.96 0.02
Car evaluation 0.96 0.01 0.98 0.01 0.84 0.02 0.86 0.02
Diabetes (Pima) 0.73 0.04 0.73 0.03 0.71 0.04 0.79 0.02
DNA 0.76 0.02 0.78 0.02 0.60 0.04 0.93 0.00
Fourclass 1.00 0.00 1.00 0.00 0.72 0.07 0.75 0.07
Glass 0.66 0.07 0.64 0.06 0.56 0.10 0.83 0.05
Heart 0.78 0.05 0.81 0.05 0.72 0.09 0.81 0.05
Ionosphere 0.85 0.03 0.85 0.04 0.81 0.08 0.81 0.56
Liver disorder 0.62 0.04 0.61 0.05 0.60 0.04 0.85 0.05
Mammographic 0.83 0.02 0.84 0.02 0.86 0.02 0.85 0.02
Pendigits 1.00 0.00 1.00 0.00 0.98 0.00 0.97 0.01
Segment 0.96 0.01 0.95 0.01 0.92 0.01 0.93 0.01
Svmguidel 0.96 0.01 0.96 0.01 0.94 0.01 0.94 0.01
Vehicle 0.70 0.03 0.70 0.03 0.65 0.04 0.86 0.03
Vowel 0.95 0.03 0.90 0.03 0.75 0.03 0.86 0.04
Wine 0.96 0.03 0.96 0.03 0.92 0.05 0.96 0.03
Wla 0.98 0.00 0.98 0.00 0.96 0.04 0.96 0.02
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Fig. 4. The training accuracy comparison of Prop. vs. Fixed.

In Fig. 4, the training accuracy results of Prop are between 3-nn and 5-nn. The test result of Fig. 5
shows that our method Prop is competitive or better than k-nearest neighbor but with significant
reduction in prototypes. No single method is the best for all the data sets due to the inherent data
distribution. The Prop algorithm largely depends on data distribution, class overlapping, and boundary
points against the Fixed algorithm. The method Fixed uses a predefined radius and select the subset of

prototypes which covers all the training points.
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Fig. 5. The testing accuracy comparison of Prop. vs. Fixed.
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Fig. 6. The comparison in the number of prototypes.
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In comparison of the number of prototypes, the results of Fixed are smaller than those of Prop
because the prototype of Prop constitutes a sphere-covering region which can include as many points
within the same class as possible. In Fig. 6, the prototype rates of Fixed are under 13.0% but those of
Prop are widely divergent. However, in Fig. 5, the testing results of Prop are much higher than those of
the nearest neighbor in Abalone, Australian, Pima, DNA, Glass, Liver disorder, and Vehicle. We
analyze that our method is preserving class regions along with the data distribution of a problem. In

addition, the large reduction rate cannot be scalable to the generalization ability of an original problem.

5. Conclusions

We have presented a prototype reduction procedure by selecting representative samples from a data
set. The proposed method provides a way to summarize a data set in pursuits of fast learning and
equable generalization capability when compared to the non-prototype based results of the problems.
Purposefully, we defined our notion of a desired prototype set and reformulated the problem as a
minimum set cover problem. A set cover problem has been known as one of NP-complete problem, but
there had better design an approximate algorithm. We designated the greedy algorithm that can be
implemented in ease and simplicity, but it can find a full set cover solution, not partial cover set one.
Our method chooses a suitable number of prototypes for each class through adapting the radii of
plausible prototypes automatically. The self-adapting way of prototype radii constitutes the same class
points of a prototype by nearest neighbor search. Any selected prototypes can summarize a large set of
training points and can enhance the explanation ability of test data in such practical applications as
gene data analysis, disease prediction, bank credit analysis etc. This feature will be useful to domain
experts for exploiting a set of concise knowledge in mining a large data set. The proposed data

reduction method is applicable for any classification and has the expandability to any distance metrics.
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