

J Inf Process Syst, Vol.9, No.3, September 2013 http://dx.doi.org/10.3745/JIPS.2013.9.3.435

435

A Regularity-Based Preprocessing Method for
Collaborative Recommender Systems

Raciel Yera Toledo*, Yailé Caballero Mota** and Milton García Borroto***

Abstract—Recommender systems are popular applications that help users to identify
items that they could be interested in. A recent research area on recommender systems
focuses on detecting several kinds of inconsistencies associated with the user
preferences. However, the majority of previous works in this direction just process
anomalies that are intentionally introduced by users. In contrast, this paper is centered on
finding the way to remove non-malicious anomalies, specifically in collaborative filtering
systems. A review of the state-of-the-art in this field shows that no previous work has
been carried out for recommendation systems and general data mining scenarios, to
exactly perform this preprocessing task. More specifically, in this paper we propose a
method that is based on the extraction of knowledge from the dataset in the form of rating
regularities (similar to frequent patterns), and their use in order to remove anomalous
preferences provided by users. Experiments show that the application of the procedure
as a preprocessing step improves the performance of a data-mining task associated with
the recommendation and also effectively detects the anomalous preferences.

Keywords—Collaborative Recommender Systems, Inconsistencies, Rating Regularities

1. INTRODUCTION

Recommender systems help users to identify items that they could be interested in. Modern
applications usually present to the users a huge collection of items like movies, books, web pag-
es, scientific papers, books, and so on. This makes it difficult to select the appropriate items
according to each personal interest. Recommender systems appear as a tool to mitigate the effect
of this information overload.

Given a set of users and items, and for each user the preference degrees about a subset of
items, Gunawardana and Shani [1] categorize recommender systems into three classes, which
are based on the recommendation task that they are designed for. These classes are as follows:
1) those that suggest a list of top preferred items for a specific user, 2) those that suggest a list of
items that maximize the profits of the item provider, and 3) those that predict the preference
value (generally numeric and also identified as the rating value) for a specific user over an
unknown item.

A lot of work have been done to propose solutions for these problems [2, 3]. Considering the
kind of data involved, recommendation systems can be grouped in the two main paradigms of

Manuscript received April 2, 2013; first revision May 6, 2013; accepted July 21, 2013.
Corresponding Author: Raciel Yera Toledo
* Knowledge Management Center, University of Ciego de Ávila, Cuba (yeratoledo@gmail.com)
** Department of Computer Science, University of Camagüey, Cuba (yaile.caballero@reduc.edu.cu)
*** Bioplants Center, University of Ciego de Ávila, Cuba (milton.garcia@gmail.com)

Copyright ⓒ 2013 KIPS

pISSN 1976-913X
eISSN 2092-805X

A Regularity-Based Preprocessing Method for Collaborative Recommender Systems

436

content-based and collaborative filtering-based systems. Content-based recommendation
systems [4, 5] use features associated with items (i.e., the actors and director of a movie) to
characterize the specific preferences for each user and then employ this information to perform
the preferences prediction or items recommendation. In contrast, collaborative filtering
recommendation systems [6, 7] do not depend on information beyond the rating values to
perform the same task. This approach assumes that users who agreed on preferred items in the
past will tend to also agree in the future. Following this supposition, the methods in this group
predict preferences or recommend items for a given user based on the behavior of other similar
users regarding the items that they have chosen.

Most of the methods developed for recommendation scenarios assume each rating as a ground
truth value. However, Amatriain, Pujol, and Oliver [8] show that users are inconsistent when
they provide ratings in the system, and that this could negatively affect the prediction accuracy.
Furthermore, recent reviews [9] have showed that an important challenge in recommendation
systems research is related with data quality, because the data underlying the recommendations
may be corrupted, or just plain wrong.

Managing data inconsistencies has also been an open problem in more general data mining
scenarios, and many data preprocessing methods have been developed to solve this issue.
Methods for data preprocessing are organized into the following categories [10]: 1) data
cleansing, which is applied to remove noise and correct inconsistencies in the data; 2) data
integration, which merges data from multiple sources into a coherent data store; 3) data
transformation, which improves the accuracy and efficiency of mining algorithms; and 4) data
reduction, which reduces the size of data by eliminating redundant features or by clustering
objects.

Data cleansing has been a particularly important research area as it is needed in order to deal
with inconsistencies and boosting the effectiveness of different mining tasks. Most of the work
on data cleansing is grouped into the following two main categories: those that remove noisy
information from the original dataset, and those that just detect and correct it in such a way that
the information is not lost. In addition, the majority of approaches have been focused on the
supervised learning scenario.

In this direction, Zhu and Wu [11] provided a survey on the impact of noise in various
supervised classification methods, showing that two categories of noise, class noise and
attribute noise, could appear in this framework. Class noise is associated with labeling errors in
the class attribute for a specific object, and it can be associated with contradictory examples and
instances labeled with the wrong class. On the other hand, attribute noise is represented by
errors that are introduced to attribute values, which makes it more related to the problem
associated to this contribution.

Many studies have been performed to deal with class noise [12-14]. These studies have shown
that in many cases, the removal of objects that have been erroneously tagged could result in the
classification accuracy being improved. However, the attribute noise treatment has been
considered a more difficult task to perform, and currently there are few studies centered on this
area, as compared to how many have been done on class noise [15-17].

In addition, the majority of advances performed in attribute noise handling indirectly use class
information to perform the detection and correction of anomalies [11]. Although some of these
proposals could be adapted to scenarios that go beyond supervised classification, this process is
not straightforward. Certainly, to the best of our knowledge, there are less bodies of work

Raciel Yera Toledo, Yailé Caballero Mota and Milton García Borroto

437

centered on noise handling that could be applied to alternative data mining scenarios like the
recommendation framework, which has already been presented.

In this paper we are proposing a novel approach to detect and correct inconsistent preference
values in collaborative recommendation datasets. We have assumed the hypothesis that there are
several implicit groups of users that share the same preference degrees over an important
amount of items, and that there are several implicit groups of items that share the same
preference degrees over several users. As such, we extracted regularities that characterize groups
of users or groups of items. Then, we tagged as the stranger or more anomalous preferences
those that were covered by only a few regularities. After that we were able to predict a new
value for them by using the preferences associated with similar users regarding the current user.
We would assert that the preferences that have been detected as being anomalous, do not
represent the criteria associated to the majority of the users and items, and that this preferences
could affect the accuracy of any recommendation method associated.

The paper is organized as follows: in Section 2 we present previous work that has been carried
out in relation to the treatment of inconsistencies in collaborative recommendation systems and in
general data mining. Section 3 presents the regularity-based correction framework. Section 3.1
formally defines what rating regularities means and proposes a method to obtain them. Section 3.2
presents how to use these regularities to detect anomalous ratings in the collaborative filtering
dataset. Section 3.3 proposes a strategy to correct them and Section 3.4 presents an analysis on the
computational cost of the proposal. Section 4 describes the plans and development for an
experimental protocol to verify the effect of the correction approach on the recommendation
accuracy in different scenarios, and its ability to detect noisy preferences and to perform its task in
a short amount of time. Finally, we present our conclusions in Section 5.

2. RELATED WORK
In this section we present previous work that has been carried out in relation to the treatment

of data inconsistencies in general data mining frameworks and specifically for recommendation
scenarios. In the case of general data mining, we will center on attribute noise handling, because
it is more connected to the current problem of inconsistencies treatment in recommendation sys-
tems, as compared to the issue of class noise handling, which we have already mentioned.

Data quality and noisy data handling in data mining have been a topic of interest for many
years. Zhang [18] reviewed two kinds of noisy handling methods presented in the literature in
this area. These two methods are as follows: 1) those that remove noisy data, and 2) those that
detect and correct noisy data. The second one is a better strategy because the resulting dataset
could preserve an important part of the original information, but this information is more associ-
ated with the ideal noise-free case.

By taking a supervised classification scenario as a starting point, Teng [15] proposed a model
to handle the possible erroneous feature values or class labels. He did so working under the as-
sumption that there is some relationship patterns among the feature attributes and the class at-
tribute. To identify and correct noise from an attribute (e.g., Ai) the mechanism switches Ai with
the class and uses all other attributes plus the class to train a classifier, which is used to predict
the “correct” value of Ai. Zhu et al. [16] extended this idea and further proposed a method to
rank the potentially noisy instances by their impact in the classification process. The impact-

A Regularity-Based Preprocessing Method for Collaborative Recommender Systems

438

sensitive instance ranking takes the information-gain ratio as the evaluation criterion to calculate
the impact of each suspect instance on the learning system. Zhang et al. [19] have presented a
novel framework that unifies error detection, error correction, and data cleansing to build an
aggressive classifier ensemble for effective learning from noisy data, where the classifier en-
semble is built from the data that has been preprocessed by the data cleansing and correction
methods. Zhang and Wu [20] have also proposed the inference of associated corruption rules to
simulate a common noise formation process in real world data and state that they can be used for
systematic noise inference and elimination, which enhances the data quality for supervised
learning. Also, Marcus et al. [21] have presented a method that is based on ordinal association
rules for detecting objects that contain potential errors in the data. Finally, Val Hulse et al. [17]
introduced an approach for detecting instances with attribute noise and demonstrated its useful-
ness by using two different real-world software measurement datasets. Considering all of these
bodies of work, only the last three methods do not depend on class labels to perform the correc-
tions. However, in the case of [20], the proposal uses both the original and the noisy dataset to
learn the rules. In the case of [17, 21], these methods are focused on the detection of noisy in-
stances, and not on the specific piece of data that represents a portion of the instance that has
caused the inconsistency. For these reasons, these proposals are not applicable to the recom-
mendation scenarios.

With respect to these global approaches, Zhu and Wu [11] suggested that instead of adopting
some “blind” noise handling mechanism, researchers can design their own noise handling ap-
proaches to improve data quality according to their own perspective. Following these principles,
there have been several, much more domain-oriented research carried out on this topic in the last
few years, and the field of recommender systems is one of these domains that has been studied.

The majority of research has focused on the data preprocessing task around recommender sys-
tems, which have been centered on handling malicious data that was intentionally inserted by
users to bias the performance of the system [22, 23]. However, several bodies of work, like [8],
have shown that users could also introduce inconsistencies without negative intentions, and that
not a lot of research that is focused on this last scenario has been conducted.

In order to correct these kinds of inconsistencies in the recommender systems’ dataset, Pham
and Jung [24] presented a model that explores data beyond ratings. It uses item attributes to
learn a user preference model, and marks a rating as being “incorrect” if belongs to the current
model, but is under a predefined threshold value and under the mean rating for the correspond-
ing user. This approach depends on additional information that is not usually available, and this
is an significant drawback.

Li et al. [25] also proposed an approach to detect the top “noisy but non-malicious” users in
collaborative filtering recommendation systems. They did so working under the assumption that
the ratings provided by the same user on closely related items should have similar values. The
removal of these users from the dataset slightly improves the recommendation accuracy. How-
ever, this work is centered on the treatment of anomalous users and not on anomalous prefer-
ences, which is the goal of our proposed method.

The current work presents a method that employs a pattern-based approach to correct these
non-malicious inconsistencies that are introduced by the users.

Raciel Yera Toledo, Yailé Caballero Mota and Milton García Borroto

439

3. THE REGULARITY-BASED CORRECTION FRAMEWORK
In this section we present the regularity-based framework, which is used to correct incon-

sistent preferences in collaborative recommendation systems. The method contains the follow-
ing three main steps: 1) the discovery of rating regularities in users and items (Section 3.1); 2)
the detection of anomalous preferences using these regularities (Section 3.2); and 3) the correc-
tion of the anomalous preferences detected in the previous step (Section 3.3). We have also in-
cluded an analysis of the computational cost for this particular method in Section 3.4.

The approach presented in this work is similar to [20] in the sense that it first discovers ex-
plicit knowledge and uses this to eliminate data inconsistencies. However, in [20] the authors
depended on the original and the noisy dataset to describe (in the form of rules) the noise for-
mation process and they also used these rules to perform the correction. On the other hand, we
have discovered regularities that characterize users and items, tagged the data that contradicted
them as being noise, and then corrected the noisy values by using a well-known strategy that is
associated with the recommendation systems’ field.

Our approach also differs from others that deal with noise in the recommendation field (ex-
plained above), in the sense that it does not depend on additional information to perform correc-
tions (contrary to [24]), and works at the rating level (contrary to [25]).

3.1 Ratings Regularities: Formalization and Detection

We have used a pattern-based approach to describe the formalization and detection of regular-
ities. A pattern is an expression that is defined in a language, which describes a collection of
objects [26]. A pattern is usually expressed as combinations of feature values, like (Director=
Spielberg, Genre = adventure, Year = 2000) or as logical properties, like [Director= Spielberg]
∧[Genre= adventure] ∧[Year< 2005]. The pattern P covers the object x, or the object x sup-
ports the pattern P, if the object fulfills the property expressed by the pattern. An important
characteristic of the pattern P is the amount of objects from collection X that supports P, which
is called the pattern support and it is denoted by support(P, X).

Following this, we have defined a rating regularity for users in the recommendation scenario
as a pattern that is expressed by the combination of rating values over items. On the other hand,
we have represented a rating regularity for items as a pattern expressed by the combination of
rating values provided by the users.

Formally, a rating regularity for users was a conjunction of terms with the form <item op val-
ue>, where item represents any item in the system, op represents a relational operator in the set
{=, <, >}, and value is a possible value for the preferences of some users for the mentioned item.

In addition, a rating regularity for items could be defined as a conjunction of terms <user op
value>, where user represents any user in the system, op represents a relational operator in the
set {=, <, >} and value is a possible value for the preferences associated with the mentioned user,
over some items in the system.

To present practical examples for these definitions, we used the examples show in Table 1,
which shows a classical collaborative filtering scenario with several users (in rows), items (in
columns), and some rating values for the corresponding users and items (intersections of rows
and columns).

Table 2 presents rating regularities for users that have been extracted from this scenario. In
the case of the users’ regularities, the first one (Item4 = 2 and Item5 > 3) has the support = 2,

A Regularity-Based Preprocessing Method for Collaborative Recommender Systems

440

because it is covered by users, User2 and User6. The second one (Item1 = 5) has the support = 3,
because it is covered by User1, User3, and User 6. On the other hand, for the regularities of
items, the regularity User4< 4 and User6 = 5 receives the support = 2 (verified in Item3 and
Item5). The last one (User1 > 3 and User6 = 5) is verified in Item1, Item3, and Item5, and it has
the support=3.

The exhaustive set of regularities for a dataset that is similar to Table 1 could easily be found
using an Apriori-like method [27]. In order to get just the relevant regularities, we must obtain
only those regularities with high support values. Then, we have to define a minimum support
threshold for this task. Figure 1 presents an overview of a method to find the regularities. It must
be executed twice. The first time is so that regularities for items can be obtained, and the second
one is for users.

Initially, this approach generates all of the possible regularities of length 1 (containing just
one simple term) that verify the support constraint and stores them in a specific set. After this
generation step, we have proposed that an initial filter, which checks if there is more than a sim-
ple term for the same item (or user) and the same operator, be applied to avoid redundancy. In
this case we leave just the term that has the major support and remove the others. In Table 1,
Item1 has two possible values (2 and 5), which implies that the possible simple terms associated
to it are {(Item1≤2), (Item1≥2), (Item1=2), (Item1≤5), (Item1≥5), and (Item1=5)}. By checking
this set, the initial filter will determine that (Item1≤2) and (Item1≤5) contain the same item and
the same operator. It will then remove one of them and leave the term that has the main support.
We also applied this procedure for (Item1≥2) and (Item1≥5).

After that, we took the new set without any redundancies as the starting point. We used an
Apriori approach to perform several iterations to obtain regularities larger than 1. In this procedure,
for each step k, we took the regularities generated in the previous one (with length k-1) as input
and used them as a base to generate a new set of candidate regularities with length k. We then
stored the ones that satisfied the same support constraint definitive regularities. Also, like Apriori,
our process stops when there are no regularities that satisfy this constraint at a specific step.

Table 1. Typical scenario for collaborative filtering

 Item1 Item2 Item3 Item4 Item5

User1 5 4 5 5

User2 3 2 4

User3 5

User4 3 2

User5 2 5

User6 5 5 2 5

Table 2. Regularities extracted for the scenario in Table 1

For users
Item4 = 2 and Item5>3 support = 2

Item1 = 5 support = 3

For items
User4 < 4 and User6 = 5 support = 2

User1 > 3 and User6 = 5 support = 3

Raciel Yera Toledo, Yailé Caballero Mota and Milton García Borroto

441

This scenario also implies redundancy because it could contain pairs of regularities like
(Item1 = 5) and (Item1 = 5 and Item2 ≤ 3), where the terms that contain one of them represent a
subset of the terms that correspond to the other one. For this reason, this final set must be fil-
tered again. Then, we assume that larger regularities are better than smaller ones for expressing
the behavior of a group of objects. As such, we are proposing a simple strategy to reduce the
original set into another one that verifies that for each regularity there is not another one repre-
senting a subset of the first one. We initially proposed that this task being performed through an
iterative process, where for each regularity it checks the entire set and removes the regularities
that represent a subset of the current one. In the example presented, this approach retains the
regularity (Item1 = 5 and Item2 ≤ 3) and removes (Item1 = 5).

Structures like the ones presented in Table 2 have been used to represent knowledge on dif-
ferent domains and for different purposes. It is worth noting that there are some recent works on
the use of similar structures to build accurate and understandable supervised classifiers [28, 29].
Particularly in the field of recommendation systems, there are works that use rules to represent
the knowledge behind the dataset [30]. Rules are closely related with the concept of regularity,
which is presented in this work.

3.2 Detecting Anomalous Ratings through Regularities

The regularities extracted for users and items represent common behaviors that are associated
to a group of users or items in the recommendation system. If a specific rating value implies that
a certain user or item is covered by a specific regularity, it means that there is a group of users or
items that shares the same criteria associated with this preference. As such, we can then con-
clude that this preference is not anomalous because several users (or items) share it. On the other
hand, if a specific regularity does not cover a certain user or item, then it means that the prefer-
ence or preferences (ratings) that are specifically causing this situation must be analyzed as pos-
sible anomalies.

Following these criteria, we have presented an approach to find anomalous ratings through
regularities. Our approach (Figure 2) first detects regularities for users using the method pre-
sented in Figure 1. It then initializes an error matrix to store the degree of the anomaly for the
rating (if the rating exists) associated with each user and item (lines 02-03). After that, we per-
formed two similar procedures for the regularities for users and for items. In the first case, we
explored all of the users for every user regularity (lines 04-05). If the corresponding user u did
not satisfy the current regularity (line 06), we then explored its single terms to determine which
preference values in u implied that it does not verify the regularity (lines 07-08). We marked
these preferences as possible anomalies and incremented their associated values at the corre-

Fig.1. Overview of the method to generate regularities in the recommendation scenario

A Regularity-Based Preprocessing Method for Collaborative Recommender Systems

442

sponding user and item in the error matrix by adding the support that is associated to the corre-
sponding regularity (line 09). This same procedure is performed in regularity for items. In this
case, we explored all of the items for every item regularity (lines 10-11). If corresponding item i
did not satisfy the current regularity (line 12) we then explored its single terms to find which
preference values in i imply that it does not verify the regularity (lines 13-14). We then marked
these preferences as possible anomalies and added the support of the current regularity to the
value associated with the current user and item in the error matrix (line 15). Finally, we em-
ployed a user-based strategy to obtain the top anomalous preference values. For each user, we
selected and retrieved the n values associated with the items with larger values in the error ma-
trix (lines 16-20) as anomalous.

Taking the scenario presented in Table 1 as an example and considering just the regularities
presented in Table 2, the detection process works as follows: evaluating the first regularity for
all users (Item4 = 2 and Item5 > 3), the regularity is not verified for User1, and there are explicit
ratings for this user and for the corresponding items in the current regularity (Item4 and Item5).
Then, there are possible anomalies in this case and we have to check each single term in the
regularity (lines 07-09 in Figure 2). It the first term (Item4 = 2) is not verified for this user (in
this case User1 set the rating=5 for Item4) we must consider this situation as evidence for con-
sidering this rating to be anomalous. We then increment the value in errorMatrix[1,4] (for User1
and Item4). For User2 the regularity verifies the current regularity, so we do not have to do any-
thing. User3 does not satisfy this regularity, but there are also no preference values for User3 in
all of the items associated with the regularity (condition in the line 06 of the figure 2), and then
there is no action to repeat. This last situation repeats for User4 and User5, and finally User6
verifies the current regularity, like in the case of User2.

When repeating this work for the second regularity (Item1 = 5) we had to analyze just User5
for where its only term does not satisfy the regularity, and then we had to increment the value in
errorMatrix[5, 1].

Fig. 2. Method for detecting the top n anomalous ratings per user

Raciel Yera Toledo, Yailé Caballero Mota and Milton García Borroto

443

The analysis of the third regularity (User4 < 4 and User6 = 5), which is the first regularity for
items, is performed as follows: in the case of Item1 there is no rating value for User4 and Item1,
and so there is no action to do. This situation repeats for Item2, where there are no values for
User4 or for User6. It also repeats for Item4, where there are no values that are specifically for
User4. In the case of Item3 and Item5, both are covered by the regularity, so there is no action to
do.

To check the fourth regularity (User1 > 3 and User6 = 5), Item1, Item3, and Item5 are cov-
ered by the regularity. In the case of Item2, it does not contain preferences for both users and so
there is no action to do. Finally, in the case of Item4, it does not satisfy the regularity because
the rating of User6 for Item4 has the value = 2, and not the value = 5. For this reason, we incre-
mented the value in errorMatrix[6, 4] by adding the support of the regularity.

In summary, the detection process using the scenario presented in Table 1 and the regularities
presented in Table 2 returns as anomalous preferences that are associated with the following
users and items pairs: 1) User1 and Item4 with the anomaly degree = 2; 2) User5 and Item1 with
the anomaly degree = 3; and 3) User6 and Item4 with the anomaly degree = 3.

3.3 Ratings Correction

In the previous section we presented a method to detect anomalous preferences per user in
collaborative filtering environments. Collaborative filtering predicts rating values for a given
user based on past preferences and on the criteria of peers. As such, we are proposing using this
same point of view to deal with the anomalous preferences detected with the previous step and
for predicting for each case a new value for the corresponding user and item. If the new value
was different enough as compared with the older one (detected as anomalous) we performed a
replacement by setting the new value for the current user and item.

Figure 3 presents this correction strategy. The approach initially invokes the method shown in
Figure 2, and then iterates for each user the list of items whose ratings were detected as being
anomalous (line 02-03). Then, for the current user and item, it predicts a new rating value using
a traditional collaborative filtering method (line 04). It replaces the old value with the new one if
the difference between them exceeds a threshold diff (lines 05-06).

To predict new ratings (line 04), we selected a popular memory-based approach that is based
on users (identified as Pearson’s user-based collaborative filtering [31]). It employs Pearson’s
correlation coefficient to find similar users (Equation 1) and an aggregation function that com-
bines their preferences (Equation 3) to obtain the unknown rating. We used this approach be-
cause it performs well in the prediction task, and does not require the additional generation of
knowledge to calculate the unknown ratings. In the equations (1), (2), and (3), ru,i represents the
available rating for the corresponding user u and item i, and Pu, i represents the new prediction.

Fig. 3. Method for correcting anomalous ratings

A Regularity-Based Preprocessing Method for Collaborative Recommender Systems

444

This method depends on an internal parameter, which is the amount of nearest users that are
to be considered for calculating the new rating, which we have named, k-internal. We will refer
to it in our experimental section.

∑∑
∑

∈∈

∈

−−

−−
=

Ii vivIi uiu

Ii vivuiu

rrrr

rrrr
vuw

2
,

2
,

,,

)()(

))((
),((1)

∑∈
=

iIi iu
i

u r
I

r ,
1 (2)

 ∑
∑

∈

∈
−

+=
Neighborsv

Neighborsv viv
uiu vuw

vuwrr
rP

),(

)),()((,
,

 (3)

3.4 On the Computational Costs Associated with our Method

Our proposal is based on an Apriori approach, and for this reason it tends to have a high com-
putational cost. In this section we will provide a brief analysis on the computational complexity
of our method.

In the case of the method to generate regularities (presented in Figure 1), the first step linearly
depends on the product of the amount of users and items, which also represents the possible
amount of ratings (O(|U|*|I|), where |U| represents the amount of users and |I| the amount of
items). Step 2 can be easily implemented inside of Step 1, without an increment of additional
computational complexity. On the other hand, Step 3 focuses on finding regularities for users
and items and it demands two executions of an Apriori-like approach that exponentially depends
on the amount of users and items [32]. This step could undoubtedly affect the efficient execution
of the presented procedure. However, real recommendation scenarios are always very sparse,
meaning that although they usually have many users and items, there are also relatively few
ratings. It could imply that there are few regularities with high support, and that their length
tends to be short. These facts could allow for an efficient Apriori implementation to find them
quickly, despite the exponential complexity of this method. In the experimental part of this work,
we empirically verify this assumption by evaluating the execution time of our method by detect-
ing the regularities for users and items. Finally, in analyzing the fourth step of this method in
Figure 1, at most it is quadratic in respect to the amount of regularities detected in the previous
step (O(|Ru|2) + O(|Ri|2), where |Ru| and |Ri| represent the amount of regularities detected for
users and items).

As a second stage, the method that finds anomalous ratings per user (Figure 2) first initializes
the error matrix (with the cost O(|U|*|I|)), and then performs an iteration for all of the regulari-
ties for the users, and an iteration for all of the regularities for the items (lines 02-15). In addi-
tion, each regularity is checked term by term for each user and item. Assuming that l represents
the length of a regularity, the computational complexity of this segment is O(|Ru|*|U|*l) +
O(|Ri|*|I|*l), but taking into account that this length tends to be short, we can reduce this expres-
sion to O(|Ru|*|U|) + O(|Ri|*|I|). Finally, for each user, the method retains the top n anomalous
ratings (lines 17-20). As such, for each case we have to previously sort the corresponding items
to retrieve the top ones. Then, the cost of this segment is O(|U|*|I|*log |I|), considering that n

Raciel Yera Toledo, Yailé Caballero Mota and Milton García Borroto

445

objects could be sorted with a cost of O(n*log n). In summary, the cost of this stage is
O(|Ru|*|U|) + O(|Ri|*|I|) + O(|U|*|I|*log |I|). Like the previous stage, in the experimental section
we present an analysis of its execution time.

Finally, the correction method (presented in Figure 3) performs an iteration for all of the users.
For each one, it iterates for the top n anomalous ratings and conditionally corrects each value
depending on the new one that has been predicted. In this case, the major cost is associated with
the traditional collaborative filtering method, which we used to generate the predictions. How-
ever, considering that the anomalous ratings represent a small portion of the data, we show in
the experimental section how this task could be done quickly.

Table 3 summarizes the computational costs presented in this section.

Table 3. Computational costs associated with each stage

Regularities detection
First and second step O(|U|*|I|)
Third step O(2|U|) + O(2|I|)
Fourth step O(|Ru|2) + O(|Ri|2)

Anomalous ratings detection O(|Ru|*|U|) + O(|Ri|*|I|) + O(|U|*|I|*log |I|)
Ratings correction O(|U|)
|U|- amount of users, |I|- amount of items, |Ru|- amount of regularities for users, |Ri|- amount of regularities for
items

4. EXPERIMENTS

In order to obtain the effects of our proposal, we developed a case study for Movielens, which
is a popular dataset in the collaborative recommender systems field. The original version of
Movielens is a well-known dataset containing 100,000 movie ratings on 943 users and 1,682
items where each rating is discrete and is in the range [1; 5].

As such, we implemented our method using an efficient Apriori version proposed by Borgelt
[33], which is based on a prefix tree representation of the needed counters and uses a double
recursive scheme to count the transactions.

We performed our experiments by orienting them in the following different directions: 1) to
determine if the application of our method improves the accuracy of the prediction task in the
original data, and then contributes to the removal of inherent inconsistencies (Section 4.1). 2) To
determine if our method improves the accuracy of the prediction task for data that has been
manually corrupted with a specific strategy (Section 4.2). 3) To determine if our method could
effectively identify the noisy preferences that are manually introduced in Section 4.2 (Section
4.3). In addition, we focused on determining the average execution time of our method (Section
4.4), and we give the evaluation of its accuracy and execution time in dealing with a larger rec-
ommender systems dataset (Section 4.5).

4.1 Evaluating the Effect of our Method For the Original Dataset

To determine if our method corrects anomalous preferences in the original dataset, we pro-
posed that the data be transformed by using our procedure. After that, we evaluated the perfor-
mance of a traditional data-mining task associated with this scenario and we performed it with
and without the transformation. In this case we select the task related with the prediction of un-

A Regularity-Based Preprocessing Method for Collaborative Recommender Systems

446

known ratings.
We used the experimental protocol that is also described in [1] to prepare the data for this ex-

periment. In this case, the authors have proposed selecting a set of users from the original da-
taset and to randomly hide na items for each user a, where na is also randomly selected for each a.
These hidden items composed the test set, and the remaining ones were chosen to be the training
set.

To determine the accuracy of the prediction method, the work in [1] proposes each test rating
to make a new prediction for the corresponding user and item using the algorithm to evaluate the
training data. Then, the final accuracy can be calculated using the mean absolute error (MAE)
(Equation 4) for all of the predictions made.

∑ ∈
−=

testui Rr ui
test

riuf
R

fMAE),(1)((4)

In order to measure the effect of our correction process, we performed the correction on the

training set, and afterwards we compared the accuracy obtained by a traditional algorithm that
predicts test set ratings by using the transformed data (our proposal) and using the original one
(baseline). Finally, to verify if the difference between them is statistically representative, we also
used the procedure proposed in [1], which is as follows: 1) for each user in the test set we calcu-
lated two MAE values that represented the average of their predictions, which were made by
using our proposal and baseline respectively, and we created two sets where each one contains n
predictions, respectively, from the n users; 2) we applied a Wilcoxon signed test between these
two distributions to determine if the difference is statistically significant.

We evaluated the impact of our correction process over two well-known recommendation ap-
proaches: a user-based method that employs neighborhood preferences to make predictions
(memory-based) [2], and a dimensionality reduction method that uses matrix factorization tech-
niques (model-based) [34]. For each case, the experimental results are mainly divided into a
sensitivity analysis of parameters and performance results. In assessing the quality of the rec-
ommendations, we first determined the sensitivity and the best values for the parameters in both
scenarios before running the main experiment.

4.1.1 Impact on a User-Based Neighborhood Method
User-based neighborhood collaborative filtering methods were pioneers in the recommenda-

tion systems research that was done in the mid-90’s [35]. In this section, we will evaluate our
approach on a popular recommendation method summarized in [2] and known as
UserKNNPearson. It employs a Pearson’s correlation coefficient as the similarity function and
an adjusted weighted sum of a neighbor’s ratings to calculate the predictions.

UserKNNPearson also uses an internal parameter, which is the amount k of the nearest neigh-
bors that needs to be considered. We employed the value k=60, which has been suggested as the
default value by some experimental frameworks in the collaborative filtering field, like
MyMediaLite [36].

Our approach depends on the following four parameters to perform the correction process: the
amount of top anomalous ratings per user to correct (n), the difference threshold between the old
and the new rating (diff), the minimum support to obtain the regularities (minSup), and the
number of neighbors used by the memory-based method to predict a new rating value when an

Raciel Yera Toledo, Yailé Caballero Mota and Milton García Borroto

447

anomalous preference is detected (k-internal).
To set an appropriate value for minSup, which obtains a balance between prediction accuracy

and performance, we ran several trials and finally set the value as minSup=70. On the other hand,
considering that the value of 60 has been assumed to be good as the amount of nearest users in
neighborhood methods, we choose k-internal=60. With respect to this last parameter, we kept
this value for the rest of the experiments, because we believe that it does not have a direct effect
on the behavior of our method, considering that it is just a parameter of the prediction method
that is internally employed. We also verified this fact through additional trials.

To obtain the best values for n and diff, we evaluated the behavior of the proposal by modify-
ing the value of n in the range n = [5; 70] in Step 5, and the value of diff in the range diff= [1;
2,5] in Step 0.5. Our results for these trials (Fig. 4) show that the best accuracy was obtained for
diff=1.5, and for n=60.

We used these parameter values to compare our approach against the baseline. The results,
which are presented in Table 4, show that when using our strategy, the use of corrected ratings
improves the behavior of the recommendation method as compared against a baseline that em-
ploys original ratings. This baseline is also represented in Figure 4. In order to determine if this
result is statistically significant, we applied a Wilcoxon signed test using the protocol described
above, given that the difference between both results is significant with p<0,001.

Fig. 4. The behavior of our method with UserKNNPearson for different n and diff values

Table 4. Accuracy associated with UserKNNPearson before and after the rating correction

UserKNNPearson UserKNNPearson with anomalous rating correction

0,7648 0,7602

p<0,001

A Regularity-Based Preprocessing Method for Collaborative Recommender Systems

448

4.1.2 Impact on a Matrix Factorization Method
The use of dimensionality reduction methods based on matrix factorization marked a turning

point in recommendation systems research at the end of the last decade, because they notably
improve the recommendation accuracy [34]. These methods appear as a solution for classical
problems like scalability and sparsity, and also indirectly focus on removing small perturbances
from the data and on decreasing the impact of anomalous ratings [37]. In this section we de-
scribe how we measured the effect of our approach on this scenario, which already contained an
implicit manipulation of this kind of noise.

To perform our trial, we adopted the matrix factorization method proposed in [34]. It focuses
on gradient descendent techniques to create a lower-dimension space for users and items, and
makes predictions using this new space. We used the following default parameter values that
were proposed by MyMediaLite [36]: regularization λ1=0.015, bias regularization λ2=0, learning
rate α=0.01, init_mean=0, and init_stdev=0.1. On the other hand, we performed previous execu-
tions to empirically determine the best values in the Movielens scenario for the number of fac-
tors in the factorization model (num_factors) and the number of iterations required to build the
model (num_iters). We obtained the best performance for num_factors=5 and num_iters=20,
and then we used these values in the further experiments.

Using the same strategy presented in Section 4.1.1, minSup=70 and k-internal=60, which are
also the same values that we previously used, we found the best values for the parameters n and
diff (Fig. 5). Considering that this approach is non deterministic, we ran several trials for each
parameter configuration and then averaged them together to calculate the value to compute. Fig.

Fig. 5. The behavior of our method with the matrix factorization approach, for different n and diff

values

Table 5. Accuracy associated with the matrix factorization approach before and after the rating
correction

Matrix factorization approach Matrix factorization approach with anomalous rating correction

0,7609 0,7566

p<0,001

Raciel Yera Toledo, Yailé Caballero Mota and Milton García Borroto

449

5 shows the sensitive analysis for both parameters, which obtained the best results for n= 30 and
diff=1.5.

We compared our approach with these parameter values against the baseline. Table 5 pre-
sents both MAE values that were obtained by our averaging the trial results. Surprisingly, our
approach improves the baseline again. This demonstrates that although the matrix factorization
methods implicitly remove some anomalies, there are still many preferences whose correction
implies a global improvement in the predictions. The results presented show that our approach
successfully creates this correction task, which improves prediction accuracy. In addition, they
were statistically verified and are significant with p<0,001.

4.2 Evaluating the Effect of our Method On the Manually Corrupted Dataset

In the previous section we showed that our approach performs well in an original collabora-
tive filtering scenario. Its use as a preprocessing step for the data, consistently decreases the
mean absolute error of two representative approaches performing the prediction task, and this
improvement was statistically verified. In this section we pretend to measure the effect of our
method on well-predefined noisy data. With this purpose in mind, we manually corrupted the
original dataset and compared the performance of the two traditional recommendation methods
that we already used in the previous section. We did so by using the corrupted data and by using
the data that was transformed through our method.

In this experiment we also used the protocol associated with Section 4.1, with the same parti-
tion for the training set and the test set. We used the mean absolute error (MAE) as the evalua-
tion metric. We used a specific strategy to corrupt the training set, and compared the accuracy of
the recommendation approaches predicting the test set by using the corrupted training set, and
by using the corrupted training set transformed through our approach.

We defined a strategy to manually introduce inconsistencies in the training set. This strategy
verifies that the final value for each corrupted rating was significantly different as compared to
its original value, and it also verifies that the noise distribution was uniform among all users. In
this direction, for each user we selected a set of associated ratings, and changed it depending on
its value. Figure 6 presents this corruption strategy, and it receives as parameters the set of users
and ratings, and the amount N of ratings to corrupt per user. We used this procedure to alter the
training data, setting N in the range [5; 20] with step 5. After we did this, we obtained four train-

Fig. 6. Dataset corruption process

A Regularity-Based Preprocessing Method for Collaborative Recommender Systems

450

ing sets with different noise degrees.
In the following sections we will present our results by initially analyzing the sensitive of the

parameters n and diff and then finding their best values for each scenario. We then compared the
accuracy that we obtained against the baseline.

4.2.1 Impact on a User-Based Neighborhood Method with the Corrupted Dataset
In this section we explain how we used the same prediction method and parameters employed

in Section 4.1.1 (UserKNNPearson with k=60), and also set minSup=70 and k-internal=60. Like
previous sections, we adjusted the values of n and diff, modifying n in the range [5; 70] with
step 5, and diff in the range [1; 2,5] with step 0.5. In this case, we evaluated our proposal over
the four datasets that were obtained with the different values of N.

Figure 7 shows the results for these trials. Like our previous experiments, the best results
were obtained for larger values of n in all datasets. However, for the noise degrees N=5 and
N=10, the MAE value begins to be constant for shorter values of n, as compared against the
evaluations associated with the data with N=15 and N=20. This behavior was expected, and

 N=5 N=10

 N=15 N=20

Fig. 7. The behavior of our method with UserKNNPearson and noise for different n, N, and diff

values

Raciel Yera Toledo, Yailé Caballero Mota and Milton García Borroto

451

allowed us to conclude that the method could effectively detect the ratings that were altered.
This is because the data with lower noise need an inferior value of n to obtain the best perfor-
mance. In contrast to the previous scenario, in this case the global best performances are
achieved for diff=1.0 and diff=2.5 with larger noise degrees and method almost does not im-
prove the baseline. Finally, as was expected, the improvement performed by our method at this
manually corrupted scenario is larger compared against the improvement associated with the
original data.

We selected the parameter configurations associated with the best performance values for
each noise degree, and compared them against the baseline. Table 6 shows the comparison re-
sults, which show that our strategy indicates an improvement in the prediction accuracy as com-
pared with the related to the noisy and unmodified data. These results were statistically verified
using the same protocol presented before, and they were statistically significant with p<0,001.

4.2.2 Impact on a Matrix Factorization Method with the Corrupted Dataset
We also evaluated the performance of the matrix factorization method on the corrupted data

and on the corrected corrupted data by using our proposed method. We employed the same pa-
rameters used in Section 4.1.2, except for the number of factors and number of iterations. In this
case, we previously performed several trials to empirically obtain the best average values for
these parameters in the corrupted dataset, and finally set num_factors=5 and num_iter=3. Like
previous sections, we also selected minSup=70 and k-internal=60 and evaluated the performance
of our method by modifying n in the range [5; 70] with step 5, and diff in the range [1; 2,5] with
step 0.5. Just as we did in Section 4.1.2, we ran several trials for each parameter configuration
and finally averaged them together to calculate the value to compute. We performed these tasks
using the data already employed in Section 4.2.1 that was corrupted. We did so by using the
procedure presented in Figure 6, with N in the range [5; 20] with step 5.

The results for these trials, which are presented in Figure 8, are very similar to those obtained
by the neighborhood approach. In this case, they represent clearer evidence (compared with the
previous section) that a lower noise degree in the data implies that the best results are obtained
for a lower value of n. Specifically, for this experiment, for N=5, the results begin to be constant
at n=20; for N=10 at n=30; for N=15 at n=40; and for N=20 at n=50. Like previous sections, the
best results were obtained for diff=1.0, and we compared them against the baseline for each
noise degree (Table 7). For this experiment, we can conclude that the application of our method
on the data reduces the prediction error.

In summarizing Sections 4.1 and 4.2, we can conclude that the behavior of our method is

Table 6. Accuracy associated with UserKNNPearson before and after the rating correction,
considering the introduction of noise

 UserKNNPearson UserKNNPearson with anomalous rating correction

N=5 0,8458 0,8048

N=10 0,9389 0,8712

N=15 1,0348 0,9616

N=20 1,1303 1,0523

p<0,001

A Regularity-Based Preprocessing Method for Collaborative Recommender Systems

452

different, when we compare the scenario associated with the original data, and the scenario as-
sociated to the manually corrupted one. In the first case (Section 4.1), we started with the as-
sumption that the datasets of recommender systems are inherently noisy, and that our proposal
contributes to remove this noise by improving the prediction task associated with the corre-

 N=5 N=10

 N=15 N=20

Fig. 8. The behavior of our method with the matrix factorization approach and noise, for different n,

N, and diff values

Table 7. Accuracy associated with the matrix factorization approach before and after the rating
correction, considering the introduction of noise.

 Matrix factorization approach Matrix factorization approach with anomalous rating correction

N=5 0,8360 0,8056

N=10 0,9131 0,8544

N=15 0,9996 0,9330

N=20 1,0888 1,0224

p<0,001

Raciel Yera Toledo, Yailé Caballero Mota and Milton García Borroto

453

sponding data. The experiments that we performed on a well-known dataset indicate that our
procedure suggests a moderate but statistically significant prediction improvement over two
other popular recommendation methods. To obtain the best performance, our proposal needs to
analyze a medium quantity of ratings per user (30 for the matrix factorization approach and 60
for the neighborhood method). It suggests that although there are several anomalous ratings in
the original data, there are not “very noisy” ratings, which verifies that just their being corrected
suggests a significant improvement in the prediction of unknown preferences.

On the other hand, in Section 4.2 we corrupted this dataset and altered some of the rating val-
ues for each user. In this case, as was expected, the difference between the performance of the
predictions associated with this data and the associated with this same data after correction, was
bigger than the difference obtained in the previous section. Contrary to the previous stage, the
best performance was obtained for diff=1.0 and not for diff=1.5. In addition, we observed a
slight correlation between the amount of ratings corrupted per user (N), and the optimal top n
noisy ratings to correct per user. This is because the data with lower values in N tends to use low
values associated with n, and this is also applicable for the higher values in N. It indicates that
our proposal actually tends to first retrieve the “noisiest” ratings, which are represented in this
scenario by those that have been manually altered.

4.3 Evaluating the Ability of our Method to Identify Noise that was Manually

Introduced

The previous sections have showed that the transformation of the data using our procedure
always suggests an accuracy improvement for the prediction task, in both the original and the
manually corrupted dataset. In this section we pretend to evaluate the ability of our proposal to
detect the noisy ratings that we introduced in Section 4.2. We consider this experiment to be
very valuable, because it indicates if the prediction improvements obtained in Section 4.2 were
due to the correction of the corrupted preferences or to the correction of other items.

fptp
tpprecision
##

#
+

= (5)

fntp
tprecall
##

#
+

= (6)

recallprecision
recallprecisionF

+
=

**21 (7)

In this case, we evaluated our method using the F1 metric (Equation 7), which effectively

combines the precision and recall metrics [1]. We adopted the confusion matrix presented in

Table 8. Confusion matrix for the correction framework

 Corrected Not corrected

Corrupted True-Positive (tp) False-negative (fn)

Not corrupted False-Positive (fp) True-negative (tn)

A Regularity-Based Preprocessing Method for Collaborative Recommender Systems

454

Table 8, while keeping in mind that a preference could be corrupted or not corrupted, and cor-
rected or not corrected by our approach. In this framework, the precision (Equation 5) is inter-
preted as being the ratio between the amount of ratings that were corrupted and eventually cor-
rected and the total amount of ratings that were corrected. On the other hand, the recall (equation
6) is interpreted as being the ratio between the amount of ratings that were corrupted and cor-
rected and the total amount of ratings that were corrupted.

We performed the evaluation using the corrupted training sets that we obtained in the previ-
ous section, where we randomly altered 5, 10, 15, and 20 ratings, respectively, for each user. In
F1 terms, we measured the behavior of our method by only correcting the ratings that had previ-
ously been inserted as noise. Like previous sections, we set minSup=70 and k-internal=60, and
analyzed the effect of different values for n and diff. Specifically, we set n in the range [5; 70]
with step 5, and diff in the range [1; 2,5] with step 0.5.

Figure 9 presents the results of this experiment. It indicates that this method performs the
best detection of corrupt ratings for diff= 1.0. Like with our previous experiment, we observed a
correlation between the optimal value for the top n ratings corrected per user, and the amount N

 N=5 N=10

 N=15 N=20

Fig. 9. The accuracy of our method in detecting corrupted ratings, for different n, N, and diff values

Raciel Yera Toledo, Yailé Caballero Mota and Milton García Borroto

455

of ratings corrupted per user. Considering this performance at diff=1.0, for N=5, and N=10 the
best F1 values were obtained for n=15 and n=30, respectively. For bigger values in n, the values
of F1 decrease. On the other hand, for N=15 and N=20, the accuracy of the method does not
receive a remarkable increment for n>45 and n>55, respectively. This indicates our method al-
ready corrects an important amount of altered ratings just for these values. These results are
aligned with those described in Section 4.2, where we got the best MAE values for lower values
at n, in datasets with lower noise degrees.

4.4 About the Execution Time of the Preprocessing Method

Our method is based on the discovery of regularities represented as frequent patterns, and we
have proposed using Apriori-like method to find them. Considering that Apriori tends to have an
exponential cost, we previously showed that the execution time of our method could become a
significant problem. However, we also mentioned that by taking into account some special fea-
tures associated to recommender systems datasets (like sparsity), the proposal should run rela-
tively quick.

In this section we will evaluate the execution time of our proposal and will perform this task
separately for each method step (regularities detection, anomalous ratings detection, and ratings
correction). The execution of the former two steps could be affected by the amount of regulari-
ties generated, and for this reason, we will focus on how to determine these steps by modifying
the scale of the parameter minSup. The execution time of the third step strongly depends on the
amount of ratings that need to be corrected, and so in this case we will evaluate how this step
scales by varying the top n ratings that need to be corrected per user.

This experiment was developed by using the original version of MovieLens on a platform
containing the Microsoft Windows XP Professional Operating System, an Intel Pentium ® Dual
Core 3.06 GHz processor, and a Kingston DDR3 4 Gb RAM memory. For the analysis of the
first and second step, we evaluated the parameter minSup in the range [60; 120] with step 10,
and left n=60. We selected this range because for minSup >120 the method did not discover any
regularities, and for minSup<60 it takes a longer time to finish. Finally, in the third step we
evaluated n in the range [10; 50] with step 10, and left minSup=70.

Figure 10 presents the result of this trial. The execution time was measured in seconds. Spe-
cifically, Figure 10a (regularities detection) shows that our method combined with the Apriori
implementation proposed in [33], could efficiently find regularities for users and items in a rela-
tively short period of time. Figure 10c (rating correction) presents the time employed by the
neighborhood method to calculate new ratings, but excludes the time needed to previously cal-
culate the Pearson's correlation coefficient between all users. This data is necessary for obtaining
the new ratings, but it is not directly associated to our method because usually it is calculated in
real-time systems. For this reason we excluded this execution time from our evaluation.

In summary, the results show that our method could process the current dataset relatively
quick. When using our software/hardware platform, the method always finishes in around 6 se-
conds in the worst case scenario. Taking into account that our proposal is a preprocessing proce-
dure that has been conceived for periodical use on the systems and always as a background stage,
we evaluate as very appropriate the time employed by our method.

A Regularity-Based Preprocessing Method for Collaborative Recommender Systems

456

4.5 Evaluating the Performance of our Approach in a Larger Dataset

In this work, we have evaluated the performance of our approach using the data in the original
Movielens dataset version, which is also known as Movielens 100K. It contains 100,000 ratings
provided by 943 users on 1,682 items. The presented results prove that the application of our
method as a preprocessing step suggests an improvement in the ratings prediction stage.

We have also previously showed that our method could have a significant computational cost
depending on the amount of users and items, but in addition we mentioned that the high sparsity
associated with the ratings implies that the proposal runs quickly in practical scenarios. We cor-
roborated this fact in the previous section, where we showed that in the worst-case scenario, our
method completes its task in just a few seconds.

In this section, we evaluate the performance of our approach in a larger dataset with the fol-
lowing two criteria: the prediction accuracy after the application of the method (in MAE terms),
and the execution time of the method. Specifically, we will use another version of Movielens,
known as Movielens 1M, which containing around 1,000,000 ratings that have been provided by
more than 6,000 users on approximately 4,000 items.

To evaluate the prediction accuracy, we performed an experimental setup similar to the one
we presented in Section 4.1. This setup does not consider the ratings corruption and uses the
same procedure that was described in the beginning of Section 4.1 to build the training and test
sets. To choose the value for minSup, we selected minSup=430, because it approximately repre-
sents the same proportion of users and items as compared with the minSup value that was used

(a) (b)

(c)

Fig. 10. The execution time in seconds, which is associated with the different stages of our method.
a) The detection time for regularities b) The detection time for inconsistencies c) Correction
time

Raciel Yera Toledo, Yailé Caballero Mota and Milton García Borroto

457

in the experiments with Movielens 100K. On the other hand, we selected k-internal=60 since the
previous trials in this scenario concluded that this value is appropriate to use as the amount of
nearest neighbors in this dataset. On the other hand, to adjust the best values for the parameters
n and diff, we evaluated several executions using different values by considering both recom-
mendation methods (UserKNNPearson and the matrix factorization approach). We obtained the
best performance for n=5 and diff=2.0 with the UserKNNPearson method (with k=60), and for
n=50 and diff=1.5 with the matrix factorization method (with num_factors=10 and
num_iter=30). As was expected, for both cases the performance associated to our preprocessing
technique outperforms the baseline, which is represented as the accuracy obtained when using
the uncorrected dataset (Table 9).

To evaluate the execution time, we used the same protocol and the same hardware-software
platform that we employed in Section 4.4. We varied the minSup in the range [370; 490] with
step 20, and n in the range [10; 70] with step 10. In this case, the detection time for regularities
and the detection time for inconsistencies also quickly performed their tasks. However, the time

Table 9. Accuracy before and after the rating correction in the dataset, Movielens 1M

 Our method Our method with anomalous rating correction

UserKNNPearson 0,7532 0,7494

Matrix factorization approach 0,7218 0,7190

 p<0,001

(a) (b)

(c)

Fig. 11. The execution time for Movielens 1M in seconds, which is associated with the different
stages of our method. a) The detection time for regularities b) The detection time for
inconsistencies c) Correction time

A Regularity-Based Preprocessing Method for Collaborative Recommender Systems

458

associated to the correction task notably increased for larger values of n. For these cases, the
method takes 100 seconds to correct all of the ratings that have been detected as anomalous.
However, by keeping in mind that the method was conceived to be executed as the background
in a real system we can classify this time as being an appropriate amount. Like previous sections,
Figure 11 presents the execution time of the three stages of our method.

5. CONCLUSION
In this paper we have presented a framework to perform the correction of anomalous ratings

in collaborative filtering recommendation systems. Our work adopts the position that users are
inconsistent when they rate items, and that this could negatively affect the prediction accuracy.
Following this, we proposed an approach to discover rating regularities and considered the rat-
ings that contradicted these regularities as being noisy. We presented a way to correct these
noisy values. We also showed that by using our proposal as a preprocessing step, the prediction
accuracy of two popular approaches in collaborative filtering is significantly improved in both
the original dataset and the manually corrupted one. In addition, our approach effectively dis-
covered the ratings that were manually altered in the corrupted case. Our future work will be
focused on proposing alternative methods to obtain more useful sets of regularities that improve
accuracy and on defining new forms to represent regularities by possibly using uncertainty ap-
proaches.

REFERENCES
[1] A. Gunawardana, Shani, G., "A survey of accuracy evaluation metrics of recommendation tasks,"

Journal of Machine Learning Research, vol. 10, pp. 2935-2962, 2009.
[2] G. Adomavicius, Tuzhilin, A., "Toward the next generation of recommender systems: A survey of

the state-of-the-art and possible extensions," IEEE Transactions on Knowledge and Data
Engineering, vol. 17, pp. 734-749, 2005.

[3] X. Su, Khoshgoftaar, T., "A survey of collaborative filtering techniques," Advances in artificial
intelligence, vol. 2009, p. 19, 2009.

[4] P. Lops, De Gemmis, M., Semeraro, G, "Content-based recommender systems: state of the art and
trends.," in Recommender systems handbook, L. R. F. Ricci, B. Shapira, P.B. Kantor, Ed., ed:
Springer, 2011, pp. 73-105.

[5] L. Martínez, Pérez, L.G., Barranco, M.J., "A multigranular linguistic content-based recommendation
model.," International Journal of Intelligent Systems, vol. 22, pp. 419-434, 2007.

[6] C. Desrosiers, Karypis, G. , "A comprehensive survey of neighborhood-based recommendation
methods.," in Recommender systems handbook L. R. F. Ricci, B. Shapira, P.B. Kantor Ed., ed:
Springer, 2011, pp. 106-144.

[7] W. H. Jeong, Kim, S.J., Park, D.S., Kwak, J., "Performance Improvement of a Movie
Recommendation System based on Personal Propensity and Secure Collaborative Filtering," Journal
of Information Processing Systems, vol. 9, pp. 157-172, 2013.

[8] X. Amatriain, Pujol, J., Oliver, N. , "I like it... I like it not: Evaluating user ratings noise in
recommender systems," presented at the 17th International Conference on User Modeling,
Adaptation and Personalization (UMAP), 2009.

[9] J. A. Konstan, Riedl, J., "Recommender systems: from algorithms to user experience," User
Modeling and User-Adapted Interaction, vol. 22, pp. 101-123, 2012.

[10] J. Han, Kamber, M., Data Mining: concepts and techniques. (2nd ed.). San Francisco, 2006.

Raciel Yera Toledo, Yailé Caballero Mota and Milton García Borroto

459

[11] X. Zhu, Wu, X., "Class Noise vs. Attribute Noise: A Quantitative Study of Their Impacts," Artificial
Intelligence Review, vol. 22, pp. 177–210, 2004.

[12] C. E. Brodley, Friedl, M.A., "Identifying and Eliminating Mislabeled Training Instances,," presented
at the 13th National Conference on Artificial Intelligence (AAAI'96), 1996.

[13] D. Gamberger, Lavrac, N., Dzeroski, S., "Noise Detection and Elimination in Data Preprocessing:
experiments in medical domains.," Applied Artificial Intelligence, vol. 14, pp. 205-223, 2000.

[14] J. D. Van Hulse, Khoshgoftaar, T.M., "Class noise detection using frequent itemsets," Intelligent
Data Analysis, vol. 10, pp. 487-507, 2006.

[15] C. M. Teng, "Correcting noisy data," presented at the Proceedings of the Sixteenth International
Conference on Machine Learning (ICML' 99), 1999.

[16] X. Zhu, Wu, X., Yang, Y., "Error detection and impact-sensitive instance ranking in noisy datasets,"
presented at the Ninetheenth National Conference on Artificial Intelligence (AAAI'04), 2004.

[17] J. D. Van Hulse, Khoshgoftaar, T.M., Huang, H., "The pairwise attribute noise detection algorithm,"
Knowledge and Information Systems, vol. 11, pp. 171-190, 2007.

[18] Y. Zhang, "Noise tolerant data mining," Ph.D. Thesis, The Faculty of the Graduate College,
University of Vermont, 2008.

[19] Y. Zhang, Zhu, X., Wu, X., Bond, J.P., "Ace: An aggressive classifier ensemble with error detection,
correction and cleansing.," presented at the Seventeenth International Conference on Tools with
Artificial Intelligence (ICTAI'05), 2005.

[20] Y. Zhang, Wu, X., "Noise modeling with associative corruption rules.," presented at the Seventh
IEEE International Conference on Data Mining (ICDM'07), 2007.

[21] A. Marcus, Maletic, J.I., Lin, K.I., "Ordinal Association Rules for Error Identification in Data Sets,"
presented at the 10th International Conference on Information and Knowledge Management
(CIKM'01), 2001.

[22] B. Mehta, Nejdl, W., "Unsupervised strategies for shilling detection and robust collaborative
filtering.," User Modeling and User-Adapted Interaction, vol. 19, pp. 65-97, 2009.

[23] I. Gunes, Kaleli, C., Bilge, A., Polat, H., "Shilling attacks against recommender systems: a
comprehensive survey," Artificial Intelligence Review, 2012.

[24] H. X. Pham, Jung, J.J., "Preference-based user rating correction process for interactive
recommendation systems," Multimedia Tools and Applications, vol. 65, pp. 119-132, 2013.

[25] B. Li, Chen, L., Xingquan, Z., Chengqi, Z., "Noisy but non-malicious user detection in social
recommender systems," World Wide Web, 2012.

[26] G. Piatetsky-Shapiro, Frawley, W.J., Knowledge Discovery in Databases: AAAI/MIT Press, 1991.
[27] R. Agrawal, Srikant, R., "Fast algorithms for mining association rules," presented at the VLDB, 1994.
[28] M. García-Borroto, Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Medina-Pérez, M.A., Ruiz-

Schulcloper, J. , "Lcmine: An efficient algorithm for mining discriminative regularities and its
application in supervised classification.," Pattern Recognition, vol. 43, pp. 3025-3034, 2010.

[29] M. García-Borroto, Martínez-Trinidad, J.F., Carrasco-Ochoa, "Fuzzy emerging patterns for
classifying hard domains," Knowledge and Information Systems, vol. 28, pp. 473-489, 2011.

[30] C. W. K. Leung, Chan, S.C.F., Chung, F.L., "A collaborative filtering framework based on fuzzy
association rules and multi-level similarity," Knowledge and Information Systems, vol. 10, pp. 357-
381, 2006.

[31] C. Desrosier, Karypis, G., "A Comprehensive Survey of Neighborhood-based Recommendation
Methods," in Recommender Systems Handbook, F. R. Ricci, L.;Shapira,B.;Kantor,P., Ed., ed, 2011,
pp. 107-145.

[32] C. Borgelt, "Frequent item set mining," WIREs Data Mining Knowl Discov, vol. 2, pp. 437-456, 2012.
[33] C. Borgelt, Kruse, R., "Induction of Association Rules: Apriori Implementation," presented at the

14th Conference on Computational Statistics (COMPSTAT), 2002.
[34] Y. Koren, Bell, R. M. Volinsky, C., "Matrix factorization techniques for recommender systems.,"

IEEE Computer, vol. 42, pp. 30-37, 2009.
[35] J. Breese, Heckerman, D., Kadie, C., "Empirical analysis of predictive algorithms for collaborative

filtering," presented at the 14th Conference on Uncertainty in Artificial Intelligence (UAI), 1998.

A Regularity-Based Preprocessing Method for Collaborative Recommender Systems

460

[36] C. N. Ziegler, McNee, S. M., Konstan, J. A., Lausen, G. , "Improving recommendation lists through
topic diversification.," presented at the 14th International Conference on World Wide Web, 2005.

[37] M. D. Ekstrand, Riedl, J. T., Konstan, J. A., "Collaborative filtering recommender systems. ,"
Foundations and trends in Human-Computer Interaction, vol. 4, pp. 81-173, 2010.

Raciel Yera Toledo
He received the BSc. and MSc. degrees (Hons.) in Computer Science from Uni-
versity of Informatics Sciences, Cuba, and University of Ciego de Ávila, Cuba, in
2010 and 2012 respectively. He is currently a PhD. student in Computer Science
at Las Villas Central University, Cuba. He is a lecturer of Computer Science at
Knowledge Management Center, University of Ciego de Ávila. Its current re-
search interests rely on recommender systems, knowledge discovery from the
World Wide Web, and its application in e-learning scenarios.

Yailé Caballero Mota
She received the Ph.D. degree in Computer Science from Las Villas Central
University, Cuba, in 2007. She is currently the dean of Faculty of Computer Sci-
ence in University of Camagüey, Cuba, and the head of the Artificial Intelligence
Research Group. She has published widely in leading journals and international
conferences proceedings. She is a young member of Cuban Academy of Sci-
ences, and she is the recipient of the Finlay Medal 2012, for her outstanding
contributions to the science in Cuba.

Milton García Borroto
He received the Ph.D. degree in Computer Science from National Institute of
Astrophysics, Optics and Electronics, Mexico, in 2010. He is currently a re-
searcher in the Computer Science Laboratory, at the Bioplants Center, University
of Ciego de Avila, Cuba. He has published widely in international journals, like
Pattern Recognition, Knowledge and Information Systems, and AI Review. His
research interests are pattern recognition, intelligent systems, machine learning
and biometrics.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

