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Abstract—The big challenge in current content-based image retrieval systems is to 
reduce the semantic gap between the low level-features and high-level concepts. In this 
paper, we have proposed a novel framework for efficient image retrieval to improve the 
retrieval results significantly as a means to addressing this problem. In our proposed 
method, we first extracted a strong set of image features by using the dual-tree rotated 
complex wavelet filters (DT-RCWF) and dual tree-complex wavelet transform (DT-CWT) 
jointly, which obtains features in 12 different directions. Second, we presented a 
relevance feedback (RF) framework for efficient image retrieval by employing a support 
vector machine (SVM), which learns the semantic relationship among images using the 
knowledge, based on the user interaction. Extensive experiments show that there is a 
significant improvement in retrieval performance with the proposed method using SVMRF 
compared with the retrieval performance without RF. The proposed method improves 
retrieval performance from 78.5% to 92.29% on the texture database in terms of retrieval 
accuracy and from 57.20% to 94.2% on the Corel image database, in terms of precision 
in a much lower number of iterations.  

 
Keywords—Content-based Image Retrieval (CBIR), Relevance Feedback (RF), Rotated 
Complex Wavelet Filters (RCWFs), Dual Tree Complex Wavelet, and Image retrieval  

 
 

 
1. INTRODUCTION 

1.1 Motivation 

Recently, there is a rapid growth of digital image data on the Internet and in digital libraries. 
The advent of the Internet has made information sharing and access easier. Internet users are 
indulging in information exchange. Retrieving information from the World Wide Web has be-
come a common practice. However, with the day-by-day increase in the size of the web and the 
increase in the heterogeneity of information, due to there being an abundant amount of infor-
mation, these things have made classical information retrieval techniques ineffective. Searching 
for and retrieving information as desired has become a very important challenge. Hence, 
nowaday's image retrieval has became an active research field. As the databases grew larger, the 
traditional keywords based method to retrieve a particular image has become inefficient due to 
the following limitations: 
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• Image annotation is a tedious task, since it is practically impossible to annotate all of the im-
ages in a large scale database. 

• For a large dataset, it requires more skilled labors to annotate the images in a database   
manually.            

 
To overcome these limitations, researchers have turned their attention to CBIR. There are 

different ways to retrieve the images in CBIR. [1]-[4] presented a comprehensive and recent 
extensive literature survey on content based image retrieval. In CBIR systems, low level image 
features are extracted based on visual content, such as color, shape, and texture, which are 
represented by feature vectors instead of a set of keywords. However, user's are more interested 
in high level concepts than in retrieving similar images that are based on a simple low level 
feature. Hence, there is a big challenge in CBIR to reduce this semantic gap between the low 
level features and high level concepts. In order to reduce this gap, relevance feedback was 
introduced into CBIR [5]-[6]. Relevance feedback was initially developed for document 
retrieval. However, now it has become popular in CBIR within a short of period and it will 
remain an active research area, due to there being more ambiguities that arise in the 
interpretation of images than with words, which makes user interaction a neccessity. In addition, 
judging an image is faster than judging a document, since an image reveals its content almost 
instantly to a human obsever [12]. To overcome these problems we have proposed a novel 
method in this paper. For our proposed method, we first used our recently designed 2-D rotated 
complex wavelet filters [18] and dual-tree complex wavelet transform jointly in order to 
efficiently extract the textural features of textured and real world scenic images in 12 different 
orientations. Second, to reduce the significant gap between low level features and high level 
concepts, we are proposing a novel SVM based relevance feedback algorithm, which provides 
efficient retrieval performance that has very few feedback iterations. Third, extensive 
experiments on standard database show that there are significant improvements in terms of 
retrieval performance, as compared to earlier approaches based on retrieval without feedback 
[18], with relevance feedback based on AdaBoost[26], Single_RBF, and the RBF guassian 
Function[25]. The proposed method improves retrieval performance from 78.5% to 92.29% on 
the texture database in terms of retrieval accuracy and from 57.20% to 94.2% on the Corel 
Image Database, in terms of precision in a much lower number of iterations. 

 
1.2 Related Work 

Recently, many researchers began to consider the RF as a classification or semantic learning 
problem. In this approach a user provides positive and/or negative examples, and the systems 
learn from such examples to separate all data into relevant and irrelevant groups. Hence, many 
classical machine learning schemes may be applied to the RF, which include decision tree learn-
ing [7], Bayesian learning [8]-[9], Support Vector machines [10], boosting [11], and so on. 
There is a good review on RF in [12]. The process of learning is a very difficult task in RF [12]-
[14], due to the following reasons: 

• Training data is very small, which is less than the dimension of the feature space. This 
makes it difficult to apply most of the learning methods, such as the linear discriminate 
fisher classifier and relevance (RVM). Though, the RVMs are sparser than the SVMs and 
use less number of kernel functions. 
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• Training data is asymmetrical, which creates too much of an imbalance between the relevant 
and irrelevant images. 

• In RF, for every iteration we have to perform both training and testing online, which re-
quires more real time usage.   

 
Recently, most of the work in RF is based on SVMs [14]-[17] because they minimize the 

measure of errors on the training set, while simultaneously maximizing the margin between rel-
evant and irrelevant images. A SVM is a highly effective mechanism for avoiding over fitting, 
which leads to a good generalization. It is a sparse model, so the process of learning and evalua-
tion is faster for the medium-sized training data.  

For a visual representation of the images, we employed the global texture features presented 
in [18], which provide very efficient performance. Much of the work on RF uses the low-level 
representation using a discrete wavelet transform (DWT) [15], Gobor filters [16], and a Co-
occurrence matrix [19][20] for extracting texture features. In order to retrieve general purpose 
images like artificial objects and natural scenes textural features are usually combined with col-
ors and shapes to obtain a better retrieval performance. However, they still suffer from poor 
directional sensitivity, shift variants, and redundancy. From these combined features we may get 
better retrieval performance, but not an efficient one because as we increased the number of 
features, which increases the dimensionality of the feature space. With such a high dimensional 
feature space, RF may become impractical for even medium sized databases [14]. In order to 
store and process these high dimensional feature vectors it requires more memory space and 
time. So, to make a retrieval system efficient, we have to consider two factors—namely, time 
complexity and space complexity—together with the better retrieval performance. To overcome 
the above problem, we are proposing the use of new rotated complex wavelet filters for feature 
extraction. 

 
1.3 Main Contribution 

In this paper we have used our earlier recent work [18] to extract more compact effective low- 
level features, in order to improve the retrieval performance in terms of speed, storage, and ac-
curacy by using the rotated complex wavelet filters and dual tree complex wavelet transform 
jointly. Furthermore, to reduce the significant gap between low-level features and high-level 
concepts, we have proposed a new RF approach that uses the left skewed relevant binary tree of 
the SVM while neglecting the right skewed irrelevant binary tree in every iteration of the feed-
back. This helps to exhibit the better results in a lower number of iterations. The proposed meth-
od has a threefold advantage over earlier approach. First, the proposed RF framework provides 
efficient retrieval performance in very few feedback iterations. Second, a proposed approach 
uses both the relevant and irrelevant examples for learning. Finally, the proposed approach uses 
the linear kernel function, which gives better performance even though the training samples are 
smaller than the dimensionality of feature space. Our extensive experiments, which used the 
proposed RF with SVM on a standard texture database and Corel database, show significant 
improvements with respect to retrieval performance in comparison with the earlier RF approach 
based on AdaBoostRF[26], Single_RBF, and the RBF Gaussian Function [25].   

The rest of the paper is organized as follows: we briefly discuss the dual-tree complex wave-
let, and dual tree rotated complex wavelet in Section 2. The proposed RF method using SVM is 
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discussed in Section 3. In Section 4, image retrieval and feature database creation are discussed. 
In Section 5, experimental results are discussed and finally, the conclusion is given in Section 6. 

 
 

2. VISUAL REPRESENTATIONS OF THE IMAGES 
2.1 DT-CWT 

Real DWT has poor directional selectivity and it lacks shift invariance. Drawbacks of the 
DWT are overcome by the complex wavelet transform (CWT) by introducing limited redundan-
cy into the transform. But still it suffers from problems where things like no perfect reconstruc-
tion is possible in the case of using CWT decomposition beyond Level 1, when the input to each 
level becomes complex. To overcome this, Kingsbury [21] proposed a dual tree complex wave-
let transform (DT-CWT), which provides perfect reconstruction along with providing the other 
advantages of a complex wavelet, which is DT-CWT. This introduces a limited amount of re-
dundancy and provides perfect reconstruction along with providing the other advantages of 
complex wavelets. The DT-CWT is implemented using separable transforms and by combining 
subband signals appropriately. Even though it is non-separable yet, it inherits the computational 
efficiency of separable transforms. Specifically, the 1-D DT-CWT is implemented by using two 
filter banks in parallel and operates on the same data. For d-dimensional input, a L scale DT-
CWT outputs an array of real scaling coefficients corresponding to the low pass subbands in 
each dimension. The total redundancy of the transform is 2d and independent of L . The 
mechanism of the DT-CWT is not covered here. Please refer to [22] and [23] for a comprehen-
sive explanation of the transform and details of filter design for the trees. A complex valued 
( )tψ  can be obtained as: 
 

                         ( ) ( ) ( )xjxx gh ψψψ +=                        (1)
 

 
Where ( )xhψ  and ( )xgψ  are both real-valued wavelets. The impulse responses of 6 

wavelets associated with 2-D complex wavelet transform are illustrated in Fig. 1.  
 

 
Fig. 1. Impulse response of 6 wavelet filters of a complex wavelet 
 
 

2.2 DT-RCWF 

Dual tree rotated complex wavelet filters were designed in 2005 [18]. Directional 2D RCWF 
are obtained by rotating the directional 2D DT-CWT filters by 45o so that decomposition is per-
formed along new directions, which are 45o apart from the decomposition of CWT. The size of a 
newly obtained filter is )12()12( −− NXN , where N is the length of the 1-D filter. The decom-

position of an input image with 2-D RCWF followed by a 2-D downsampling operation is per-
formed up to the desired level. The computational complexity associated with RCWF decompo-
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sition is the same as that of a standard 2-D DT-CWT, if both are implemented in the frequency 
domain. The set of RCWFs retains the orthogonality property. The 6 subbands of 2D DT-RCWF 

gives information that is strongly oriented at ( 120906030030 ,,,,, °°°°°° − ). The mechanism of 
the DT-RCWF is explained in our earlier work [18]. The 2D DT-CWT and RCWF jointly gives 
12 different directional information on images in the directions 
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. Whereas, the standard DWT gives the 

directional information of images in only 4 directions{ }90450 ,, °°° ± . The impulse response of 

6 wavelets associated with a rotated complex wavelet filter is shown in Fig. 2. 
 

 
Fig. 2. Impulse response of six rotated complex wavelet filters 
 
 
3. PROPOSED SVM BASED RELEVANCE FEEDBACK FRAMEWORK 

The fundamental concept of RF is to learn the semantic gap between the low-level features 
and the high-level concepts by establishing interactions between the user and the retrieval sys-
tem. This should be done so that the system refines the retrieval performance based on the rele-
vance judgments provided by the user. Generally speaking, RF is designed to bridge the seman-
tic gap between low level features and high level concepts (users feedback) for enhancing per-
formance. 
 

3.1 Overview of the Proposed Framework 

Fig. 3 shows the block diagram of the proposed system. First, the user provides a query to a 
CBIR system for searching for desired images in the database. Then, the CBIR system computes 
the similarity between the user query and the images in the database by extracting the low-level 
features. Images with high similarities are returned to the users in the initial stage. Second, the 
user judges the relevance of the initially returned results and submits his/her judgments to the 
CBIR system. Where, U/R is the user’s relevance feedback.                 

A RF algorithm reduces the significant gap between low-level features and high-level con-
cepts by refining the initial retrieval results based on the user relevance judgments, and it returns 
an improved set of results to the user. Typically, the above procedure is repeated for a number of 
times to achieve satisfactory results. Finally, after some feedback iterations, the performance of 
the system remains the same. Unlike traditional relevance feedback, in our approach after every 
feedback iteration we get 2 sets of images—namely, a relevant image set and an irrelevant im-
age set. For every iteration we have provided, only the images that are the most relevant to the 
learning system are needed to learn the semantic concept of the images based on user relevance 
judgments. This greatly improves retrieval performance within a few feedback iterations and 
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optimizes the testing process.   
 
3.2 Support Vector Machine Framework 

Here we briefly introduce the basic concepts of two classes of SVMs [24]. On pattern classifi-
cation problems, SVMs provide a very good generalization performance in empirical applica-
tions. We begin our discussion of support vector machines for a two-class classification problem 
by using linear models of the form: 

 
         ( ) bXXy W

T += φ)(                                 (2) 

Where )(Xφ  denotes a fixed feature-space transformation, and we have made the bias pa-
rameter b explicit. The training data set comprises N input vectors XX N.,..,1 , with corre-
sponding target values tt N,...,1 , and new data points are classified according to the sign 
of ( )Xy .  

Given a training set of instances labeled pairs ),( tX ii , Ni ...1= , RX
n

i ∈  and 
{ }.1,1 −∈t  The SVM requires a solution for the following optimization problem: 
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ξ
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1bw
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+                              (3)            
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i bX iWt −≥+ 1))((                          (4)  

0≥ξ i                     

 
Fig. 3. System architecture 
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Where training vectors X i  are mapped into a higher dimensional space by the function .φ  
SVM finds a linear separating hyper-plane with a maximal margin in this higher dimensional 
space. Furthermore, ( ) ( )')',( XXXXk

T
φφ=  is called the kernel function. The basic kernel 

functions of an SVM are: 
1) Linear:   X jX

T
iX jX ik =)( ,               

2) Radial basis function (RBF):  0,)exp()(
2

, >−= − γγ X jX iX jX ik            

3) Polynomial: ,)( )(, rX jX
T
iX jX i

d

k += γ 0>γ   

where ,, rγ and d  are the kernel parameters.    
 
3.3 Kernel Selection for a Proposed RF 

The RBF kernel nonlinearly maps samples into a higher dimensional space. Furthermore, the 
linear kernel is a special case of RBF, and they were shown that the linear kernel with a penalty 
parameter C has the same performance as a RBF kernel with some parameters (C,γ ). In addi-
tion, the sigmoid kernel behaves like RBF for a certain parameter. The reason for this, is the 
number of hyper parameters, which influences the complexity of kernel selection. Finally, the 
RBF kernel has less numerical difficulties as compared to polynomial kernels. Since polynomial 
kernel values may go to infinity if 1>+ rXX j

T
iγ  or zero 

1<+ rXX j
T
iγ   when the degree is large. However, if the dimension of the feature 

space is large, one may not need to map data to a higher dimensional space. That is, the non-
linear mapping does not improve the performance. So we have used the linear kernel with 

0=C . It performs better when the number of training samples is smaller than the dimensional-
ity of the feature space.  

 
3.4 The Proposed Semantic Image Retrieval System 

The following algorithm reduces the semantic gap between the low-level features and the 
high-level concepts by using SVM.    

 
Algorithm 1: Proposed SVM-Based Relevance Feedback  

 
Input: q: user query 
DB: Image database 
 P: Relevant images 
 N: Irrelevant images 
 Output: Result 
    Begin 
        Result= CBIR (DB, q); 
Repeat until user satisfaction or result remains the same 
   (P, N)=Labeling (Result); 
   T= (P U N); 
   (PI, NI)=SVMLearner (T, DB); 
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                 for each x Є PI do 
                  Dx =CanberraDist(x, query); 
              end 
         SortDist (D); 
    Result=DisplayTop20 (D); 
    DB=DB-NI; 
   Repeat end 
end 

 
 
In summary, the pseudo code of the proposed method is presented in Algorithm 1, where the 

CBIR function follows the traditional content-based image retrieval mechanism by using low-
level features. The Labeling function, which is an interactive mechanism between the user and 
the retrieval system in order to get refined results based on user judgments about the result of 
every iteration. To reduce the semantic gap, we have used SVM for the semantic learning of the 
retrieval system, which returns the results as relevant and irrelevant based on the relevant judg-
ments of the user. From these results we have considered only relevant images for speeding up 
the retrieval system and for better semantic learning in aspect to the user perception. For opti-
mizing the testing process, the irrelevant images that are obtained from the learner are removed 
from the image database. In each iteration, the consideration of relevant images helps to reduce 
the semantic gap between the low-level features and high-level user perception. The relevant 
images are ranked by using the Canberra distance measure eq. (11). Hence, this improves the 
performance of the semantic image retrieval system.  

 
 

4. FEATURE DATABASE CREATION 
To construct the feature vectors of each image in the database, we decomposed each image 

using DT-CWT and DT-RCWF up to third level. Features based on the Energy and Standard 
Deviation (STD) were computed separately on each subband and the feature vector was formed 
using these two parameter values. The retrieval performance, combined with these two feature 
parameters, always performs better than that using these features individually [18]. The Ener-
gy kE and Standard Deviation kσ of kth  subband is computed as follows: 

 

( )∑ ∑
×

=
= =

M

i

N

j
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E

1 1
,1                   (5) 
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⎣
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=
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N

i

M

j
kkk jiW

NM
μσ                    (6) 

 
where ),( jiW k  is the kth wavelet-decomposed subband, NM × is the size of the wavelet 

decomposed subband, and μ k   is the mean of the kth subband. The resulting feature vector 
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using energy and the standard deviation are [ ]nE EEEf ...21=  and 

[ ]nf σσσσ ...21=  respectively. So the combined feature vector is:  

 

     
[ ]nn EEEf ...... 2121 σσσσμ =                (7)            

 
4.1 Normalization 

It is important to normalize the data before applying it to the proposed RF using SVM and 
AdaBoost learners. Normalization avoids features in greater numeric ranges and it dominates 
those in smaller numeric ranges. It also avoids the numerical difficulties during the calculation. 
Because kernel values usually depend on the inner products of feature vectors (e.g., the linear 
kernel and the polynomial kernel for large attribute values might cause numerical problems). So 
we normalized the feature vector Ef  and σf  by applying the following statistical normaliza-
tion method as given in Eq. (8) and (9) respectively. We observed that with normalization the 
results are better in relevance feedback, as compared to the results without normalization. 

 

                      
σ

μ

Ef

EfEf
f VE

−
=                               (8) 

                                                                           

                     
σ σ

σ
μσ

σ
f

f

V

f
f

−
=                               (9) 

                                                               
Where μ

Ef , μ
σf

  and σ
Ef

, σ
σf

  are the mean and the standard deviation of Ef , 
σf   respectively.  Finally, the resultant feature vector will be the combined normalized vector 

of:  
 

.                              (10)  
 
The features vectors are constructed using these two parameters. The length of the feature 

vector will be equal to (no. of subbands × no. of feature measures used in combination). Let us 
assume that there are a total of n  subbands and a combination of two feature measures, then 
the length of feature vector will be equal to ( n × 2). For the creation of a feature database, the 
above procedure is repeated for all the images in the database and these feature vectors are 
stored in the feature database. 

 
4.2 Image Matching 

The query image is one of the 1,856 images from the texture image database. The query im-
age is further processed to compute the feature vector, as given in Section 4.1. The Canberra 
distance metric is used as a similarity measure. If x   and y  are the feature vectors of  the 
database and query image, respectively, and have dimension d , then the Canberra distance is 
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given by: 
 

Canb (x, y) ∑
+

−
=

=

d

i ii

ii
yx
yx

1
                          (11) 

 
 

5. EXPERIMENTS AND DISCUSSION 
To evaluate the performance of a proposed system, we have used the Brodatz texture photo-

graphic album [18] and the Corel Image Database [25]. The experiments were conducted using a 
MATLAB 7.0 with an Intel core2Duo, which is a 1 GB RAM machine.   

 
5.1 Texture Image Database 

The texture database used in our experiment consists of 116 different textures [18]. We used 
108 textures from the Brodatz texture photographic album, 7 textures from the USC database, 
and 1 artificial texture. The size of each texture image is 512×512. Each 512×512 image is di-
vided into sixteen 128×128 non-overlapping subimages, thus creating a database of 1,856 tex-
ture images. 

 
5.2 Corel Image Database 

This database contains 1,000 color photographs that have a resolution of 384x256 pixels and 
that cover a wide range of semantic categories, from natural scenes to artificial objects [25]. The 
database is partitioned into 10 categories, each with 100 photographs. 

 
5.3 Performance Measures 

In order to obtain our experimental results, we conducted 2 different sets of experiments by 
using the proposed method, which we applied to 2 different standard databases. We did so in 
order to compare the retrieval performance in RF while still considering the top 20 image re-
trieval. For a retrieval task, it is significant to define a suitable metric for performance evalua-
tion. We employed the following two performance measures:  

 

           
M
Rn=)(N recall                               (12)  

        

              
N
Rn=N)precision(                            (13) 

 
Where M is the total number of relevant matches in the database, N  is the number of re-

trievals and Rn is the number of relevant matches amongst the retrievals.                               
Our first experimental results were evaluated by randomly selecting one query image from 

each of the 116 classes from the texture database. For each experiment, one image was selected 
at random as being the query image from each category and thus the retrieved images were 
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obtained. Then, the users were asked to identify the images that are related to their expectations 
from the retrieved images. These selected images were used as the feedback images for the next 
iteration. Finally, we computed the average accuracy of all of the categories in the database. 
Each image category contains 16 images. The feedback processes were performed 5 times. 
However, in RF, we can perform the number of iterations repeatedly until the result remains the 
same or user satisfaction has been obtained. The reported results of the average accuracy are 
obtained by taking an average over the 116 texture database queries. Fig. 4 provides a detailed 
comparison of the average retrieval accuracy that was obtained by using SVMRF and 
AdaBoostRF on every feedback iteration of the randomly selected image from each category of 
the texture database.  

The proposed RF using a SVM gives a better retrieval performance on the Brodatz texture da-
tabase, which contains texture images. Second, from Fig. 4 we observed that the retrieval per-
formance of SVMRF was better than AdaBoostRF [26]. However, there is a rapid increase in 
retrieval performance with each feedback iteration of the proposed RF when both learning algo-
rithms are used. Retrieval performance is improved from 91.75% to 92.29% in comparison to 
AdaBoostRF. The results are tabulated in Table 1. 

Our second experimental results were evaluated on a Corel image database. In this database, 
there are 10 categories of images and in each category 100 natural color images. For testing we 
have randomly selected 5 images from each category as a query image (altogether 50 images). 
The reported results of average precision are obtained by taking an average over the 50 queries. 

Table 1. The average accuracy on each feedback iteration for the texture database 

Approach CBIR 
(without RF) 1st iteration 2nd iteration 3rd iteration 4th iteration 5th iteration 

SVMRF 78.50 89.27 91.75 92.18 92.29 92.29 

ADABoostRF [26] 78.50 88.52 91.32 91.70 91.70 91.70 

 

 
 Fig. 4. Average accuracy versus iteration curves for texture images 
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Fig. 5 describes the detailed comparison of the average retrieval performance obtained when 
using SVMRF, AdaBoostRF [26], Single_RBF, and the RBF Gaussian function [25] on every 
feedback iteration on Corel images. We observed in Table 2, that the proposed method yields 
better retrieval performance than the Single_RBF and RBF Gaussian function that was proposed 
by Rongtao et al. in 2007 [25] as the number of iterations increased. However, in the proposed 
system, the removal of the irrelevant group of images from the database in every feedback itera-
tion cannot allow for the improvement of the retrieval performance after some iteration. Hence, 
the results become stationary after a few feedback iterations.    

 
Table 2. The average precision on each feedback iteration for the Corel image database 

Approach CBIR 1st iteration 2nd iteration 3rd iteration 4th iteration 5th iteration 

RBFGaussFunction[25] 65.2 86.5 88.4 90.4 91.5 92.3 

Single_RBF[25] 65.2 79.2 81.9 82.3 83.1 84.6 

AdaBoostRF[26] 57.2 75.4 84.8 90.0     92.2 92.8 

SVMRF 57.2 78.0 87.5 92.3 94.0 94.2 

 

 
Fig. 5. Average accuracy versus iteration curves for Corel images 

 
 
5.4 Image Retrieval Examples   

Retrieval examples with the proposed method and earlier methods with and without the rele-
vance feedback are shown in Figs. 6(a)-6(d). Fig. 6(a) is the result of CBIR without RF using 
combined features (RCWT+DT-CWT). It was observed that among the top 20 retrieved images, 
8 images belong to the desired category (i.e., Images 1-6 and Images 16 and 20) and that the 
remaining 12 belong to the irrelevant category. Hence, there is a 50.0% retrieval precision of 
CBIR without RF. From Fig. 6(b) we can observe that there is a rapid increase in performance 
(i.e., from 50.0% to 100%) using SVMRF. Figs. 6(c)-6(d) shows the performance improvement 
of the approach using AdaBoost for a texture database. From Figs. 6(c) to 6(d), we can observe 
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that retrieval accuracy increased from 81.25% to 93.75% from the first iteration to the second 
iteration of relevance feedback and it remains the same in further iterations. It shows that 
AdaBoostRF is a bit slower to achieve better results than the SVMRF is.  

 
 

 
Fig. 6(a). The result of CBIR using combined features (RCWF +DT_CWT) (8/16) 

 
 

 
Fig. 6(b). The result after the first feedback iteration using SVMRF (16/16) 
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Fig. 6(c). The result after the first feedback iteration using AdaBoostRF (13/16) 

 
 

 
Fig. 6(d). The result after the second feedback iteration using AdaBoostRF (15/16) 

 
 

6. CONCLUSION 
In this paper, a novel relevance feedback framework has proposed, which can employ any 

machine learning algorithm that is applicable to RF. In this paper, we tested the proposed RF 
framework using SVM and AdaBoost, since SVM and AdaBoost both work well for small train-
ing data. The experimental results indicate that with the proposed method retrieval, accuracy is 
increased from 78.5% to 91.70 % and 92.29% when using AdaBoostRF and SVMRF, respec-
tively on the texture database in only 5 iterations of relevance feedback. The retrieval precision 
for the Corel image database is increased from 57.20 to 92.3% and 94.2% in 5 iterations of RF 
by using AdaBoostRF and SVMRF, respectively. In the future, to improve the overall perfor-
mance of the system, one can extend the proposed RF framework, which considers a linear 
combination of the most relevant images obtained from the both SVMRF and AdaBoostRF. This 
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is so that it can increase the training data size, which in turn will increase the retrieval perfor-
mance.    
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