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Abstract

It is widely accepted that single carrier frequency division multiple access (SC-FDMA) is an excellent
candidate for broadband wireless systems. Channel estimation is one of the key challenges in SC-FDMA,
since accurate channel estimation can significantly improve equalization at the receiver and, consequently,
enhance the communication performances. In this paper, we study the application of compressive sensing for
sparse channel estimation in a SC-FDMA system. By skillfully designing pilots, their patterns, and taking
advantages of the sparsity of the channel impulse response, the proposed system realizes channel estimation at
a low cost. Simulation results show that it can achieve significantly improved performance in a frequency
selective fading sparse channel with fewer pilots.
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1. Introduction

In a typical wireless scenario, the transmitted signal arrives at the receiver via various paths of
different lengths. This leads to inter-symbol interference (ISI) and creates a major difficulty for
information decoding. Furthermore, using the traditional single carrier modulation with the time
domain equalization approach is unattractive for wide-band system due to the high complexity of the
receiver. Instead, the frequency domain equalization technology is a good choice for wide-band wireless
communication system (e.g., for orthogonal frequency division multiplexing (OFDM) [1]). OFDM has
been widely applied in wireless communication systems because of its high bandwidth efficiency and
relative robustness against multipath fading and delay. However, it suffers from a large peak to average
power ratio (PAPR).

On the other hand, single carrier modulation with frequency domain equalization, which attempts to
approach the performance and complexity of OFDM while maintaining a lower PAPR as compared to
OFDM, is another excellent technology for broadband systems. Single carrier frequency division
multiple access (SC-FDMA) [2] is the multiple access form of single carrier modulation with frequency
domain equalization Lately it has received a lot of attention and has become an alternative to

orthogonal frequency division multiple access for 4G technologies. SC-FDMA has been adopted for the
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uplink transmission technique in both 3GPP Long Term Evolution (LTE) and LTE Advanced standards
[3]. Since most of the cost in communication terminals comes from the power amplifier, a lower PAPR,
which is the advantage of SC-FDMA, can significantly reduce the cost of mobile units. This results in
more power efficient and less complex mobile terminals. Since the orthogonal frequency division
multiple access (OFDMA) is used in the downlink, both the burdens of the complex frequency domain
equalizer needed for the SC-FDMA and accommodating large PAPRs in OFDMA rest upon the base
station.

Channel estimation is critical to the performance of coherent SC-FDMA demodulation; channel
estimation, which is also related to diversity reception; the optimum match receiver design; and
adaptive link technologies. All of these technologies require good channel estimation support.
Therefore, accurate channel estimation can significantly improve the performance of the SC-FDMA
system [4,5]. However, numerous experimental studies undertaken by various researchers in the recent
past have shown that wireless channels associated with a number of scattering environments tend to
exhibit sparse structures in the sense that majority of the channel taps end up being either zero or below
the noise floor when operating at large bandwidths and symbol durations and/or with a large plurality
of antennas [6-8]. However, traditional training-based methods that rely on linear reconstruction
schemes at the receiver seem incapable of exploiting the inherent low dimensionality of such sparse
channels, thereby leading to overutilization of the key communication resources of energy, latency, and
bandwidth. A number of researchers have tried to address this problem in the recent past and have
proposed training signals and reconstruction strategies that are tailored to the anticipated
characteristics of sparse multipath channels [6-9]. Recently, there has been a growing interest in
compressed sensing (CS) [10], which has been widely applied in many areas such as image processing,
communication systems, and so on. According to the CS theory, if a signal has a sparse representation
in a certain space, one can sample the signal at a rate that is significantly lower than the Nyquist rate
and reconstruct it with high probability by applying optimization techniques. The essence of pilot
assisted channel estimation in OFDM systems is to reconstruct the channel frequency response from
pilot symbols. Hence, it is natural to consider using the CS theory in pilot-assisted sparse channel
estimation to reduce the number of pilot symbols. In [11-14], the CS theory has been employed for
sparse channel estimation in OFDM systems. However, litter work has been found in the SC-FDMA
system. This paper will investigate the application of compressive sensing in the SC-FDMA system.

The rest of paper is organized as follows: in Section 2 we review the general SC-FDMA system model
and give the problem statement. In Section 3 we present compressive sensing and pilot design in SC-
FDMA. Section 4 introduces several recovery methods of compressive sensing and analyzes its

complexity. Finally, Section 5 presents the simulation results and concludes our work.

2. Problem Statement
2.1 SC-FDMA

Fig. 1 depicts the high level model of an SC-FDMA receiver and transmitter [2,3]. M modulated
source symbols are converted to frequency domain. The frequency domain symbols are then mapped

onto M out of N (M<N) possible orthogonal subcarriers. Subcarriers can be mapped in the following
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two ways: localized mapping, where each user is assigned a set of m consecutive subcarriers; and
distributed mapping, where subcarriers assigned to the user are equally spaced across the entire channel
bandwidth. After converting the symbols back to the time domain using an N-point IDFT and inserting
the cyclic prefix, the SC-FDMA time domain symbol is transmitted through the channel. At the receiver
all of the steps are reversed. The crucial difference between the SC-FDMA and OFDMA comes from the
additional DFT block before subcarrier mapping. The DFT block ‘spreads’ the modulated source
symbols, so that each subcarrier in the frequency domain contains information about all the source

symbols.

Serial 1 M [ Subcarrier [ N [7| Parallel | Add [ Y
to Point Point to Cyclic D/A
parallel | -p| DFT || Mapping | IDFT || Serial [ Prefix |5

Channel

Parallel €| M |[€ Subcarrier ¢ N (¢ Serial [€ Delete [€ Y

to Point Den:‘ffmg Point to Cyclic A/D -
Serial {¢-| IDFT |« Equalization | DFT |¢] Parallel ] Prefix ¢

Fig. 1. System model of single carrier frequency division multiple access (SC-FDMA). IDFT=inverse
discrete Fourier transform.

2.2 Formulation of Channel Estimation

Let’s consider a frequency selective fading channel model whose coherence time is much larger than
the SC-FDMA symbol duration and the multi-path delays are sampled equispaced. Then, the multi-

path channel can be modeled as a finite impulse response (FIR) filter:

h(n) = Lih,a(n -1 )

where L is the total number of taps and /%, is the /th tap’s complex gain. Assume that the channel is

sparse, which means the vector 4 =[h,,h,,...,h, ] has only a few nonzero elements; but the location

of the nonzero taps is not determined.
To simplify the analysis, let’s consider one user. Suppose that the SC-FDMA system consists of N
sub-carriers amongst which K sub-carriers are reserved for pilot symbols, as shown in Fig. 2. The pilot

inserting method is known as the Frequency Expanding Technique [15]. Generally, a comb-pilot

pattern is used, as shown in Fig. 3, and the length of the cyclic prefix (CP), Ly, is not less than L.
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Fig. 2. Insertion method of pilot data. IDFT=inverse discrete Fourier transform, CP=cyclic prefix.

At the receiving end, after the CP has been synchronized and deleted, it is convenient to get a matrix
formulation of an SC-FDMA system as:

Y=XH+W =XFh+W )

where Y is the reception block signal in the frequency domain of length N, and X =dliag(S,,S,,.-Sy_,),

H e C"!is the frequency domain representation of 4, and F e C™*! is the FFT matrix:

Fo_L

NG

foo . f(L—I)O
: S : 3)
fO(N—l) . f(L—l)(N—l)

=27 jnl

where /" =e N ,and W is the white Gaussian noise signal in the frequency domain.

3. Sparse Channel Estimation Based on Compressive Sensing
3.1 Review of Compressed Sensing

The CS theory [10] has recently become widely popular for improving system efficiency in the signal
processing community, such as video coding, compressed image and sensors. We will now provide a
brief review of sparse signal reconstruction with the CS theory.

Generally, signal processing problems are mapped into a linear observation model consisting of some

linear transformation of a sparse vector, such as:
y=®h )

where @ ¢ RKXL, while }; is S-sparse (i.e., no more than s of its elements are nonzero). Obviously, if
K < L or rank(®) < L, the system of equations is underdetermined and the solution is not unique.

However, we have the additional knowledge that h is sparse. Thus, we search over the solution space

for the sparsest solution, as shown in the following optimization problem:

h = argmin ||h|

,»51y =®h (5)

where "h"() is the mean operation of the 0-norm, which is defined to be the number of nonzero entries

in h. This optimization problem is generally combinatorial in nature. A number of authors [16,17]

have proposed a more tractable relaxation of it, namely:
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h= argrnin”h

oSy = ®h (6)

where ”h"] is the mean operation of the L'-norm of h. This is a convex optimization problem that can

be solved using the standard algorithms basis pursuit (BP) [16]. Eq. (5) is equivalent to Eq.(6) which has
a unique solution, and the measurement matrix @ , after scaling, needs to satisfy the restricted isometry
property (RIP) [17,18]:

(1=89)[; <[ @bl <1+ 5[] ™

where "h"2 is the mean operation of the L*-norm of h. For all S-sparse vectors 4 e R, for any
85 €(0,1), and anyc, < 5;(3—55)/48, set ¢, =1921og(12/ 5,)/(35; —3; —48c,) . A satisfaction of RIP
with the order S and parameter O can have a probability of at least | — ¢ % to recover };, whenever
K >c,Slog L [18]. The RIP is satisfied with high probability by a large class of random matrices, such
as those with entries independently sampled from a sub-Gaussian distribution. The works in [19, 20]
also study the stable recovery from noisy observations based on conditions of . In the presence of

noise, the signal reconstruction can be obtained as:

h= argmin”h 1 ,s.t.”(I)h —y||2 <g (8)

Solving the optimization problem in Eq. (6) is computationally expensive and is not suitable for real-
time applications. Faster and more efficient reconstruction algorithms that use iterative greedy-based
algorithms at the expense of slightly more measurements, such as matching pursuit [21], orthogonal
matching pursuit (OMP) [22], and CoSaMP [23], exist.

3.2 Measurement Matrix and the Pilot Pattern Design

According to Section 3.1, designing the measurement matrix ¢ with RIP would lead to the stable
recovery of sparse signals / from noisy observations y. In [8] the system is modeled in the time domain
directly in terms of the channel coefficients. Therefore, to identify the frequency-selective channel, it is
becomes equivalent to designing the (discrete) input probe of the time-domain Toeplitz convolution
matrix, which satisfies RIP. The channel coefficients are estimated from Toeplitz channel
measurements. However, the Toeplitz convolution matrix increases the computational complexity.

In this paper, a random pilot matrix with RIP is presented to reconstruct the sparse channels.

According to [11], measure matrices that satisfy RIP(2S ,\/5 —1) include random Gaussian, Bernoulli,

and partial Fourier matrices. Therefore, we can induce the measure matrices from formula (2) with

these matrices. Let O € C*™" be a selection matrix that selects the elements on the pilot locations from
an N-dimensional vector. Specifically, O can be generated by selecting K rows from a NXN unit

matrix. Then, the received pilot symbols are given by:
Y, =X,F,h+W, 9)
where Y, =0Y X, =0X0" F,=0F W,=0W andY, eC*™"" X,eC™ F,eC™ W, ¢ CKX].

Here, Y, X, and F} are all known to the receiver. Commonly, the coefficients of the channel are
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estimated directly (ie., if K > L, the vector h is invertible). This is a simple linear estimator in the

observations where the least squares (LS) [24] channel estimator is given by:
2 H -1 pH -1
h,=(F'F) F'X, Y, (10)

If K < L, the performance of LSE will be poor, especially when & is a sparse vector the estimated
performance will be very bad for not using the sparse property. In this case, the LS channel estimator is

given by:
h,=F/ (F,F;')' X,'Y, ()

According to Eq. (9), it is known that this is the compressive sensing system model that was
introduced in Section 3.1, where the measurement matrix is X»F», which is determined by the pilot
symbols and pilot locations. If X,F, satisfy the RIP, then we can solve it with a compressive sensing
recovery algorithm such as BP, OMP, lasso, and so on. With O generated by selecting K rows from a
NXN unit matrix randomly, the channel is probed randomly with the random sequence {P(i)} in the
frequency domain. {P(i)} are iid. realizations from a zero mean, unit variance distribution, and
P(i)’s take values are +1 or -1 with a probability of 1/2 each. The positions in the input probe in this
case match with the matrix @, where K > c¢,Slog L satisfies the RIP of order S with the parameter O

with the probability being at least 1 —e “* . The insertion method for random pilots is demonstrated in
Fig. 3.

Ol O] O] 10] 1O Ol O] O] 0] @
@ O @ O @ Ol O] |O] |O] |O
= O| |O] O] |O] |O] |&O] |O] |@||O] [0
4 ol |of |o] [o] |o 4 e O||0]|0]|®
1O O] O] 1O O] O] |O] 1O |O] O
@ O @ O @ ® O |O]|0] |0
Ol 1O] O] 10] 1O Ol O] @] |O] |O
CTP _Time CTP _Time ,
Comb-type . ---Pilot position Random arrangement

Fig. 3. Insertion method of pilot. CP=cyclic prefix.
3.3 Performance Analysis

Assuming the noise variance is deterministic, it is possible to obtain a reliable estimator of / as a
solution to the convex program. Let ® = X,F}, be an observation matrix satisfying RIP of order 2S
such than J, < V2 -1 for some integer S>1. Also, let Y =A4h+W be a vector of noisy

observations of h, where "W"2 <& . The solution of [11]:

h=arg min”fl”1 , St ||(I)h —y||2 <g (12)
will obey:
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Ji-b], <coo Lt

ol (13)
Js
where Nyis the best s-sparse approximation to h; the nonzero components in hg are the s largest

2
components of h, and ¢ = 16(1+5zs)/(1 — 05 _‘/55”) .

Let Sk be the set of indices of S nonzero entries of h, which can be termed the channel sparsity

pattern of s-sparse channel. Assume that the channel sparsity pattern and the corresponding virtual
coefficients h are deterministic but unknown. Then P is a submatrix obtained by extracting the

position of observation matrix @ corresponding to the indices in Sk and the mean square error (MSE)

of the proposed channel estimator can be low bounded as [19,25]:
% 2 2 FH & 1 )
MSE =E{“h—h“2} =P b )} 2T log(L) (14)
I

where o is the zero-mean white Gaussian with variance, 7 is the pilot symbol energy, and tr(.)

denotes the trace operator. The performances of the proposed channel estimator are better than that of

2
L
the LS channel estimator with the MSE as © A

4, Simulation Results

In this section, Monte Carlo simulations are conducted to show the channel estimation performance
of the proposed algorithm. To begin with, assume that a symbol block in the system of SC-FDMA is
time-invariant, the length of the symbol block is N =512, the maximum channel length is = 64, and
the number of pilot is K . The multi-path channel has the characteristics of negative exponential power
delay. That is, each path power is 512 =exp(-4//N_,),/ =0,1,..L -1, where N, =64 is the length
cyclic prefix; the number of nonzero channel taps J/ =4 ; and the system is synchronized to the first

path. This means that /yis always nonzero, and other path delays are randomly distributed over the
entire channel length of L
In order to evaluate the performance of the channel estimation algorithm, we defined the channel
estimation of the normalized mean square error (NMSE) as follows:
E{Zwk ~H, |2}
NMSE =—-*

gl

In fact, the direct assessment in the frequency domain is mainly because the SC-FDMA system

(15)

implements equalization in the frequency domain.

First, in order to evaluate the effectiveness of CS algorithms, we compared the MSE of LS and CS with
a different recovery algorithm under a different pilot. For the LS estimator, the comb-type
pilot arrangement can make the channel estimation optimal; therefore, the comb-pilot is used. For CS

algorithms random pilots are used. Figs. 4 and 5 show the MSE performance of LS and CS under the
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pilot numbers K =16 and K = 24. As can be seen from the figure, when the LS algorithm uses a small
number of pilots, (i.e., K < L ), the algorithm is basically in an invalid state and the system would have
serious errors. That’s because the LS channel estimation method requires the insertion of a pilot
number that is not lower than the actual channel length, which requires K > L = 64. In Figs. 4 and 5,
the performance of LS with pilot number K = 64 is also given. It is evident that the LS algorithm
improves greatly when K > [ .

In addition, we can see from Figs. 4 and 5 that the three CS-based recovery algorithms all have a
better performance when a small number of pilots are used. Moreover, the OMP algorithm performs
better than BP and CoSaMP does. The OMP algorithm uses a fast iterative mode to achieve better speed
than BP. Although the calculation amount of CoSaMP is also small, its performance is quite different
with the other two algorithms. Therefore, in a real system application, the OMP algorithms can be
considered for recovering the channel response for their low complexity. Even more importantly, the
need of the pilot is very small. Therefore, the transmission efficiency of the system can be improved

greatly.

NMSE(dB)

5 || —e— LS K=64
—B— OMP K=16
30k T CoSalMP K=16
—— BP.K=16 i ; ; i
35 1 1 | | | |
0 5 10 15 20 25 30 35
SNR(dB)

Fig. 4. Normalized mean square error (NMSE) performance of least square (LS) and compressed
sensing, pilot number K=16. SNR=signal-to-noise ratio, OMP=orthogonal matching pursuit, CoSaMP=
compressive sampling matching pursuit, BP=basis pursuit.

As shown in Figs. 4 and 5, we can also see that the recovery performance of the algorithm depends on
the number of pilots. Therefore, we simulated the CS recovery performance of the algorithm under a
different number of pilots in order to study the relationship between them. Fig. 6 shows the NMSE
curve of channel estimation with a different number of pilots and the SNR of the SC-FDMA system is
fixed at 15 dB. From Fig. 6 it can be seen that the estimated performance of LS is poor when the pilot is
less than the channel length. When it is only close to or greater than the channel length, it has better
performance; and when the pilot number is more than the channel length, the increase in performance
is not obvious. For the CS recovery algorithms, a small number of pilots can get a better performance as
compared to LS. However, when the pilot number is greater than about 20, the increase in performance
is not very obvious. Based on our experience, the recommended number of pilots is 4-5 times the
number of nonzero channel taps. Therefore, there is a tradeoff between the system transfer efficiency

and performance.
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NMSE(dE)

—— S K=24
25 |- —6— LS K=64
—BE— OMP K=24
30 }-{ = CoSaMP K=24
—6— BP.K=24

35 I I i i
0 5 10 15 20 25 30 35

SNR(dB)

Fig. 5. Normalized mean square error (NMSE) performance of least square (LS) and compressed
sensing, pilot number K=24. SNR=signal-to-noise ratio, OMP=orthogonal matching pursuit, CoSaMP=
compressive sampling matching pursuit, BP=basis pursuit.

NMSE(dB)

i i
20 30 40 50 60 70 80
Number of Pilot

Fig. 6. Normalized mean square error (NMSE) performance of different number of pilots. LS=least
square, OMP=orthogonal matching pursuit, CoSaMP=compressive sampling matching pursuit,
BP=Dbasis pursuit.

Finally, the impact of pilot arrangement on system performance is evaluated in Fig. 7. For the LS
estimation, a comb-type pilot arrangement is used, and it has the best performance. Whereas, with
regard to the CS algorithm, the sensor matrix needs to meet RIP constraint as we have already
discussed. Therefore, a random arrangement pilot is used, as shown in Fig 3. For the sake of contrast,
the NMSE of CS when using the comb-type pilot is also shown, and the pilot number K =24 is
selected. Fig. 7 shows the performance comparison of the two arrangements. It can be seen that
randomly arranging the pilot results in better performance. However, randomly selecting the pilot
brings about the increasing of complexity. In practice, the receiver needs to store the random pilot
pattern, which increases the system storage capacity. In [14] the optimal pilot pattern is designed by
minimizing the mutual coherence of the measurement matrix. This idea can be borrowed to further

improve the performance of estimation.
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20 T T T T T
: H : —+— LS .Comb-type pilot
--{ —B8— OMP Random arrangement o
—+— CoSaMP Random arrangement
—&— BP.Random arrangement i
--EF-- OMP Comb-type pilat
CoSaMP,Comb-type pilot
-~~~ BP,Comb-type pilot

NMSE(dB)

SNR(dB)

Fig. 7. Performance comparison of different pilot-insertion methods. NMSE=normalized mean square
error, SNR=signal-to-noise ratio, LS=least square, OMP=orthogonal matching pursuit, CoSaMP=compressive
sampling matching pursuit, BP=basis pursuit.

5. Conclusion

In this paper, a CS based channel estimation algorithm is presented for the sparse channel in the SC-
FDMA system. The proposed scheme, using a novel random pilot matrix pattern and the CS algorithm,
has lower NMSE with fewer pilots. The analysis and simulation results verify that the proposed
algorithm is effective in improving the system utilization of the spectrum. The algorithm can be applied

to a wireless SC-FDMA system, such as LTE, with no extra architectural changing.
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