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Abstract

The round robin algorithm is regarded as one of the most efficient and effective CPU scheduling techniques
in computing. It centres on the processing time required for a CPU to execute available jobs. Although there
are other CPU scheduling algorithms based on processing time which use different criteria, the round robin
algorithm has gained much popularity due to its optimal time-shared environment. The effectiveness of this
algorithm depends strongly on the choice of time quantum. This paper presents a new effective round robin
CPU scheduling algorithm. The effectiveness here lies in the fact that the proposed algorithm depends on a
dynamically allocated time quantum in each round. Its performance is compared with both traditional and
enhanced round robin algorithms, and the findings demonstrate an improved performance in terms of
average waiting time, average turnaround time and context switching.
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1. Introduction

Many approaches are used for batch and parallel processing schemes in computing, and are aimed at
improving performance [1]. Fundamental to this is process scheduling, meaning the CPU schedule for
the processes or jobs available for execution [2]. This is one of the prime functions performed by the
operating system. CPU scheduling is the task of selecting a process from the ready queue and allocating
the CPU to it. When the CPU is idle, a waiting process is selected from the ready queue and the CPU is
allocated to that process. The performance of the scheduling algorithm depends mainly on CPU
utilisation, throughput, turnaround time, waiting time, response time and context switching [3]. In the
round robin algorithm, a small, fixed unit of time is used, called the ‘time quantum’ or ‘time slice’ [4].
The CPU scheduler browses the ready queue, allocating the CPU to each process for a time interval up
to a one-time quantum. If the CPU burst for a process exceeds the one-time quantum, the process is
terminated and is returned to the ready queue.

When a new process arrives, it is added to the end of the circular queue. Compared to other existing

algorithms, the RR algorithm enhances performance in the case of a time-sharing operating system. The
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performance of a scheduling algorithm depends upon the scheduling states of turnaround time, waiting
time, response time, CPU utilisation and throughput. The turnaround time of a process is the period of
time between process submission and process completion. Waiting time is the total period spent
waiting in the ready queue. The time elapsed between the submission of the process and the first
response received is called the response time. CPU utilisation is the percentage of time for which the
CPU is busy. The number of processes completed within one unit of time is called the throughput.
Context switching is the exchange of a pre-executed process from the CPU with a new process. In other
words, context switching is the number of times the process switches execution. A scheduling algorithm
can be optimised by reducing the response time, waiting time and turnaround time and by maximising
CPU utilisation and throughput.

The uniqueness of the round robin algorithm lies in the use of a quantum time within this process,
through which it has gained considerable popularity. The quantum time is of fixed size and is allocated
to a job that needs to be processed. A sizeable number of research studies have defined this as a small
unit of time allotted to a process that is present in the ready queue, and which can be changed
depending on the resource requirements of the process [5-8]. If the process completes its execution
within the required time, this implies that it will not require a further processing slot and and should be
removed from the ready queue. Hence, the onward rounds of the execution of processes depend on the
quantum time. Previous research studies have suggested various ways to improve the allocation of the
quantum time for processes requiring execution [9], for example the use of the median method and
mixed concepts [10]. These approaches, however, suffer from certain drawbacks in terms of not
allowing for the modification of those processes which require a slightly greater time than the allotted
time quantum cycle. This study proposes the use of a median method, which gives an improved
effectiveness for the round robin algorithm by establishing a relationship which is dependent on the
choice of the time quantum for processes. The time quantum for each process is dynamically allocated
at each round, thus enhancing processing performance.

This paper is organised as follows. Section 2 discusses existing related work; in Section 3, we describe
the proposed technique for CPU scheduling using an enhanced round robin algorithm and carry out a
performance analysis. In Section 4, we analyse and compare the existing round robin algorithm and the
proposed scheme in terms of context switching and computation time. Section 5 concludes this paper.

2. Related Work

As one of the easiest to implement and most starvation-free algorithms, the round robin algorithm
has always been the leading choice for CPU scheduling. However, numerous researchers have proposed
tweaks and adjustments to this algorithm to improve its base performance. This has led to several
theories being proposed and studies conducted. The most significant of these are described below. In
[11], an algorithm is proposed that allocates the CPU to all processes only in the first round, and
afterwards uses the SJF algorithm to choose the next process. Another similar approach with slight
differences is described in [12], where an algorithm is proposed that uses two queues called ARRIVE
and REQUEST; this algorithm shows a performance improvement compared with [11]. A new
algorithm called AN is proposed in [13], which is based on a new approach called the dynamic time-
quantum. The idea underlying this approach that the operating system adjusts the time quantum based

on the burst time of the set of waiting processes in the ready queue. The results of simulations and
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experiments indicate that this algorithm solves the fixed-time quantum problem and increases the
performance of the RR algorithm. Similarly, in [14], an improved RR algorithm is proposed which
performs optimally in timeshared systems. However, it is not suitable for soft real-time systems for a
higher number of context switches, longer waiting times and higher response times. This algorithm is
known as the priority based dynamic round robin algorithm (PBDRR); it calculates an intelligent time
slice for each process and changes after every round of execution. The proposed scheduling algorithm is
developed by taking this concept of the dynamic time quantum concept.

An optimised round robin algorithm is also proposed in [15], which consists of two phases. The first
phase deals with processes which are required to be executed in order, in the same way as in the
standard round robin algorithm; each process is allowed a runtime of a single time slice. During the
second phase, the time quantum is doubled, and processes are executed in the order of their remaining
burst times, with processes requiring shorter times being run before those with longer times. The first
phase is repeated after each process is complete. Finally, in [16], an adaptive round robin algorithm is
proposed which focuses on calculating an ideal time quantum. The processes are first sorted based on
their burst times, with the shorter processes at the front of the ready queue, followed by a calculation of
the time quantum. If the number of processes in the ready queue is even, the time quantum is equal to

the average burst time of all the processes.

3. Description and Performance Analysis of the Proposed Technique

In order to create an effective CPU scheduling based on the round robin algorithm, the two
important scheduling aspects of time and memory allocation are used as the control variables. The
effect determines the efficiency of the proposed algorithm. However, it is worth noting here that in the
round robin algorithm, context switching constitutes another essential aspect that should be taken into
account. As described above, context switching involves the switching of the CPU from one process or
thread to another. The proposed round robin algorithm is given in Algorithm 1.

A process or task is an executing or running instance of a program. Context switching presents a
problem in the round Robin algorithm, as it causes a process to be shuffled between the ready queue
and running state in the CPU several times before it is executed. The problem is more severe if the
process has a very high burst time and a low static quantum time is allocated. Thus, it is essential in the
round robin algorithm to reduce the number of context switches by systematically altering the time
quantum. The time quantum constitutes the most appropriate section of the round robin algorithm for
alteration in order to ameliorate performance.

The scheme is based on dynamic allocation of the time slice. Five processes were used to demonstrate
the working of the algorithm, forming a ready queue with the five processes labelled P1, P2, P3, P4 and
P5. These processes arrived at zero milliseconds (ms). The burst times (BT) of P1, P2, P3, P4, and P5
were 15, 32, 102, 48, and 29 ms, respectively. The processes were first arranged in the ascending order of
burst time, resulting in the sequence P1, P5, P2, P4, P3. The time quantum was set to the mean BT for
all five processes (45 ms). After executing all processes for a time quantum of 45 ms, the execution of
P1, P5, and P2 was complete and these were therefore removed from the ready queue. After the first
round, the remaining burst times for P3 and P4 were 3 ms and 57 ms, respectively. In the subsequent

round, the new time quantum was set to the average of the remaining burst times of the processes
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within the ready queue, in other words to 30 ms, and the CPU was assigned to these processes using this
newly calculated time quantum. After the second round was complete, process P4 had finished
execution; only process P5 remained in the ready queue, with a burst time of 27 ms. Since only one
process was left in the ready queue, its burst time was chosen as the time quantum and the CPU was
allocated to P5. The turnaround times for P1, P2, P3, P4, and P5 were 15, 76, 226, 169, and 44 ms,
respectively. The average turnaround time was 106 ms. The waiting times for P1, P2, P3, P4, and P5
were 0, 44, 124, 121, and 15 ms, respectively, and the average waiting time was 60.8 ms (see Fig. 1). The
objective of introducing the dynamic average time quantum is to render the RR algorithm more
efficient by reducing the number of context switches and reducing the turnaround and waiting times;
this improves the performance of the round robin algorithm significantly for the processes A to G listed

in Table 1, as well as the execution of the proposed algorithm, as shown in Table 2.

Algorithm 1: Proposed Round Robin

Begin

Define Obj fun P(p,), p = (py, 23> P3> 5 D)

Initialise: )2 (1, 2, n) and assign it to the ready queue in ascending order (SJF). (i>0)

Set TQ = Time Quantum, BT =Burst Time

While(TQ -y

Do
Execute all the processes with same TQ in the first round;

Check p :(plapzapsa""pn)"
For each D,

If (p, (BT <71Q))
Remove: D, from the queue.
End if
Else ( )2 ( BT > TQ)) and D; remain in ready queue

e p, j // the average of burst time of all the processes

P

10=70,, - F’ﬂ
End For
Repeat until all p = ( D> Do Dy> s pn) are complete
End While

Three different time quanta, TQi, TQ>, and TQ;s, were used for the execution of processes, which
clearly indicate the flow of the algorithm. Processes D to G were greater than the fixed time quantum
TQ; as a result, these remained in the ready queue after the first round of execution. In the following
round, a new TQ was established and used for the execution of processes D and E. Two processes
(processes F and G) remained in the queue for another round and used another new TQ. The approach
described above showed an increase in performance compared with the standard round robin algorithm;
the performance comparison showed a significant improvement for the proposed round robin
algorithm in terms of context switching, average, waiting time (WA) and average turnaround time (TA)
(see Table 3).

944 | J Inf Process Syst, Vol.13, No.4, pp.941~950, August 2017



Mohammad M. Tajwar, Md. Nuruddin Pathan, Latifa Hussaini, and Adamu Abubakar

» 10, - 64 _ T0,=20 10220
A B C - E F G - E F G F |G
0 20 50 110 174 233 302 366 377 393 413 433 434 445
Fig. 1. Gantt chart for the processes.
Table 1. Processes and burst times
Process Burst time (ms)
A 20
B 30
C 60
D 75
E 80
F 85
G 95
Table 2. Process execution in each round using a specific TQ
Process (Pi) TQ: =64 TQ.=20 TQ; =20
A 20 - _
B 30 - -
C 60 - -
D 75 11 -
E 80 16 -
F 85 21 1
G 95 31 11
Median N/A 18.5 6
Table 3. Process execution in each round with specific TQ
Context switching Average waiting time (ms) Average turnaround time (ms)
Standard RR 16 112.20 190.70
Proposed RR 12 81.67 133.57

4. Performance Analysis

In order to examine the efficiency of the proposed algorithm, this study used performance measures
and compared the performance with five other enhanced round robin algorithms, namely the improved
round robin CPU scheduling algorithm with varying time quantum (IRRVQ) [12], dynamic quantum
with re-adjusted round robin scheduling algorithm (DQRRR) [17], self-adjustment time quantum in
round robin (SARR) [18], and modified round robin algorithm (MRR) [19]. All the algorithms were
tested in terms of their burst time in ascending order, burst time in descending order and burst time in

random order. The performances of the algorithms were then compared in terms of context switching,
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average waiting time and average turnaround time. This comparison was carried out based on the fact

that only CPU-bound processes were considered in the analysis. Five independent processes were

analysed for each test case. The burst times and arrival times of processes were known before execution,

and the context switching times of processes were assumed to be zero. The time required to arrange the

processes into ascending order was also considered to be zero. Three different cases were considered for
testing (see Tables 4-10).

Table 4. Case 1: processes in ascending order

Process Burst time (ms)
P1 40
P2 55
P3 60
P4 90
P5 102
Table 5. Performance comparison in ascending order
RR DQRRR IRRVQ SARR MRR This study
TQ 25 60/36/6 40/15/5/30/12 60/36/6 62/25/25 69/27/6
Context switching 16 7 14 7 8 7
Avg. waiting time 192 162.2 165 119 124.4 120.8
Avg. turnaround time 261.4 231.6 234.4 188.4 193.8 190.2
Table 6. Case 2: processes in descending order
Process Burst time (ms)
P1 105
P2 85
P3 55
P4 43
P5 35
Table 7. Performance comparison in descending order
RR DQRRR IRRVQ SARR MRR This study
TQ 25 55/40/10 35/8/12/30/20 55/40/10 70/25/25 64/31/10
Context switching 15 7 14 7 7 7
Avg. waiting time 209.4 144.8 142 185.8 106.4 105.6
Avg. turnaround time 274 209.4 206.6 250.4 171.4 170.2

Table 8. Case 3: processes in random order

Process Burst time (ms)
P1 105
P2 60
P3 120
P4 48
P5 75

946 | J Inf Process Syst, Vol.13, No.4, pp.941~950, August 2017



Mohammad M. Tajwar, Md. Nuruddin Pathan, Latifa Hussaini, and Adamu Abubakar

Table 9. Performance comparison in random order

RR DQRRR IRRVQ SARR MRR This study
TQ 25 75/37/8 48/12/15/30/15 120 72/45/25 81/31/8
Context switching 17 7 14 4 8 7
Avg. waiting time 245 192.8 193.2 177.6 168.6 141.6
Avg. turnaround time 327 274.4 274.8 259.2 250.2 223.6

Table 10. Cumulative performance comparison

RR DQRRR IRRVQ SARR MRR This study
Context switching 56 21 42 18 23 21
Avg. waiting time 646.8 494.8 500.2 482.4 399.8 368
Avg. turnaround time 862.4 715.4 716 698 615.4 584

Tables 4-10 above summarise the test cases in which the various round robin techniques were
compared with the proposed round robin algorithm. The values of average turnaround time, waiting
time and context switching for the proposed algorithm were found to be superior to those of the other
algorithms. All algorithms were tested based on a zero arrival time for the processes. A decrease was
found in all three performance metrics used to test the algorithms. There was a marked decrease in
times for the proposed algorithm, as both turnaround and waiting times decreased significantly. The
number of context switches for the proposed algorithm was similar to that of SARR, but was still
relatively low compared to the remaining algorithms. In view of this, it can be concluded that the
proposed algorithm has superior efficiency in terms of execution time and context switching in all three
cases of process execution. Compared to the traditional round robin algorithm, the proposed algorithm
achieves a saving of 41% in waiting time compared to the other variants of the algorithm, thus proving
its effectiveness.

The algorithm works slightly differently when the processes arrive at different times. To consider this
scenario, we assume that if there are a finite number of tasks in the scheduler, with different arrival
times, the first step implements the traditional round robin and takes the burst time of the first process
as the time quantum. Once all the processes have run for the first cycle, we then implement our
proposed algorithm by arranging the remaining burst times in ascending order. This gives rise to three
possible cases. We assume that three processes (A, B, C) arrive at three different times, with burst times
of 10, 8, and 6 ms. Here, the TQ is set to 10 ms for the first cycle. This is the best case scenario for the
algorithm, as the burst times of the remaining processes are less than the TQ and can therefore be
implemented directly in the first cycle. In the worst case, the sequence of burst times is 6, 8, and 10 ms;
here, the TQ is 6 ms, which is the lowest of the burst times. To show that the proposed algorithm works
in the worst case, an example is given below.

Tables 11 and 12 provide additional scenarios in which a performance comparison shows that there is a
significant improvement in the proposed round robin in terms of context switching, average waiting time
(WA) and average turnaround time (TA). For a scenario involving varying arrival times, the algorithm
reduces the number of context switches by more than 50% compared to the traditional round robin. For
each scenario, we assume that the burst times for the processes are normally distributed and can be

mathematically determined using statistical models such as the Poisson distribution [20] (see Fig. 2).
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Table 11. Remaining burst times for first cycle (traditional round robin) TQ

Process Arrival time (ms) Burst time (ms) Remaining time (ms)
A 0 20 0
B 10 200 180
C 12 150 130
D 21 230 210
E 26 75 55

Table 12. Process execution at each round with specific TQ

Process Arrival time (ms) Burst time (ms)
E 55 -
C 130 -
B 130 36
D 210 66

A H c PR e

20 40 60 30 100
Fig. 2. Gantt chart for the processes in the first cycle.

5. Conclusions

This paper presents an enhanced round robin algorithim which aims to circumvent the weaknesses of
previous studies on efficient and effective CPU scheduling. Many studies use the required processing
time for a CPU execution in order to determine the optimal scheduling technique. As a consequence,
these studies suggest various CPU scheduling algorithms according to a processing time which is based
on different criteria. This research acknowledges the fact that the round robin algorithm enjoys more
popularity than any other CPU scheduling algorithm based on its optimal time-shared environment.
We show that the proposed MRR enhances the effectiveness of the original round robin algorithm and
its existing techniques. To evaulate its performance, the proposed algorithm was compared to the
standard round robin algorithm. The findings indicate an improved performance in terms of average

waiting time, average turnaround time and context switching.
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