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Abstract—Recommender systems are popular applications that help users to identify 
items that they could be interested in. A recent research area on recommender systems 
focuses on detecting several kinds of inconsistencies associated with the user 
preferences. However, the majority of previous works in this direction just process 
anomalies that are intentionally introduced by users. In contrast, this paper is centered on 
finding the way to remove non-malicious anomalies, specifically in collaborative filtering 
systems. A review of the state-of-the-art in this field shows that no previous work has 
been carried out for recommendation systems and general data mining scenarios, to 
exactly perform this preprocessing task. More specifically, in this paper we propose a 
method that is based on the extraction of knowledge from the dataset in the form of rating 
regularities (similar to frequent patterns), and their use in order to remove anomalous 
preferences provided by users. Experiments show that the application of the procedure 
as a preprocessing step improves the performance of a data-mining task associated with 
the recommendation and also effectively detects the anomalous preferences. 
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1. INTRODUCTION 

Recommender systems help users to identify items that they could be interested in. Modern 
applications usually present to the users a huge collection of items like movies, books, web pag-
es, scientific papers, books, and so on. This makes it difficult to select the appropriate items 
according to each personal interest. Recommender systems appear as a tool to mitigate the effect 
of this information overload.  

Given a set of users and items, and for each user the preference degrees about a subset of 
items, Gunawardana and Shani [1] categorize recommender systems into three classes, which 
are based on the recommendation task that they are designed for. These classes are as follows: 
1) those that suggest a list of top preferred items for a specific user, 2) those that suggest a list of 
items that maximize the profits of the item provider, and 3) those that predict the preference 
value (generally numeric and also identified as the rating value) for a specific user over an 
unknown item. 

A lot of work have been done to propose solutions for these problems [2, 3]. Considering the 
kind of data involved, recommendation systems can be grouped in the two main paradigms of 
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content-based and collaborative filtering-based systems. Content-based recommendation 
systems [4, 5] use features associated with items (i.e., the actors and director of a movie) to 
characterize the specific preferences for each user and then employ this information to perform 
the preferences prediction or items recommendation. In contrast, collaborative filtering 
recommendation systems [6, 7] do not depend on information beyond the rating values to 
perform the same task. This approach assumes that users who agreed on preferred items in the 
past will tend to also agree in the future. Following this supposition, the methods in this group 
predict preferences or recommend items for a given user based on the behavior of other similar 
users regarding the items that they have chosen.  

Most of the methods developed for recommendation scenarios assume each rating as a ground 
truth value. However, Amatriain, Pujol, and Oliver [8] show that users are inconsistent when 
they provide ratings in the system, and that this could negatively affect the prediction accuracy. 
Furthermore, recent reviews [9] have showed that an important challenge in recommendation 
systems research is related with data quality, because the data underlying the recommendations 
may be corrupted, or just plain wrong. 

Managing data inconsistencies has also been an open problem in more general data mining 
scenarios, and many data preprocessing methods have been developed to solve this issue. 
Methods for data preprocessing are organized into the following categories [10]: 1) data 
cleansing, which is applied to remove noise and correct inconsistencies in the data; 2) data 
integration, which merges data from multiple sources into a coherent data store; 3) data 
transformation, which improves the accuracy and efficiency of mining algorithms; and 4) data 
reduction, which reduces the size of data by eliminating redundant features or by clustering 
objects.  

Data cleansing has been a particularly important research area as it is needed in order to deal 
with inconsistencies and boosting the effectiveness of different mining tasks. Most of the work 
on data cleansing is grouped into the following two main categories: those that remove noisy 
information from the original dataset, and those that just detect and correct it in such a way that 
the information is not lost. In addition, the majority of approaches have been focused on the 
supervised learning scenario.  

In this direction, Zhu and Wu [11] provided a survey on the impact of noise in various 
supervised classification methods, showing that two categories of noise, class noise and  
attribute noise, could appear in this framework. Class noise is associated with labeling errors in 
the class attribute for a specific object, and it can be associated with contradictory examples and 
instances labeled with the wrong class. On the other hand, attribute noise is represented by 
errors that are introduced to attribute values, which makes it more related to the problem 
associated to this contribution. 

Many studies have been performed to deal with class noise [12-14]. These studies have shown 
that in many cases, the removal of objects that have been erroneously tagged could result in the 
classification accuracy being improved. However, the attribute noise treatment has been 
considered a more difficult task to perform, and currently there are few studies centered on this 
area, as compared to how many have been done on class noise [15-17]. 

In addition, the majority of advances performed in attribute noise handling indirectly use class 
information to perform the detection and correction of anomalies [11]. Although some of these 
proposals could be adapted to scenarios that go beyond supervised classification, this process is 
not straightforward. Certainly, to the best of our knowledge, there are less bodies of work 
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centered on noise handling that could be applied to alternative data mining scenarios like the 
recommendation framework, which has already been presented.  

In this paper we are proposing a novel approach to detect and correct inconsistent preference 
values in collaborative recommendation datasets. We have assumed the hypothesis that there are 
several implicit groups of users that share the same preference degrees over an important 
amount of items, and that there are several implicit groups of items that share the same 
preference degrees over several users. As such, we extracted regularities that characterize groups 
of users or groups of items. Then, we tagged as the stranger or more anomalous preferences 
those that were covered by only a few regularities. After that we were able to predict a new 
value for them by using the preferences associated with similar users regarding the current user. 
We would assert that the preferences that have been detected as being anomalous, do not 
represent the criteria associated to the majority of the users and items, and that this preferences 
could affect the accuracy of any recommendation method associated. 

The paper is organized as follows: in Section 2 we present previous work that has been carried 
out in relation to the treatment of inconsistencies in collaborative recommendation systems and in 
general data mining. Section 3 presents the regularity-based correction framework. Section 3.1 
formally defines what rating regularities means and proposes a method to obtain them. Section 3.2 
presents how to use these regularities to detect anomalous ratings in the collaborative filtering 
dataset. Section 3.3 proposes a strategy to correct them and Section 3.4 presents an analysis on the 
computational cost of the proposal. Section 4 describes the plans and development for an 
experimental protocol to verify the effect of the correction approach on the recommendation 
accuracy in different scenarios, and its ability to detect noisy preferences and to perform its task in 
a short amount of time. Finally, we present our conclusions in Section 5. 

 
 

2. RELATED WORK 
In this section we present previous work that has been carried out in relation to the treatment 

of data inconsistencies in general data mining frameworks and specifically for recommendation 
scenarios. In the case of general data mining, we will center on attribute noise handling, because 
it is more connected to the current problem of inconsistencies treatment in recommendation sys-
tems, as compared to the issue of class noise handling, which we have already mentioned. 

Data quality and noisy data handling in data mining have been a topic of interest for many 
years. Zhang [18] reviewed two kinds of noisy handling methods presented in the literature in 
this area. These two methods are as follows: 1) those that remove noisy data, and 2) those that 
detect and correct noisy data. The second one is a better strategy because the resulting dataset 
could preserve an important part of the original information, but this information is more associ-
ated with the ideal noise-free case. 

By taking a supervised classification scenario as a starting point, Teng [15] proposed a model 
to handle the possible erroneous feature values or class labels. He did so working under the as-
sumption that there is some relationship patterns among the feature attributes and the class at-
tribute. To identify and correct noise from an attribute (e.g., Ai) the mechanism switches Ai with 
the class and uses all other attributes plus the class to train a classifier, which is used to predict 
the “correct” value of Ai. Zhu et al. [16] extended this idea and further proposed a method to 
rank the potentially noisy instances by their impact in the classification process. The impact-
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sensitive instance ranking takes the information-gain ratio as the evaluation criterion to calculate 
the impact of each suspect instance on the learning system. Zhang et al. [19] have presented a 
novel framework that unifies error detection, error correction, and data cleansing to build an 
aggressive classifier ensemble for effective learning from noisy data, where the classifier en-
semble is built from the data that has been preprocessed by the data cleansing and correction 
methods. Zhang and Wu [20] have also proposed the inference of associated corruption rules to 
simulate a common noise formation process in real world data and state that they can be used for 
systematic noise inference and elimination, which enhances the data quality for supervised 
learning. Also, Marcus et al. [21] have presented a method that is based on ordinal association 
rules for detecting objects that contain potential errors in the data. Finally, Val Hulse et al. [17] 
introduced an approach for detecting instances with attribute noise and demonstrated its useful-
ness by using two different real-world software measurement datasets. Considering all of these 
bodies of work, only the last three methods do not depend on class labels to perform the correc-
tions. However, in the case of [20], the proposal uses both the original and the noisy dataset to 
learn the rules. In the case of [17, 21], these methods are focused on the detection of noisy in-
stances, and not on the specific piece of data that represents a portion of the instance that has 
caused the inconsistency. For these reasons, these proposals are not applicable to the recom-
mendation scenarios. 

With respect to these global approaches, Zhu and Wu [11] suggested that instead of adopting 
some “blind” noise handling mechanism, researchers can design their own noise handling ap-
proaches to improve data quality according to their own perspective. Following these principles, 
there have been several, much more domain-oriented research carried out on this topic in the last 
few years, and the field of recommender systems is one of these domains that has been studied. 

The majority of research has focused on the data preprocessing task around recommender sys-
tems, which have been centered on handling malicious data that was intentionally inserted by 
users to bias the performance of the system [22, 23]. However, several bodies of work, like [8], 
have shown that users could also introduce inconsistencies without negative intentions, and that 
not a lot of research that is focused on this last scenario has been conducted. 

In order to correct these kinds of inconsistencies in the recommender systems’ dataset, Pham 
and Jung [24] presented a model that explores data beyond ratings. It uses item attributes to 
learn a user preference model, and marks a rating as being “incorrect” if belongs to the current 
model, but is under a predefined threshold value and under the mean rating for the correspond-
ing user. This approach depends on additional information that is not usually available, and this 
is an significant drawback.  

Li et al. [25] also proposed an approach to detect the top “noisy but non-malicious” users in 
collaborative filtering recommendation systems. They did so working under the assumption that 
the ratings provided by the same user on closely related items should have similar values. The 
removal of these users from the dataset slightly improves the recommendation accuracy. How-
ever, this work is centered on the treatment of anomalous users and not on anomalous prefer-
ences, which is the goal of our proposed method.  

The current work presents a method that employs a pattern-based approach to correct these 
non-malicious inconsistencies that are introduced by the users.  
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3. THE REGULARITY-BASED CORRECTION FRAMEWORK  
In this section we present the regularity-based framework, which is used to correct incon-

sistent preferences in collaborative recommendation systems. The method contains the follow-
ing three main steps: 1) the discovery of rating regularities in users and items (Section 3.1); 2) 
the detection of anomalous preferences using these regularities (Section 3.2); and 3) the correc-
tion of the anomalous preferences detected in the previous step (Section 3.3). We have also in-
cluded an analysis of the computational cost for this particular method in Section 3.4.  

The approach presented in this work is similar to [20] in the sense that it first discovers ex-
plicit knowledge and uses this to eliminate data inconsistencies. However, in [20] the authors  
depended on the original and the noisy dataset to describe (in the form of rules) the noise for-
mation process and they also used these rules to perform the correction. On the other hand, we 
have discovered regularities that characterize users and items, tagged the data that contradicted 
them as being noise, and then corrected the noisy values by using a well-known strategy that is 
associated with the recommendation systems’ field.  

Our approach also differs from others that deal with noise in the recommendation field (ex-
plained above), in the sense that it does not depend on additional information to perform correc-
tions (contrary to [24]), and works at the rating level (contrary to [25]). 

 
3.1 Ratings Regularities: Formalization and Detection 

We have used a pattern-based approach to describe the formalization and detection of regular-
ities. A pattern is an expression that is defined in a language, which describes a collection of 
objects [26]. A pattern is usually expressed as combinations of feature values, like (Director= 
Spielberg, Genre = adventure, Year = 2000) or as logical properties, like [Director= Spielberg] 
∧[Genre= adventure] ∧[Year< 2005]. The pattern P covers the object x, or the object x sup-
ports the pattern P, if the object fulfills the property expressed by the pattern. An important 
characteristic of the pattern P is the amount of objects from collection X that supports P, which 
is called the pattern support and it is denoted by support(P, X).  

Following this, we have defined a rating regularity for users in the recommendation scenario 
as a pattern that is expressed by the combination of rating values over items. On the other hand, 
we have represented a rating regularity for items as a pattern expressed by the combination of 
rating values provided by the users.  

Formally, a rating regularity for users was a conjunction of terms with the form <item op val-
ue>, where item represents any item in the system, op represents a relational operator in the set 
{=, <, >}, and value is a possible value for the preferences of some users for the mentioned item. 

In addition, a rating regularity for items could be defined as a conjunction of terms <user op 
value>, where user represents any user in the system, op represents a relational operator in the 
set {=, <, >} and value is a possible value for the preferences associated with the mentioned user, 
over some items in the system.  

To present practical examples for these definitions, we used the examples show in Table 1, 
which shows a classical collaborative filtering scenario with several users (in rows), items (in 
columns), and some rating values for the corresponding users and items (intersections of rows 
and columns).  

Table 2 presents rating regularities for users that have been extracted from this scenario. In 
the case of the users’ regularities, the first one (Item4 = 2 and Item5 > 3) has the support = 2, 
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because it is covered by users, User2 and User6. The second one (Item1 = 5) has the support = 3, 
because it is covered by User1, User3, and User 6. On the other hand, for the regularities of 
items, the regularity User4< 4 and User6 = 5 receives the support = 2 (verified in Item3 and 
Item5). The last one (User1 > 3 and User6 = 5) is verified in Item1, Item3, and Item5, and it has 
the support=3. 

The exhaustive set of regularities for a dataset that is similar to Table 1 could easily be found 
using an Apriori-like method [27]. In order to get just the relevant regularities, we must obtain 
only those regularities with high support values. Then, we have to define a minimum support 
threshold for this task. Figure 1 presents an overview of a method to find the regularities. It must 
be executed twice. The first time is so that regularities for items can be obtained, and the second 
one is for users. 

Initially, this approach generates all of the possible regularities of length 1 (containing just 
one simple term) that verify the support constraint and stores them in a specific set. After this 
generation step, we have proposed that an initial filter, which checks if there is more than a sim-
ple term for the same item (or user) and the same operator, be applied to avoid redundancy. In 
this case we leave just the term that has the major support and remove the others. In Table 1, 
Item1 has two possible values (2 and 5), which implies that the possible simple terms associated 
to it are {(Item1≤2), (Item1≥2), (Item1=2), (Item1≤5), (Item1≥5), and (Item1=5)}. By checking 
this set, the initial filter will determine that (Item1≤2) and (Item1≤5) contain the same item and 
the same operator. It will then remove one of them and leave the term that has the main support. 
We also applied this procedure for (Item1≥2) and (Item1≥5). 

After that, we took the new set without any redundancies as the starting point. We used an 
Apriori approach to perform several iterations to obtain regularities larger than 1. In this procedure, 
for each step k, we took the regularities generated in the previous one (with length k-1) as input 
and used them as a base to generate a new set of candidate regularities with length k. We then 
stored the ones that satisfied the same support constraint definitive regularities. Also, like Apriori, 
our process stops when there are no regularities that satisfy this constraint at a specific step. 

Table 1. Typical scenario for collaborative filtering 

 Item1 Item2 Item3 Item4 Item5 

User1 5  4 5 5 

User2  3  2 4 

User3 5     

User4   3  2 

User5 2 5    

User6 5  5 2 5 

 
Table 2. Regularities extracted for the scenario in Table 1 

For users 
Item4 = 2 and Item5>3 support = 2 

Item1 = 5 support = 3 

For items 
User4 < 4 and User6 = 5 support = 2 

User1 > 3 and User6 = 5 support = 3 
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This scenario also implies redundancy because it could contain pairs of regularities like 
(Item1 = 5) and (Item1 = 5 and Item2 ≤ 3), where the terms that contain one of them represent a 
subset of the terms that correspond to the other one. For this reason, this final set must be fil-
tered again. Then, we assume that larger regularities are better than smaller ones for expressing 
the behavior of a group of objects. As such, we are proposing a simple strategy to reduce the 
original set into another one that verifies that for each regularity there is not another one repre-
senting a subset of the first one. We initially proposed that this task being performed through an 
iterative process, where for each regularity it checks the entire set and removes the regularities 
that represent a subset of the current one. In the example presented, this approach retains the 
regularity (Item1 = 5 and Item2 ≤ 3) and removes (Item1 = 5). 

Structures like the ones presented in Table 2 have been used to represent knowledge on dif-
ferent domains and for different purposes. It is worth noting that there are some recent works on 
the use of similar structures to build accurate and understandable supervised classifiers [28, 29]. 
Particularly in the field of recommendation systems, there are works that use rules to represent 
the knowledge behind the dataset [30]. Rules are closely related with the concept of regularity, 
which is presented in this work.    

 
3.2 Detecting Anomalous Ratings through Regularities  

The regularities extracted for users and items represent common behaviors that are associated 
to a group of users or items in the recommendation system. If a specific rating value implies that 
a certain user or item is covered by a specific regularity, it means that there is a group of users or 
items that shares the same criteria associated with this preference. As such, we can then con-
clude that this preference is not anomalous because several users (or items) share it. On the other 
hand, if a specific regularity does not cover a certain user or item, then it means that the prefer-
ence or preferences (ratings) that are specifically causing this situation must be analyzed as pos-
sible anomalies. 

Following these criteria, we have presented an approach to find anomalous ratings through 
regularities. Our approach (Figure 2) first detects regularities for users using the method pre-
sented in Figure 1. It then initializes an error matrix to store the degree of the anomaly for the 
rating (if the rating exists) associated with each user and item (lines 02-03). After that, we per-
formed two similar procedures for the regularities for users and for items. In the first case, we 
explored all of the users for every user regularity (lines 04-05). If the corresponding user u did 
not satisfy the current regularity (line 06), we then explored its single terms to determine which 
preference values in u implied that it does not verify the regularity (lines 07-08). We marked 
these preferences as possible anomalies and incremented their associated values at the corre-

Fig.1. Overview of the method to generate regularities in the recommendation scenario 
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sponding user and item in the error matrix by adding the support that is associated to the corre-
sponding regularity (line 09). This same procedure is performed in regularity for items. In this 
case, we explored all of the items for every item regularity (lines 10-11). If corresponding item i 
did not satisfy the current regularity (line 12) we then explored its single terms to find which 
preference values in i imply that it does not verify the regularity (lines 13-14). We then marked 
these preferences as possible anomalies and added the support of the current regularity to the 
value associated with the current user and item in the error matrix (line 15). Finally, we em-
ployed a user-based strategy to obtain the top anomalous preference values. For each user, we 
selected and retrieved the n values associated with the items with larger values in the error ma-
trix (lines 16-20) as anomalous.  

Taking the scenario presented in Table 1 as an example and considering just the regularities 
presented in Table 2, the detection process works as follows: evaluating the first regularity for 
all users (Item4 = 2 and Item5 > 3), the regularity is not verified for User1, and there are explicit 
ratings for this user and for the corresponding items in the current regularity (Item4 and Item5). 
Then, there are possible anomalies in this case and we have to check each single term in the 
regularity (lines 07-09 in Figure 2). It the first term (Item4 = 2) is not verified for this user (in 
this case User1 set the rating=5 for Item4) we must consider this situation as evidence for con-
sidering this rating to be anomalous. We then increment the value in errorMatrix[1,4] (for User1 
and Item4). For User2 the regularity verifies the current regularity, so we do not have to do any-
thing. User3 does not satisfy this regularity, but there are also no preference values for User3 in 
all of the items associated with the regularity (condition in the line 06 of the figure 2), and then 
there is no action to repeat. This last situation repeats for User4 and User5, and finally User6 
verifies the current regularity, like in the case of User2. 

When repeating this work for the second regularity (Item1 = 5) we had to analyze just User5 
for where its only term does not satisfy the regularity, and then we had to increment the value in 
errorMatrix[5, 1]. 

Fig. 2. Method for detecting the top n anomalous ratings per user 
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The analysis of the third regularity (User4 < 4 and User6 = 5), which is the first regularity for 
items, is performed as follows: in the case of Item1 there is no rating value for User4 and Item1, 
and so there is no action to do. This situation repeats for Item2, where there are no values for 
User4 or for User6. It also repeats for Item4, where there are no values that are specifically for 
User4. In the case of Item3 and Item5, both are covered by the regularity, so there is no action to 
do. 

To check the fourth regularity (User1 > 3 and User6 = 5), Item1, Item3, and Item5 are cov-
ered by the regularity. In the case of Item2, it does not contain preferences for both users and so 
there is no action to do. Finally, in the case of Item4, it does not satisfy the regularity because 
the rating of User6 for Item4 has the value = 2, and not the value = 5. For this reason, we incre-
mented the value in errorMatrix[6, 4] by adding the support of the regularity. 

In summary, the detection process using the scenario presented in Table 1 and the regularities 
presented in Table 2 returns as anomalous preferences that are associated with the following 
users and items pairs: 1) User1 and Item4 with the anomaly degree = 2; 2) User5 and Item1 with 
the anomaly degree = 3; and 3) User6 and Item4 with the anomaly degree = 3. 

 
3.3 Ratings Correction 

In the previous section we presented a method to detect anomalous preferences per user in 
collaborative filtering environments. Collaborative filtering predicts rating values for a given 
user based on past preferences and on the criteria of peers. As such, we are proposing using this 
same point of view to deal with the anomalous preferences detected with the previous step and 
for predicting for each case a new value for the corresponding user and item. If the new value 
was different enough as compared with the older one (detected as anomalous) we performed a 
replacement by setting the new value for the current user and item. 

Figure 3 presents this correction strategy. The approach initially invokes the method shown in 
Figure 2, and then iterates for each user the list of items whose ratings were detected as being 
anomalous (line 02-03). Then, for the current user and item, it predicts a new rating value using 
a traditional collaborative filtering method (line 04). It replaces the old value with the new one if 
the difference between them exceeds a threshold diff (lines 05-06). 

To predict new ratings (line 04), we selected a popular memory-based approach that is based 
on users (identified as Pearson’s user-based collaborative filtering [31]). It employs Pearson’s 
correlation coefficient to find similar users (Equation 1) and an aggregation function that com-
bines their preferences (Equation 3) to obtain the unknown rating. We used this approach be-
cause it performs well in the prediction task, and does not require the additional generation of 
knowledge to calculate the unknown ratings. In the equations (1), (2), and (3), ru,i represents the 
available rating for the corresponding user u and item i, and Pu, i represents the new prediction.  

 
Fig. 3. Method for correcting anomalous ratings 
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This method depends on an internal parameter, which is the amount of nearest users that are 
to be considered for calculating the new rating, which we have named, k-internal. We will refer 
to it in our experimental section. 
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3.4 On the Computational Costs Associated with our Method 

Our proposal is based on an Apriori approach, and for this reason it tends to have a high com-
putational cost. In this section we will provide a brief analysis on the computational complexity 
of our method.  

In the case of the method to generate regularities (presented in Figure 1), the first step linearly 
depends on the product of the amount of users and items, which also represents the possible 
amount of ratings (O(|U|*|I|), where |U| represents the amount of users and |I| the amount of 
items). Step 2 can be easily implemented inside of Step 1, without an increment of additional 
computational complexity. On the other hand, Step 3 focuses on finding regularities for users 
and items and it demands two executions of an Apriori-like approach that exponentially depends 
on the amount of users and items [32]. This step could undoubtedly affect the efficient execution 
of the presented procedure. However, real recommendation scenarios are always very sparse, 
meaning that although they usually have many users and items, there are also relatively few 
ratings. It could imply that there are few regularities with high support, and that their length 
tends to be short. These facts could allow for an efficient Apriori implementation to find them 
quickly, despite the exponential complexity of this method. In the experimental part of this work, 
we empirically verify this assumption by evaluating the execution time of our method by detect-
ing the regularities for users and items. Finally, in analyzing the fourth step of this method in 
Figure 1, at most it is quadratic in respect to the amount of regularities detected in the previous 
step (O(|Ru|2) + O(|Ri|2), where |Ru| and |Ri| represent the amount of regularities detected for 
users and items).  

As a second stage, the method that finds anomalous ratings per user (Figure 2) first initializes 
the error matrix (with the cost O(|U|*|I|)), and then performs an iteration for all of the regulari-
ties for the users, and an iteration for all of the regularities for the items (lines 02-15). In addi-
tion, each regularity is checked term by term for each user and item. Assuming that l represents 
the length of a regularity, the computational complexity of this segment is O(|Ru|*|U|*l) + 
O(|Ri|*|I|*l), but taking into account that this length tends to be short, we can reduce this expres-
sion to O(|Ru|*|U|) + O(|Ri|*|I|). Finally, for each user, the method retains the top n anomalous 
ratings (lines 17-20). As such, for each case we have to previously sort the corresponding items 
to retrieve the top ones. Then, the cost of this segment is O(|U|*|I|*log |I|), considering that n 
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objects could be sorted with a cost of O(n*log n). In summary, the cost of this stage is 
O(|Ru|*|U|) + O(|Ri|*|I|) + O(|U|*|I|*log |I|). Like the previous stage, in the experimental section 
we present an analysis of its execution time.  

Finally, the correction method (presented in Figure 3) performs an iteration for all of the users. 
For each one, it iterates for the top n anomalous ratings and conditionally corrects each value 
depending on the new one that has been predicted. In this case, the major cost is associated with 
the traditional collaborative filtering method, which we used to generate the predictions. How-
ever, considering that the anomalous ratings represent a small portion of the data, we show in 
the experimental section how this task could be done quickly. 

Table 3 summarizes the computational costs presented in this section. 
 

Table 3. Computational costs associated with each stage 

Regularities detection 
First and second step O(|U|*|I|) 
Third step O(2|U|) + O(2|I|) 
Fourth step O(|Ru|2) + O(|Ri|2) 

Anomalous ratings detection O(|Ru|*|U|) + O(|Ri|*|I|) + O(|U|*|I|*log |I|) 
Ratings correction O(|U|) 
|U|- amount of users, |I|- amount of items, |Ru|- amount of regularities for users, |Ri|- amount of regularities for 
items  
 
 
4. EXPERIMENTS  

In order to obtain the effects of our proposal, we developed a case study for Movielens, which 
is a popular dataset in the collaborative recommender systems field. The original version of 
Movielens is a well-known dataset containing 100,000 movie ratings on 943 users and 1,682 
items where each rating is discrete and is in the range [1; 5]. 

As such, we implemented our method using an efficient Apriori version proposed by Borgelt 
[33], which is based on a prefix tree representation of the needed counters and uses a double 
recursive scheme to count the transactions. 

We performed our experiments by orienting them in the following different directions: 1) to 
determine if the application of our method improves the accuracy of the prediction task in the 
original data, and then contributes to the removal of inherent inconsistencies (Section 4.1). 2) To 
determine if our method improves the accuracy of the prediction task for data that has been 
manually corrupted with a specific strategy (Section 4.2). 3) To determine if our method could 
effectively identify the noisy preferences that are manually introduced in Section 4.2 (Section 
4.3). In addition, we focused on determining the average execution time of our method (Section 
4.4), and we give the evaluation of its accuracy and execution time in dealing with a larger rec-
ommender systems dataset (Section 4.5). 

 
4.1 Evaluating the Effect of our Method For the Original Dataset 

To determine if our method corrects anomalous preferences in the original dataset, we pro-
posed that the data be transformed by using our procedure. After that, we evaluated the perfor-
mance of a traditional data-mining task associated with this scenario and we performed it with 
and without the transformation. In this case we select the task related with the prediction of un-
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known ratings.  
We used the experimental protocol that is also described in [1] to prepare the data for this ex-

periment. In this case, the authors have proposed selecting a set of users from the original da-
taset and to randomly hide na items for each user a, where na is also randomly selected for each a. 
These hidden items composed the test set, and the remaining ones were chosen to be the training 
set.  

To determine the accuracy of the prediction method, the work in [1] proposes each test rating 
to make a new prediction for the corresponding user and item using the algorithm to evaluate the 
training data. Then, the final accuracy can be calculated using the mean absolute error (MAE) 
(Equation 4) for all of the predictions made. 
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In order to measure the effect of our correction process, we performed the correction on the 

training set, and afterwards we compared the accuracy obtained by a traditional algorithm that 
predicts test set ratings by using the transformed data (our proposal) and using the original one 
(baseline). Finally, to verify if the difference between them is statistically representative, we also 
used the procedure proposed in [1], which is as follows: 1) for each user in the test set we calcu-
lated two MAE values that represented the average of their predictions, which were made by 
using our proposal and baseline respectively, and we created two sets where each one contains n 
predictions, respectively, from the n users; 2) we applied a Wilcoxon signed test between these 
two distributions to determine if the difference is statistically significant. 

We evaluated the impact of our correction process over two well-known recommendation ap-
proaches: a user-based method that employs neighborhood preferences to make predictions 
(memory-based) [2], and a dimensionality reduction method that uses matrix factorization tech-
niques (model-based) [34]. For each case, the experimental results are mainly divided into a 
sensitivity analysis of parameters and performance results. In assessing the quality of the rec-
ommendations, we first determined the sensitivity and the best values for the parameters in both 
scenarios before running the main experiment. 

 
4.1.1 Impact on a User-Based Neighborhood Method 
User-based neighborhood collaborative filtering methods were pioneers in the recommenda-

tion systems research that was done in the mid-90’s [35]. In this section, we will evaluate our 
approach on a popular recommendation method summarized in [2] and known as 
UserKNNPearson. It employs a Pearson’s correlation coefficient as the similarity function and 
an adjusted weighted sum of a neighbor’s ratings to calculate the predictions. 

UserKNNPearson also uses an internal parameter, which is the amount k of the nearest neigh-
bors that needs to be considered. We employed the value k=60, which has been suggested as the 
default value by some experimental frameworks in the collaborative filtering field, like 
MyMediaLite [36]. 

Our approach depends on the following four parameters to perform the correction process: the 
amount of top anomalous ratings per user to correct (n), the difference threshold between the old 
and the new rating (diff), the minimum support to obtain the regularities (minSup), and the 
number of neighbors used by the memory-based method to predict a new rating value when an 
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anomalous preference is detected (k-internal). 
To set an appropriate value for minSup, which obtains a balance between prediction accuracy 

and performance, we ran several trials and finally set the value as minSup=70. On the other hand, 
considering that the value of 60 has been assumed to be good as the amount of nearest users in 
neighborhood methods, we choose k-internal=60. With respect to this last parameter, we kept 
this value for the rest of the experiments, because we believe that it does not have a direct effect 
on the behavior of our method, considering that it is just a parameter of the prediction method 
that is internally employed. We also verified this fact through additional trials. 

To obtain the best values for n and diff, we evaluated the behavior of the proposal by modify-
ing the value of n in the range n = [5; 70] in Step 5, and the value of diff in the range diff= [1; 
2,5] in Step 0.5. Our results for these trials (Fig. 4) show that the best accuracy was obtained for 
diff=1.5, and for n=60. 

We used these parameter values to compare our approach against the baseline. The results, 
which are presented in Table 4, show that when using our strategy, the use of corrected ratings 
improves the behavior of the recommendation method as compared against a baseline that em-
ploys original ratings. This baseline is also represented in Figure 4. In order to determine if this 
result is statistically significant, we applied a Wilcoxon signed test using the protocol described 
above, given that the difference between both results is significant with p<0,001. 

 
 

 
Fig. 4. The behavior of our method with UserKNNPearson for different n and diff values 

 
 

Table 4. Accuracy associated with UserKNNPearson before and after the rating correction 

UserKNNPearson UserKNNPearson with anomalous rating correction 

0,7648 0,7602 

p<0,001 
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4.1.2 Impact on a Matrix Factorization Method 
The use of dimensionality reduction methods based on matrix factorization marked a turning 

point in recommendation systems research at the end of the last decade, because they notably 
improve the recommendation accuracy [34]. These methods appear as a solution for classical 
problems like scalability and sparsity, and also indirectly focus on removing small perturbances 
from the data and on decreasing the impact of anomalous ratings [37]. In this section we de-
scribe how we measured the effect of our approach on this scenario, which already contained an 
implicit manipulation of this kind of noise. 

To perform our trial, we adopted the matrix factorization method proposed in [34]. It focuses 
on gradient descendent techniques to create a lower-dimension space for users and items, and 
makes predictions using this new space. We used the following default parameter values that 
were proposed by MyMediaLite [36]: regularization λ1=0.015, bias regularization λ2=0, learning 
rate α=0.01, init_mean=0, and init_stdev=0.1. On the other hand, we performed previous execu-
tions to empirically determine the best values in the Movielens scenario for the number of fac-
tors in the factorization model (num_factors) and the number of iterations required to build the 
model (num_iters). We obtained the best performance for num_factors=5 and num_iters=20, 
and then we used these values in the further experiments. 

Using the same strategy presented in Section 4.1.1, minSup=70 and k-internal=60, which are 
also the same values that we previously used, we found the best values for the parameters n and 
diff (Fig. 5). Considering that this approach is non deterministic, we ran several trials for each 
parameter configuration and then averaged them together to calculate the value to compute. Fig. 

 
Fig. 5. The behavior of our method with the matrix factorization approach, for different n and diff 

values 
 

Table 5. Accuracy associated with the matrix factorization approach before and after the rating 
correction 

Matrix factorization approach Matrix factorization approach with anomalous rating correction 

0,7609 0,7566 

p<0,001 
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5 shows the sensitive analysis for both parameters, which obtained the best results for n= 30 and 
diff=1.5. 

We compared our approach with these parameter values against the baseline. Table 5 pre-
sents both MAE values that were obtained by our averaging the trial results. Surprisingly, our 
approach improves the baseline again. This demonstrates that although the matrix factorization 
methods implicitly remove some anomalies, there are still many preferences whose correction 
implies a global improvement in the predictions. The results presented show that our approach 
successfully creates this correction task, which improves prediction accuracy. In addition, they 
were statistically verified and are significant with p<0,001. 

 
4.2 Evaluating the Effect of our Method On the Manually Corrupted Dataset 

In the previous section we showed that our approach performs well in an original collabora-
tive filtering scenario. Its use as a preprocessing step for the data, consistently decreases the 
mean absolute error of two representative approaches performing the prediction task, and this 
improvement was statistically verified. In this section we pretend to measure the effect of our 
method on well-predefined noisy data. With this purpose in mind, we manually corrupted the 
original dataset and compared the performance of the two traditional recommendation methods 
that we already used in the previous section. We did so by using the corrupted data and by using 
the data that was transformed through our method. 

In this experiment we also used the protocol associated with Section 4.1, with the same parti-
tion for the training set and the test set. We used the mean absolute error (MAE) as the evalua-
tion metric. We used a specific strategy to corrupt the training set, and compared the accuracy of 
the recommendation approaches predicting the test set by using the corrupted training set, and 
by using the corrupted training set transformed through our approach.  

We defined a strategy to manually introduce inconsistencies in the training set. This strategy 
verifies that the final value for each corrupted rating was significantly different as compared to 
its original value, and it also verifies that the noise distribution was uniform among all users. In 
this direction, for each user we selected a set of associated ratings, and changed it depending on 
its value. Figure 6 presents this corruption strategy, and it receives as parameters the set of users 
and ratings, and the amount N of ratings to corrupt per user. We used this procedure to alter the 
training data, setting N in the range [5; 20] with step 5. After we did this, we obtained four train-

 
Fig. 6. Dataset corruption process 
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ing sets with different noise degrees. 
In the following sections we will present our results by initially analyzing the sensitive of the 

parameters n and diff and then finding their best values for each scenario. We then compared the 
accuracy that we obtained against the baseline. 

 
4.2.1 Impact on a User-Based Neighborhood Method with the Corrupted Dataset 
In this section we explain how we used the same prediction method and parameters employed 

in Section 4.1.1 (UserKNNPearson with k=60), and also set minSup=70 and k-internal=60. Like 
previous sections, we adjusted the values of n and diff, modifying n in the range [5; 70] with 
step 5, and diff in the range [1; 2,5] with step 0.5. In this case, we evaluated our proposal over 
the four datasets that were obtained with the different values of N.  

Figure 7 shows the results for these trials. Like our previous experiments, the best results 
were obtained for larger values of n in all datasets. However, for the noise degrees N=5 and 
N=10, the MAE value begins to be constant for shorter values of n, as compared against the 
evaluations associated with the data with N=15 and N=20. This behavior was expected, and 

    
      N=5                                               N=10 

    
     N=15                                                N=20 

 
Fig. 7. The behavior of our method with UserKNNPearson and noise for different n, N, and diff

values 
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allowed us to conclude that the method could effectively detect the ratings that were altered. 
This is because the data with lower noise need an inferior value of n to obtain the best perfor-
mance. In contrast to the previous scenario, in this case the global best performances are 
achieved for diff=1.0 and diff=2.5 with larger noise degrees and method almost does not im-
prove the baseline. Finally, as was expected, the improvement performed by our method at this 
manually corrupted scenario is larger compared against the improvement associated with the 
original data. 

We selected the parameter configurations associated with the best performance values for 
each noise degree, and compared them against the baseline. Table 6 shows the comparison re-
sults, which show that our strategy indicates an improvement in the prediction accuracy as com-
pared with the related to the noisy and unmodified data. These results were statistically verified 
using the same protocol presented before, and they were statistically significant with p<0,001. 

 
4.2.2 Impact on a Matrix Factorization Method with the Corrupted Dataset 
We also evaluated the performance of the matrix factorization method on the corrupted data 

and on the corrected corrupted data by using our proposed method. We employed the same pa-
rameters used in Section 4.1.2, except for the number of factors and number of iterations. In this 
case, we previously performed several trials to empirically obtain the best average values for 
these parameters in the corrupted dataset, and finally set num_factors=5 and num_iter=3. Like 
previous sections, we also selected minSup=70 and k-internal=60 and evaluated the performance 
of our method by modifying n in the range [5; 70] with step 5, and diff in the range [1; 2,5] with 
step 0.5. Just as we did in Section 4.1.2, we ran several trials for each parameter configuration 
and finally averaged them together to calculate the value to compute. We performed these tasks 
using the data already employed in Section 4.2.1 that was corrupted. We did so by using the 
procedure presented in Figure 6, with N in the range [5; 20] with step 5.  

The results for these trials, which are presented in Figure 8, are very similar to those obtained 
by the neighborhood approach. In this case, they represent clearer evidence (compared with the 
previous section) that a lower noise degree in the data implies that the best results are obtained 
for a lower value of n. Specifically, for this experiment, for N=5, the results begin to be constant 
at n=20; for N=10 at n=30; for N=15 at n=40; and for N=20 at n=50. Like previous sections, the 
best results were obtained for diff=1.0, and we compared them against the baseline for each 
noise degree (Table 7). For this experiment, we can conclude that the application of our method 
on the data reduces the prediction error. 

In summarizing Sections 4.1 and 4.2, we can conclude that the behavior of our method is 

Table 6. Accuracy associated with UserKNNPearson before and after the rating correction, 
considering the introduction of noise  

 UserKNNPearson UserKNNPearson with anomalous rating correction 

N=5 0,8458 0,8048 

N=10 0,9389 0,8712 

N=15 1,0348 0,9616 

N=20 1,1303 1,0523 

p<0,001 
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different, when we compare the scenario associated with the original data, and the scenario as-
sociated to the manually corrupted one. In the first case (Section 4.1), we started with the as-
sumption that the datasets of recommender systems are inherently noisy, and that our proposal 
contributes to remove this noise by improving the prediction task associated with the corre-

    
      N=5                                               N=10 

    
 

     N=15                                                N=20 

 
Fig. 8. The behavior of our method with the matrix factorization approach and noise, for different n, 

N, and diff values 
 

Table 7. Accuracy associated with the matrix factorization approach before and after the rating 
correction, considering the introduction of noise. 

 Matrix factorization approach  Matrix factorization approach with anomalous rating correction 

N=5 0,8360 0,8056 

N=10 0,9131 0,8544 

N=15 0,9996 0,9330 

N=20 1,0888 1,0224 

p<0,001 
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sponding data. The experiments that we performed on a well-known dataset indicate that our 
procedure suggests a moderate but statistically significant prediction improvement over two 
other popular recommendation methods. To obtain the best performance, our proposal needs to 
analyze a medium quantity of ratings per user (30 for the matrix factorization approach and 60 
for the neighborhood method). It suggests that although there are several anomalous ratings in 
the original data, there are not “very noisy” ratings, which verifies that just their being corrected 
suggests a significant improvement in the prediction of unknown preferences.  

On the other hand, in Section 4.2 we corrupted this dataset and altered some of the rating val-
ues for each user. In this case, as was expected, the difference between the performance of the 
predictions associated with this data and the associated with this same data after correction, was 
bigger than the difference obtained in the previous section. Contrary to the previous stage, the 
best performance was obtained for diff=1.0 and not for diff=1.5. In addition, we observed a 
slight correlation between the amount of ratings corrupted per user (N), and the optimal top n 
noisy ratings to correct per user. This is because the data with lower values in N tends to use low 
values associated with n, and this is also applicable for the higher values in N. It indicates that 
our proposal actually tends to first retrieve the “noisiest” ratings, which are represented in this 
scenario by those that have been manually altered.  

 
4.3 Evaluating the Ability of our Method to Identify Noise that was Manually 

Introduced 

The previous sections have showed that the transformation of the data using our procedure 
always suggests an accuracy improvement for the prediction task, in both the original and the 
manually corrupted dataset. In this section we pretend to evaluate the ability of our proposal to 
detect the noisy ratings that we introduced in Section 4.2. We consider this experiment to be 
very valuable, because it indicates if the prediction improvements obtained in Section 4.2 were 
due to the correction of the corrupted preferences or to the correction of other items. 
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In this case, we evaluated our method using the F1 metric (Equation 7), which effectively 

combines the precision and recall metrics [1]. We adopted the confusion matrix presented in 

Table 8. Confusion matrix for the correction framework  

 Corrected Not corrected 

Corrupted True-Positive (tp) False-negative (fn) 

Not corrupted False-Positive (fp) True-negative (tn) 



  
A Regularity-Based Preprocessing Method for Collaborative Recommender Systems 

  

454 

Table 8, while keeping in mind that a preference could be corrupted or not corrupted, and cor-
rected or not corrected by our approach. In this framework, the precision (Equation 5) is inter-
preted as being the ratio between the amount of ratings that were corrupted and eventually cor-
rected and the total amount of ratings that were corrected. On the other hand, the recall (equation 
6) is interpreted as being the ratio between the amount of ratings that were corrupted and cor-
rected and the total amount of ratings that were corrupted.  

We performed the evaluation using the corrupted training sets that we obtained in the previ-
ous section, where we randomly altered 5, 10, 15, and 20 ratings, respectively, for each user. In 
F1 terms, we measured the behavior of our method by only correcting the ratings that had previ-
ously been inserted as noise. Like previous sections, we set minSup=70 and k-internal=60, and 
analyzed the effect of different values for n and diff. Specifically, we set n in the range [5; 70] 
with step 5, and diff in the range [1; 2,5] with step 0.5. 

Figure 9 presents the results of this experiment. It indicates that this method performs the 
best detection of corrupt ratings for diff= 1.0. Like with our previous experiment, we observed a 
correlation between the optimal value for the top n ratings corrected per user, and the amount N 

    
      N=5                                               N=10 

    
       N=15                                               N=20 

 
Fig. 9. The accuracy of our method in detecting corrupted ratings, for different n, N, and diff values 
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of ratings corrupted per user. Considering this performance at diff=1.0, for N=5, and N=10 the 
best F1 values were obtained for n=15 and n=30, respectively. For bigger values in n, the values 
of F1 decrease. On the other hand, for N=15 and N=20, the accuracy of the method does not 
receive a remarkable increment for n>45 and n>55, respectively. This indicates our method al-
ready corrects an important amount of altered ratings just for these values. These results are 
aligned with those described in Section 4.2, where we got the best MAE values for lower values 
at n, in datasets with lower noise degrees. 

 
4.4 About the Execution Time of the Preprocessing Method 

Our method is based on the discovery of regularities represented as frequent patterns, and we 
have proposed using Apriori-like method to find them. Considering that Apriori tends to have an 
exponential cost, we previously showed that the execution time of our method could become a 
significant problem. However, we also mentioned that by taking into account some special fea-
tures associated to recommender systems datasets (like sparsity), the proposal should run rela-
tively quick.  

In this section we will evaluate the execution time of our proposal and will perform this task 
separately for each method step (regularities detection, anomalous ratings detection, and ratings 
correction). The execution of the former two steps could be affected by the amount of regulari-
ties generated, and for this reason, we will focus on how to determine these steps by modifying 
the scale of the parameter minSup. The execution time of the third step strongly depends on the 
amount of ratings that need to be corrected, and so in this case we will evaluate how this step 
scales by varying the top n ratings that need to be corrected per user. 

This experiment was developed by using the original version of MovieLens on a platform 
containing the Microsoft Windows XP Professional Operating System, an Intel Pentium ® Dual 
Core 3.06 GHz processor, and a Kingston DDR3 4 Gb RAM memory. For the analysis of the 
first and second step, we evaluated the parameter minSup in the range [60; 120] with step 10, 
and left n=60. We selected this range because for minSup >120 the method did not discover any 
regularities, and for minSup<60 it takes a longer time to finish. Finally, in the third step we 
evaluated n in the range [10; 50] with step 10, and left minSup=70.  

Figure 10 presents the result of this trial. The execution time was measured in seconds. Spe-
cifically, Figure 10a (regularities detection) shows that our method combined with the Apriori 
implementation proposed in [33], could efficiently find regularities for users and items in a rela-
tively short period of time. Figure 10c (rating correction) presents the time employed by the 
neighborhood method to calculate new ratings, but excludes the time needed to previously cal-
culate the Pearson's correlation coefficient between all users. This data is necessary for obtaining 
the new ratings, but it is not directly associated to our method because usually it is calculated in 
real-time systems. For this reason we excluded this execution time from our evaluation. 

In summary, the results show that our method could process the current dataset relatively 
quick. When using our software/hardware platform, the method always finishes in around 6 se-
conds in the worst case scenario. Taking into account that our proposal is a preprocessing proce-
dure that has been conceived for periodical use on the systems and always as a background stage, 
we evaluate as very appropriate the time employed by our method. 
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4.5 Evaluating the Performance of our Approach in a Larger Dataset 

In this work, we have evaluated the performance of our approach using the data in the original 
Movielens dataset version, which is also known as Movielens 100K. It contains 100,000 ratings 
provided by 943 users on 1,682 items. The presented results prove that the application of our 
method as a preprocessing step suggests an improvement in the ratings prediction stage. 

We have also previously showed that our method could have a significant computational cost 
depending on the amount of users and items, but in addition we mentioned that the high sparsity 
associated with the ratings implies that the proposal runs quickly in practical scenarios. We cor-
roborated this fact in the previous section, where we showed that in the worst-case scenario, our 
method completes its task in just a few seconds. 

In this section, we evaluate the performance of our approach in a larger dataset with the fol-
lowing two criteria: the prediction accuracy after the application of the method (in MAE terms), 
and the execution time of the method. Specifically, we will use another version of Movielens, 
known as Movielens 1M, which containing around 1,000,000 ratings that have been provided by 
more than 6,000 users on approximately 4,000 items.  

To evaluate the prediction accuracy, we performed an experimental setup similar to the one 
we presented in Section 4.1. This setup does not consider the ratings corruption and uses the 
same procedure that was described in the beginning of Section 4.1 to build the training and test 
sets. To choose the value for minSup, we selected minSup=430, because it approximately repre-
sents the same proportion of users and items as compared with the minSup value that was used 

        
(a)                                                     (b) 

 
(c) 

Fig. 10. The execution time in seconds, which is associated with the different stages of our method.
a) The detection time for regularities b) The detection time for inconsistencies c) Correction
time 
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in the experiments with Movielens 100K. On the other hand, we selected k-internal=60 since the 
previous trials in this scenario concluded that this value is appropriate to use as the amount of 
nearest neighbors in this dataset. On the other hand, to adjust the best values for the parameters 
n and diff, we evaluated several executions using different values by considering both recom-
mendation methods (UserKNNPearson and the matrix factorization approach). We obtained the 
best performance for n=5 and diff=2.0 with the UserKNNPearson method (with k=60), and for 
n=50 and diff=1.5 with the matrix factorization method (with num_factors=10 and 
num_iter=30). As was expected, for both cases the performance associated to our preprocessing 
technique outperforms the baseline, which is represented as the accuracy obtained when using 
the uncorrected dataset (Table 9). 

To evaluate the execution time, we used the same protocol and the same hardware-software 
platform that we employed in Section 4.4. We varied the minSup in the range [370; 490] with 
step 20, and n in the range [10; 70] with step 10. In this case, the detection time for regularities 
and the detection time for inconsistencies also quickly performed their tasks. However, the time 

Table 9. Accuracy before and after the rating correction in the dataset, Movielens 1M 

 Our method Our method with anomalous rating correction 

UserKNNPearson 0,7532 0,7494 

Matrix factorization approach 0,7218 0,7190 

 p<0,001 

 

        
(a)                                                      (b) 

 
(c) 

Fig. 11. The execution time for Movielens 1M in seconds, which is associated with the different 
stages of our method. a) The detection time for regularities b) The detection time for 
inconsistencies c) Correction time
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associated to the correction task notably increased for larger values of n. For these cases, the 
method takes 100 seconds to correct all of the ratings that have been detected as anomalous. 
However, by keeping in mind that the method was conceived to be executed as the background 
in a real system we can classify this time as being an appropriate amount. Like previous sections, 
Figure 11 presents the execution time of the three stages of our method. 

 
 

5. CONCLUSION 
In this paper we have presented a framework to perform the correction of anomalous ratings 

in collaborative filtering recommendation systems. Our work adopts the position that users are 
inconsistent when they rate items, and that this could negatively affect the prediction accuracy. 
Following this, we proposed an approach to discover rating regularities and considered the rat-
ings that contradicted these regularities as being noisy. We presented a way to correct these 
noisy values. We also showed that by using our proposal as a preprocessing step, the prediction 
accuracy of two popular approaches in collaborative filtering is significantly improved in both 
the original dataset and the manually corrupted one. In addition, our approach effectively dis-
covered the ratings that were manually altered in the corrupted case. Our future work will be 
focused on proposing alternative methods to obtain more useful sets of regularities that improve 
accuracy and on defining new forms to represent regularities by possibly using uncertainty ap-
proaches. 
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