

Journal of Information Processing Systems, Vol.8, No.1, March 2012 http://dx.doi.org/10.3745/JIPS.2012.8.1.175

175

Attack and Correction: How to Design a Secure and
Efficient Mix Network

Kun Peng*

Abstract—Shuffling is an effective method to build a publicly verifiable mix network to
implement verifiable anonymous channels that can be used for important cryptographic
applications like electronic voting and electronic cash. One shuffling scheme by Groth is
claimed to be secure and efficient. However, its soundness has not been formally proven.
An attack against the soundness of this shuffling scheme is presented in this paper. Such
an attack compromises the soundness of the mix network based on it. Two new shuffling
protocols are designed on the basis of Groth's shuffling and batch verification techniques.
The first new protocol is not completely sound, but is formally analyzed in regards to
soundness, so it can be applied to build a mix network with formally proven soundness.
The second new protocol is completely sound, so is more convenient to apply. Formal
analysis in this paper guarantees that both new shuffling protocols can be employed to
build mix networks with formally provable soundness. Both protocols prevent the attack
against soundness in Groth's scheme. Both new shuffling protocols are very efficient as
batch-verification-based efficiency-improving mechanisms have been adopted. The
second protocol is even simpler and more elegant than the first one as it is based on a
novel batch cryptographic technique.

Keywords—Mix Network, Correction

1. INTRODUCTION

A mix network [6] is a very important cryptographic tool. It is a normal method for imple-
menting verifiable anonymous channels, which is essential for anonymous communication ap-
plications like anonymous email, anonymous browsing, electronic cash, and especially elec-
tronic voting. A mix network shuffles a set of ciphertexts, so that they cannot be traced back to
their original sources. A mix network is usually composed of multiple shuffling nodes, each of
which re-encrypts (or partially decrypts) and re-orders the ciphertexts so that they cannot be
traced if at least one shuffling node conceals the permutation it uses in its shuffling. Thus, shuf-
fling is an essential primitive for verifiable anonymous communication applications. As anony-
mous communication applications like e-voting must be publicly verifiable without compromis-
ing privacy, very often the employed mix network and thus shuffling must be publicly verifiable
through zero knowledge proof techniques. Namely, each shuffling node must publicly prove
correctness of its shuffling without revealing the permutation it uses. A few publicly verifiable
shuffling schemes [1, 2, 8, 11-13, 16, 18, 20, 22] have been published in recent years. To

Manuscript received October 11, 2011; accepted December 27, 2011.
Corresponding Author: Kun Peng
* Institute for Inforcomm Research, Singapore (dr.kun.peng@gmail.com)

Copyright ⓒ 2012 KIPS (ISSN 1976-913X)

Attack and Correction: How to Design a Secure and Efficient Mix Network

176

achieve verifiability conveniently and efficiently, these schemes adopt re-encryption (and not
partial decryption) in their shuffling. From now on in this paper, shuffling refers to verifiable
shuffling.

A shuffling scheme by Groth [13] is among the most efficient shuffling schemes without limit
on permutation. However, the soundness of Groth's shuffling has not been formally proven, so it
still remains dubious. It is illustrated in this paper that Groth's shuffling cannot guarantee that
the messages encrypted in the shuffled ciphertexts are not tampered with. A malicious shuffling
node can perform an incorrect shuffling (tampering with any encrypted message) and pass the
verification with a probability at least as large as 0.5. In this paper, such an attack is presented in
order to breach the soundness of Groth's shuffling and thus the soundness of the mix network
that is based on it. It is then pointed out that the vulnerability of Groth's shuffling lies in the mis-
use of batch verification technique. A formal batch verification theory is applied to analyse
Groth's shuffling and the attack.

In this paper, Groth's shuffling [13] is modified to prevent the discovered attack. Firstly, the
ElGamal encryption employed in Groth's shuffling is modified and the original parameter setting
and shuffling operation employed in Groth's shuffling are adapted. Although the modified El-
Gamal-based shuffling protocol is still not completely sound, it is formally analysed in regards
to soundness so that 1) a sound and verifiable mix network can be built up on it; 2) unlike other
mix network schemes employing shuffling without verifiable soundness (e.g. [10]), the new mix
network can always output correctly shuffled result and never needs rewinding. Then, a new
shuffling protocol employing Paillier encryption is designed as an optimisation, which is com-
pletely sound and thus can be directly employed to build a sound mix network. The soundness
of both of the new mix network schemes are formally proven with the help of the formal batch
verification theory. The new schemes make good use of batch verification, such that they not
only prevent the presented attack, but they also avoid the informal assumption about a random
oracle in [18]. The new Paillier-based shuffling is even more advanced than the new ElGamal-
based shuffling as it is completely sound and based on a novel batch proof-and-verification
technique.

Contributions to this paper include the discovery and analysis of the attack against the sound-
ness of Groth's shuffling and the mix network that is based on it, the proposal of batch verifica-
tion techniques with formally provable security, the application of formal batch verification the-
ory to shuffling verification, and fixing Groth's shuffling to achieve provable soundness and
better performance.

2. THE BACKGROUND MIX NETWORK AND SHUFFLING
An anonymous channel is an important tool that is frequently employed in various secure

network and communication applications. A verifiable anonymous channel is usually imple-
mented through a mix network, which was first proposed by Chaum [6]. A mix network receives
a number of ciphertexts and outputs the same number of plaintexts, so that the output plaintexts
are an unknown permutation of the messages encrypted in the input ciphertexts. A mix network
is widely employed in applications like anonymous emails [6], anonymous browsing [9], elec-
tronic auctions [19], and especially e-voting [16]. A mix network is usually composed of multi-
ple shuffling nodes, who in turn shuffle the ciphertexts. As explained in Section 1, this paper is

Kun Peng

177

only interested in verifiable shuffling, whose correctness can be verified. In verifiable shuffling,
each node re-encrypts and permutes its input ciphertexts from the last node to the same number
of output ciphertexts encrypting the same set of messages. Multiple instances of shuffling to-
gether with an appropriate decryption function can build up a mix network, such that the permu-
tation in the mix network is not revealed if at least one shuffling node conceals its permutation.
The following properties must be satisfied in a shuffling:

• Correctness: if the shuffling node follows the shuffling protocol, the plaintexts encrypted in

the output ciphertexts are a permutation of the plaintexts encrypted in the input ciphertexts.
• Public verifiability: the shuffling node can publicly prove that it does not deviate from the

shuffling protocol.
• Soundness: a successfully verified proof of a shuffling node guarantees that it follows the

shuffling protocol.
• Privacy: the permutation used by the node is not revealed.

The four properties above can guarantee the following properties of a mix network using that

shuffling.

• Correctness: if all the shuffling nodes follow the shuffling protocol, the output plaintexts are

a permutation of the plaintexts encrypted in the input ciphertexts.
• Public verifiability: the shuffling nodes in the mix network can publicly prove that they do

not deviate from the shuffling protocol.
• Soundness: the successfully verified proof of the nodes guarantees that all of the shuffling

nodes follow the shuffling protocol.
• Privacy: the permutation between the inputs and the outputs in the mix network is not re-

vealed.

In recent years, several shuffling schemes [1, 2, 8, 11-13, 16, 18, 20, 22] claiming to achieve

the properties above have been proposed. Among them, [2] is a slight modification of [1], while
[13] is a generalization and improvement of [16]. Various shuffling and verification techniques
are used in these shuffling schemes. The shuffling in [1] and [2] employs multiple small shuf-
fling gates to form a shuffling circuit. The shuffling in [8] bases the shuffling on a permutation
matrix. The shuffling in [16] and [13] employs the proof of the equality of the product of expo-
nents. The shuffling in [20] employs the batch verification theory to improve the efficiency of
shuffling verification. The shuffling in [18] is inspired by [13], but employs different proof
techniques. The idea in [13] and [18] is further explored in [22, 12]. The shuffling in [11] sacri-
fices computational efficiency to pursue higher communicational efficiency.

Although the shuffling in [20] is simple and very efficient, it has two drawbacks. First, the
shuffling node is not completely free to choose a random permutation and only a fraction of all
the possible permutations are permitted. Second, it assumes the nodes have no knowledge of the
messages encrypted in the shuffled ciphertexts, which is called the ignorance assumption in [18].
These two drawbacks limit the application of the shuffling in [20]. [13] is one of the most effi-
cient shuffling schemes without a limit on permutation. Although not explicitly mentioned, the
idea of batch verification is also employed in [13]. However, unlike [20, 13] did not base batch
verification on a formally provable theory. As Groth did not give a formal proof of soundness

Attack and Correction: How to Design a Secure and Efficient Mix Network

178

for his scheme, doubt still remains about its reliability. When the soundness of [18] is proven, a
random oracle is employed to avoid an ignorant assumption. A hash function is used to imple-
ment the random oracle, which brings an informal factor into the proof.

3. GROTH'S SHUFFLING AND AN ATTACK
Groth's shuffling is recalled in this section and an attack breaking its soundness is described.

It is illustrated that this attack can succeed with a probability of at least 0.5. The origin of the
vulnerability and principle of the attack are also analysed.

3.1 Groth's Shuffling

In Groth's shuffling, input ciphertexts nccc ,,, 21 K are shuffled to output ciphertexts

nccc ′′′ ,,, 21 K , such that)(,),(),(21 ncDcDcD ′′′ K is a permutation of)(,),(),(21 ncDcDcD K .

Groth [13] suggested verifying the correctness of the shuffling by testing:

 qcDtcDt ii

n

i
ii

n

i
mod)(=)()(

1=1=

′∑∑ π (1)

where ()π is a permutation of },{1,2, nK and it for ni ,1,2,= K are randomly cho-

sen. Unfortunately, Equation (1) cannot be proved or verified explicitly since ()π must be kept

secret. Groth proposed a technique to publicly compute it
i

n

i
cc ∏ 1=

= and)(
1=

= it

i
n

i
cc π′′ ∏

without revealing ()π . Then 1=)/(ccD ′ can be proved and verified. For simplicity, his pro-
totype protocol instead of his final optimised protocol is described here. The latter only opti-
mises some calculation details and both protocols share the same method and same vulnerability
to attack. Groth suggested using a homomorphic encryption algorithm like the ElGamal encryp-
tion. The analysis in [13] is based on the following ElGamal encryption. Let p̂ be a prime, q̂
a factor of 1ˆ −p and cyclic group Ĝ with the order q̂ as a subgroup of *

p̂Z . Let 0ĝ be a

generator of *
p̂Z , and 1ĝ and 2ĝ be the generators of Ĝ . The private key X̂ is chosen

from qZ ˆ and the public key)ˆ=ˆ,ˆ(ˆ
11
XgYg is published. The message m is encrypted into

)ˆ,ˆ(1
rr Ymg where r is randomly chosen from qZ ˆ . The re-encryption function),(rcRE ′ re-

encrypts the ciphertext),(= bac to)ˆ,ˆ(=),(= 1 bYagbac rr ′′′′′ . A ciphertext),(= bac is
decrypted into Xab ˆ/ .) ,,, | ,,, (2121 lk yyyxxxZP KK denotes the ZK proof of knowledge of

integers kxxx ,,, 21 K satisfying conditions lyyy ,,, 21 K . Groth's prototype protocol (includ-
ing verification of its validity) is as follows where the detailed implementation of the ZK proofs
is omitted:

1. The shuffling node publishes qi Zs ˆ∈ and iris

i ggS 2
)(

1 ˆˆ= π for ni ,1,2,= K where ()π

is a permutation of },{1,2, nK and ir is randomly chosen from qZ ˆ . It outputs a statis-

Kun Peng

179

tical ZK proof that is for ni ,1,2,= K are permuted and committed in iS for

ni ,1,2,= K where the permutation ()π is kept secret.

2. The shuffling node gets),(= iii bac for ni ,1,2,= K and shuffles them to

),(=),(=)(iiiii bawcREc ′′′ π for ni ,1,2,= K where iw is randomly chosen from qZ ˆ .

3. Random integers qi Zt ˆ∈ for ni ,1,2,= K are chosen by the verifier.

4. The shuffling node publishes irit

i ggT ′
2

)(
1 ˆˆ= π for ni ,1,2,= K where ir′ is randomly

chosen from qZ ˆ . It also provides a ZK proof that the same permutation used to shuffle

and commit is for ni ,1,2,= K in iS for ni ,1,2,= K is used to shuffle and

commit it for ni ,1,2,= K in iT for ni ,1,2,= K while the permutation ()π is
kept secret.

5. The shuffling node calculates)(

1=1ˆ= it

i
n

i
aga πγ ′′ ∏ and)(

1=
ˆ= it

i
n

i
bYb πγ ′′ ∏ where γ is ran-

domly chosen from qZ ˆ and provides a ZK proof 21)((2)(1) ,,, ,,,, , (n rrtttZP πππγ ′′ KK

)(

1=

)(

1=
1

ˆ=,ˆ= | it

i

n

i

it

i

n

i
n bYbagar πγπγ ′′′′′ ∏∏ ,

) ,1,2,=ˆˆ= 2
)(

1 niforggT irit
i K

′π , (2)

which can be implemented using a ZK proof of knowledge for logarithm [21] and a ZK proof

of equality for logarithms [7].

6. The shuffling node proves

)/(log=)/(log
1=

ˆ
1=

1ˆ
it

i

n

i
Y

it
i

n

i
g bbaa ∏∏ ′′ (3)

using the proof of equality of logarithms [7]. The verifier checks the proof without knowledge

of ()π .

3.2 Attack against Groth's Shuffling

Groth did not provide his batch technique with a formal proof and analysis, so its soundness
remains dubious. Therefore, it is not surprising that the following attack can break its soundness.
Although Proof (??) and Equation (3) guarantee

)/(log=)/(log
1=

)(

1=
ˆ

1=

)(

1=
1ˆ

it
i

n

i

it
i

n

i
Y

it
i

n

i

it
i

n

i
g bbaa ∏∏∏∏ ′′ ππ (4)

Attack and Correction: How to Design a Secure and Efficient Mix Network

180

they are not enough to guarantee the correctness of the shuffling. If the shuffling node shuf-
fles)(icπ to)ˆ,(= 1)/2ˆ(

0 i
p

ii bgac ′′′ − where),(=),()(iiii wcREba π′′ for some i in },{1,2, nK

while shuffling all the other inputs honestly, then when)(itπ is, even this shuffling can pass

Groth's verification. If the verifier always chooses an odd it for ni ,1,2,= K , a dishonest

server can still pass the verification by shuffling two inputs)(icπ and)(jcπ to

)ˆ,(= 1)/2ˆ(
0 i

p
ii bgac ′′′ − and)ˆ,(= 1)/2ˆ(

0 j
p

jj bgac ′′′ − and shuffling all the other inputs honestly. This
attack succeeds with a probability of no less than 0.5. When qp ˆ1)/ˆ(− has factors other than 2,
the probability of a successful attack is even greater.

This attack shows that Groth's shuffling is not sound and cannot guarantee that the plaintexts
encrypted in the output ciphertexts are a permutation of the plaintexts encrypted in the input
ciphertexts. As a result, a mix network based on Groth's shuffling is not sound and cannot guar-
antee that the output plaintexts are a permutation of the plaintexts encrypted in the input cipher-
texts.

3.3 Origin or the Vulnerability and Principle of the Attack

The verification of Equation (4) is actually a batch verification. Batch verification is a crypto-
graphic technique that was first analyzed by Bellare et al. [4] and then developed further [5, 15,
3, 20]. Batch verification is a technique to verify a batch of similar claims with a single verifica-
tion, so that the cost is lower than when the claims are verified separately. A shuffling scheme
[20] successfully improves the efficiency of shuffling verification while maintaining an over-
whelmingly large probability. Although batch verification is not mentioned in [13], it is implic-
itly employed. However, Groth did not use batch verification to improve the efficiency of sepa-
rate proofs and verifications, but employed batch verification to hide the permutation, which
will be revealed in separate proofs and verifications. Equation (4) is equivalent to:

it
ii

n

i
Y

it
ii

n

i
g bbaa)/(log=)/(log

)(1
1=

ˆ)(1
1=

1ˆ −− ′′ ∏∏ ππ
 (5)

So from the viewpoint of batch shuffling verification (see [20] for details), Groth actually

based his shuffling verification on Hypothesis 1.

Hypothesis 1 Suppose pi Zy ˆ∈ , pi Zz ˆ∈ and qi Zt ˆ∈ for ni ,1,2,= K . If

it
i

n

iY
it

i
n

ig zy ∏∏ 1=ˆ1=1ˆ
log=log , then iYig zy log=log ˆ

1ˆ
 for ni ,1,2,= K except for a negligi-

ble probability.
Unfortunately, when j

p
Yjg zgy 1)/2ˆ(

0ˆ
1ˆ

ˆlog=log − and nji ≤≤ , the verification equation
it

i
n

iY
it

i
n

ig zy ∏∏ 1=ˆ1=1ˆ
log=log can still be satisfied when jt is even. No matter how the it for

ni ,1,2,= K are chosen, the verification equation can still be satisfied when there is a

j
p

Yjg zgy 1)/2ˆ(
0ˆ

1ˆ
ˆlog=log − with a probability of at least 0.5. When qp ˆ1)/ˆ(− has factors other

than 2, the probability is even greater. So Hypothesis 1 is incorrect and the satisfaction of
it

i
n

iY
it

i
n

ig zy ∏∏ 1=ˆ1=1ˆ
log=log is not enough for the batch verification of iYig zy log=log ˆ

1ˆ
 for

Kun Peng

181

ni ,1,2,= K . That is why the attack in Section 3.2 is feasible.
The essence of the attack in Section 3.2 is that a ciphertext encrypting a message in Ĝ can

be incorrectly shuffled to a ciphertext encrypting a message in GZ p
ˆ*

ˆ − without being detected

with a non-negligible probability. Obviously, if ia , ib , ia′ and ib′ for ni ,1,2,= K are

verified to be in Ĝ , the attack can be prevented. Although Groth assumed that ia and ib are
in Ĝ and the shuffling node acts honestly, neither assumption is verified in his scheme. The
membership test of ciphertexts is neither mentioned in this protocol nor counted in the cost es-
timation of his scheme. Even if the membership test is performed to avoid the attack, the high
efficiency of the shuffling scheme is compromised, as additional n4 exponentiations are
needed. Moreover, when the membership test detects an attack, Groth did not propose a method
to fix the incorrect output. If the shuffling has to be rewound, both the efficiency and robustness
of the shuffling are compromised.

4. PROTOCOL 1: ELGAMAL BASED SHUFFLING AND A MIX NETWORK
Our idea is that, although complete soundness is difficult to implement in Groth's shuffling,

the parameter setting and shuffling operation in Groth's shuffling can be re-designed, such that
the modified shuffling can be employed to build a sound mix network. The new shuffling does
not employ a membership test and is very efficient. Multiple instances of the new shuffling are
used to build a new mix network, which employs a final membership test on the output plain-
texts to guarantee the soundness of the mix network. Any incorrect shuffling can be detected by
the final membership test. The detected mistake can be easily fixed without rewinding any shuf-
fling. So although soundness is not guaranteed in any shuffling, it is achieved in the mix net-
work. As the membership test is performed once in the whole mix network instead of once per
shuffling node, the additional computational cost for a membership test is trivial. The parameter
setting in Groth's shuffling is adapted in the new shuffling, so that the batch verification tech-
nique with formally provable security can be applied to the shuffling verification. The following
ElGamal setting is used: 1G is a cyclic subgroup of *

pZ with order q where qp 2=1−

and p , q are large primes. Let 1g , 2g be generators of 1G and 0g be a generator of *
pZ .

The private key X is chosen from qZ and the public key)=,(11
XgYg is published. The

message space is 1G . The message m is encrypted into),(1
rr mYg where r is randomly

chosen from qZ . A ciphertext),(= bac is decrypted into X
g ab/log
1

. The absolute-value

function from *
pZ to 1G defined by

⎩
⎨
⎧

−∈−
∈

q
p gwhereGZifp

Gif

01
*
1

=1\mod
|=|

σσ
σσ

σ

Note that the setting qp 2=1− guarantees that 1−p has no other factor than 2 and q .

This change makes it easier to analyse and handle the attack in Section 3.2. Theorem 4 is based
on this new setting.

Theorem 1 Suppose *

pi Zy ∈ and *
pi Zz ∈ for ni ,1,2,= K . Let L be a security

Attack and Correction: How to Design a Secure and Efficient Mix Network

182

parameter and qL <2 . Let it for ni ,1,2,= K be random integers smaller than L2 .

If there exists integer v , such that nv ≤≤1 and ||log||log
21 vgvg zy ≠ , then

||log||log
1=21=1

it
i

n

ig
it

i
n

ig zy ∏∏ ≠ with a probability no less than L−− 21 .

Theorem 1 has been proven in [20]. It supports the following shuffling protocol where, unless
specified, all multiplications are with modulus p .

1. The shuffling node publishes qi Zs ∈ and iris

i ggS 2
)(

1= π for ni ,1,2,= K where ()π

is a permutation of },{1,2, nK and ir is randomly chosen from qZ . The shuffling

node also provides a ZK proof where is for ni ,1,2,= K are shuffled and committed

in iS for ni ,1,2,= K while the permutation ()π is kept secret. Details of the ZK
proof technique were described in [13], which is statistical zero knowledge.

2. The shuffling node obtains),(= iii bac for ni ,1,2,= K and shuffles ic to

),(=),(=)(1)(
iw

i
iw

iiii ybgabac ππ ±±′′′ where iw is randomly chosen from qZ . This is a

loose shuffling as the shuffling node has two choices for both ia′ and ib′ .

3. Random integers 1},2{0,1, −∈ L

it K for ni ,1,2,= K are chosen by the verifier (e.g.,
the next shuffling node or the other shuffling nodes together).

4. The shuffling node publishes irit

i ggT ′
2

)(
1= π for ni ,1,2,= K where ir′ is randomly

chosen from qZ . The shuffling node also provides a ZK proof where the same permuta-

tion used to shuffle and commit is for ni ,1,2,= K in iS for ni ,1,2,= K is used

to shuffle and commit it for ni ,1,2,= K in iT for ni ,1,2,= K , which can be im-
plemented using a ZK proof of knowledge for logarithm [21] and a ZK proof of the equal-
ity of the logarithms [7]. The permutation ()π is not revealed in the proof.

5. The shuffling node calculates)(

1=1= it

i
n

i
aga πγ ′′ ∏ and)(

1=
= it

i
n

i
bYb πγ ′′ ∏ where γ is

randomly chosen from qZ and provides a ZK proof

,=,= | ,,, ,,,, , ()(

1=

)(

1=
121)((2)(1)

it

i

n

i

it

i

n

i
nn bYbagarrrtttZP πγπγ

πππγ ′′′′′′′ ∏∏KK

) ,1,2,== 2
)(

1 niforggT irit
i K

′π (6)

which can be implemented using a ZK proof of knowledge for logarithm [21] and a ZK proof

of the equality of the logarithms [7].

6. The last step of the batch verification of correctness of the shuffling is a ZK proof of equal-

ity of logarithms [7]:

Kun Peng

183

|/|log|=/|log
1=1=

1
it

i

n

i
Y

it
i

n

i
g bbaa ∏∏ ′′ (7)

Proof (??) and Equation (7) guarantee

|/|log|=/|log
1=

)(

1=1=

)(

1=
1

it
i

n

i

it

i

n

i
Y

it
i

n

i

it

i

n

i
g bbaa ∏∏∏∏ ′′ ππ (8)

According to Theorem 4, satisfaction of Equation (8) guarantees

niforbbaa iiYiig ,1,2,=|/|log|=/|log)()(1
Kππ ′′

while ()π is not revealed.

This new shuffling is publicly verifiable. As the verifier-honest ZK proof and statistical ZK

proof are employed in the shuffling verification, this new shuffling is private. Unfortunately,
although the batch shuffling verification in Equation (7) together with Proof (6) guarantees that
the shuffling node does not deviate from the new loose shuffling protocol, the shuffling protocol
is not strictly correct or sound as it is loose and does not satisfy the definitions of correctness or
soundness of shuffling. Especially, the shuffling verification may be passed when

),(=),()(1)(
iw

i
iw

iii ybgaba ππ −−′′ . However, the following correct, sound, private, and publicly
verifiable mix network can be built up on the base of this new shuffling:

1. Ciphertext nccc ,,, 21 K are submitted to the mix network.

2. Each shuffling node shuffles the ciphertexts in turn using the shuffling above.

3. The last shuffling outputs ciphertexts nccc ′′′ ,,, 21 K .

4. The ciphertexts nccc ′′′ ,,, 21 K are decrypted into nmmm ,,, 21 K .

5. Each im is verified to be in 1G for ni ,1,2,= K . If any im is not in 1G , it is cor-

rected into im− .

6. After the final correction, nmmm ,,, 21 K are output.

As the new shuffling is private and publicly verifiable, this new mix network is also private

and publicly verifiable. Moreover, this new mix network is correct and sound. Given),(ii ba
for ni ,1,2,= K , each shuffling in the new mix network outputs),(ii ba ′′ for ni ,1,2,= K

such that niforbbaa iiYiig ,1,2,=|/|log|=/|log)()(1
Kππ ′′ where ()π is a permutation. So,

the mix network outputs nmmm ,,, 21 K such that)(=)(ii cDm φ± for ni ,1,2,= K where
()φ is the permutation, which combines the permutations of all the shuffling nodes. Therefore,

the final membership test and correction can guarantee)(=)(ii cDm φ for ni ,1,2,= K .

Attack and Correction: How to Design a Secure and Efficient Mix Network

184

Namely the new mix network is correct and if no shuffling nodes deviate from the shuffling
protocol, it is then sound. The guarantee of the shuffling nodes' honesty is illustrated in Theorem
2.

Theorem 2 The probability that a dishonest shuffling node does not strictly follow the shuf-

fling protocol in Section 4, but passes the verification of Equation (7) is negligible. Proof: Let
1A be the event where a shuffling node strictly follows the shuffling protocol; 2A be the event

where Equation (7) is correct; 3A be the event where the shuffling passes the verification of
Equation (7); and)(AP denote the probability of event A .

))/(())/((=)/(12312313 AAAPAAAPAAP ∧+∧

)()/()()/(= 11231123 APAAAPAPAAAP ∧∧+∧∧

))()()/(()()()//()(= 12112123121321 AAPAPAAPAAAPAPAAAPAAP ∧∧∧∧+∧∧

)()/()/()/()/(= 121231221312 AAPAAAPAAPAAAPAAP ∧∧∧+∧

))/()()/(()/()/()/(= 2121231221312 AAPAPAAAPAAPAAAPAAP ∧∧+∧

1=)/(21 AAP as 1=)/(12 AAP . So
)()/()/()/()/(=)/(2123122131213 APAAAPAAPAAAPAAPAAP ∧∧+∧

)()/()/()/()/(2231221312 APAAPAAPAAAPAAP ∧+∧≤

)/()/()/()/(231221312 AAPAAPAAAPAAP +∧≤

)/()/()/(2321312 AAPAAAPAAP +∧≤

According to Theorem 4, LAAP −≤ 2)/(12 . As Equation (7) is proven using a standard

Chaum-Pedersen proof of equality of logarithms, 1=)/(213 AAAP ∧ and LAAP ′−2<)/(23
where L′ is the bit length of the challenge in the Chaum-Pedersen proof of equality of loga-
rithms (e.g. 128). So

LLAAPAAPAAP ′−− ++≤ 22=)/()/()/(231213

Theorem 2 guarantees that the shuffling nodes do not deviate from the shuffling instruction

and niforbbaa iiYiig ,1,2,=|/|log|=/|log)()(1
Kππ ′′ is satisfied in every shuffling in the mix

network with an overwhelmingly large probability. The guarantee is strong enough with a short

it (e.g. 30 or 40 bits long). So, in the mix network)(=)(ii cDm π± for ni ,1,2,= K with

some permutation of ()π with an overwhelmingly large probability. Therefore, the mix net-
work is sound. Theorem 1 and Theorem 2 illustrate that the attack against Groth's shuffling can
be handled and a correct and sound mix network can be obtained. Although an additional final
check and correction is needed in the new mix network, it is still more efficient than a mix net-
work based on Groth's shuffling due to the usage of a short it and a better trade-off between
soundness and efficiency. Note that our proof and verification technique is different from the
aggregate shuffling verification technique proposed in [10], which fails in instant verification
and the mistakes found by the final verification cannot be fixed without rewinding the mix net-
work. Passing each shuffling verification in the new mix network guarantees a correct final re-

Kun Peng

185

sult and any mistake found by the final check can be corrected without rewinding any shuffling.

5. PROTOCOL 2: PAILLIER BASED SHUFFLING AND THE MIX NETWORK
In this section, the shuffling scheme in Protocol 1 is extended to the Paillier encryption.

Unlike the shuffling in Protocol 1, this new shuffling is correct and sound. When the Paillier
encryption algorithm is employed, batch-shuffling verification is strictly based on Theorem 5.
Before Theorem 5 is presented, a parameter setting of the Paillier encryption [17] is intro-
duced. 11= qpN , 12=1 +′pp , 12=1 +′qq where 1p , 1q , p′ and q′ are large primes
and 1=),(qpNGCD ′′ . 2G is the cyclic subgroup containing all the quadratic residues in

*
2N

Z . Unless specified, all multiplicative computations in this section take place in *
2N

Z

with modulus 2N . L is a security parameter such that),(<2 qpminL ′′ .
]),,,,,,,(| ,,, | ,,, | [Pr 21212121 mnmn FSA νννμμμνννμμμ KKKK ∈ denotes the probability

distributing over S with variables nμμμ ,,, 21 K that given input mn νννμμμ ,,,,,,, 2121 KK
polynomial-time algorithm A calculates),,,,,,,(2121 mnF νννμμμ KK .

Theorem 3 If LNit

i
n

in
nL

Rn yyyytttA −∏−∈ 2>])(| ,,, | 1},2{0,1,,,, | [Pr 1/
1=2121 KKK ,

then by querying A , a polynomial-time algorithm B with inputs nyyy ,,, 21 K can be built

to calculate N
iy1/ for any integer i in },{1,2, nK .

Proof: LNit
i

n

in
nL

Rn yyyytttA −∏−∈ 2>])(| ,,, | 1},2{0,1,,,, | [Pr 1/
1=2121 KKK implies

that for any given integer v in },{1,2, nK there must exist integers nttt ,,, 21 K and vt′ in

1},2{0,1, −LK such that

),,,,,,,,,,,()(),,,,,,,(112121
1/

1=
2121 nvvvn

Nit
i

n

i
nn ttttttyyyAytttyyyA KKKKK +− ′→ ∏

Nit
i

n

vi

vt
v

it
i

v

i

yyy 1/

1=

1

1=

))((∏∏
+

′
−

→

Otherwise, for any valid),,,,,,(1121 nvv ttttt KK +− , there is at most one vt in },{1,2, nK

to satisfy Nit
i

n

inn ytttyyyA 1/
1=2121)(),,,,,,,(∏→KK . This implies that among the nL2 pos-

sible choices for },,,{ 21 nttt K (a combination of Ln 1)(2 − possible choices for

},,,,,,{ 1121 nvv ttttt KK +− and L2 possible choices for vt) there are at most Ln 1)(2 − choices to

satisfy Nit
i

n

inn ytttyyyA 1/
1=2121)(),,,,,,,(∏→KK , which is a contradiction to the assumption

that LNit
i

n

in
nL

Rn yyyytttA −∏−∈ 2>])(| ,,, | 1},2{0,1,,,, | [Pr 1/
1=2121 KKK . So algorithm B

can be designed as follows:

1. Perform a brute-force query to A with all possible input nttt ,,, 21 K until meeting the

two correct instances of computation:

Attack and Correction: How to Design a Secure and Efficient Mix Network

186

 Nit
i

n

i
nn ytttyyyA 1/

1=
2121)(),,,,,,,(∏→KK (9)

 Nit
i

n

vi

vt
v

it
i

v

i
nvvvn yyyttttttyyyA 1/

1=

1

1=
112121))((),,,,,,,,,,,(∏∏

+

′
−

+− →′ KKK (10)

2. The calculation result of (9) divided by the calculation result of (10) yields Nvtvt

vy 1/ˆ
)(− .

3. Let ω=)(1/ˆ Nvtvt

vy − . Then vtvt
v

N y
ˆ

= −ω . According to the Euclidean algorithm, there exists

integers α and β , such that)ˆ,(=)ˆ(vvvv ttNGCDNtt −+− αβ . So calculate α and β

using the Euclidean algorithm and output αβω vy/ .

Note the following two facts:

• n is constant and L is a security parameter with a small constant value (e.g., 30), so the

brute-force query for ω has a complexity of)(2nLO and is polynomial time. Although
)(2nLO involves the exponentiation of parameters and may be a high cost, especially when

n is large, it is independent of the length of N , which indicates the difficulty of finding
the thN root modulo 2N . So we can say that)(2nLO is a polynomial cost compared to
the hard problem to solve in Theorem 3.

• The prover can calculate α and β satisfying)ˆ,(=)ˆ(vvvv ttNGCDNtt −+− αβ in

polynomial time from N and ttv
ˆ− using Euclidean algorithm. 1=)ˆ,(vv ttNGCD −

as),(<2<ˆ
11 qpmintt L

vv − . So v
N

v
vtvt

v yyy αβ =)ˆ(− . Namely, N
v

vtvt
vv yyy =/=)ˆ(αβ −

N
v

N
v

NN
v

vtvt
v yyyy)/(=)/(=/)()ˆ(αβαβαβ ωω− . So αβω v

N
v yy /=1/ .

Therefore, B is a polynomial-time algorithm to calculate N

vy1/ . As v can be any integer

in },{1,2, nK , algorithm B can be built to calculate N
iy1/ for any i in },{1,2, nK .

According to Theorem 3, the verification of the knowledge of N
iy1/ for ni ,1,2,= K can

be batched to the verification of the knowledge of Nit
i

n

i
y 1/

1=
)(∏ . If the prover does not know

N
iy1/ for any },{1,2, ni K∈ , then the prover can compute Nit

i
n

i
y 1/

1=
)(∏ with only negligible

probability.
With the support of Theorem 3, the batch ZK proof-verification technique can be employed to

design a Paillier-based shuffling. Suppose the Paillier ciphertexts ic for ni ,1,2,= K are

shuffled to ic′ for ni ,1,2,= K . The shuffling is as follows:

1. The shuffling node publishes Ni Zs ∈ and N

i
is

i rgS)(
3= π for ni ,1,2,= K where ()π

is a permutation of },{1,2, nK and ir is randomly chosen from *
NZ . The shuffling

node also provides a proof that is for ni ,1,2,= K are shuffled and committed in iS

Kun Peng

187

while the permutation ()π is kept secret. Details of the ZK proof technique were de-
scribed in [13], which is statistical zero knowledge.

2. The shuffling node obtains ic for ni ,1,2,= K and shuffles them to N

iii wcc)(= π′

where iw is randomly chosen from *
NZ .

3. Random integers 1},2{0,1, −∈ L

it K for ni ,1,2,= K are chosen by the verifier (e.g.,
the next shuffling node or the other shuffling nodes together).

4. The shuffling node publishes N

i
it

i rgT ′)(
3= π for ni ,1,2,= K where ir′ is randomly

chosen from *
NZ . The shuffling node also provides a proof that the same permutation used

to shuffle and commit is for ni ,1,2,= K in iS for ni ,1,2,= K is used to shuffle

and commit it for ni ,1,2,= K in iT for ni ,1,2,= K , which can be implemented
using the ZK proof of knowledge of root [14] and the ZK proof of equality of logarithms
[7]. The permutation ()π is not revealed in the proof.

5. The shuffling node calculates)(

1=
= it

i
n

i
N cc πγ ′′ ∏ where γ is randomly chosen from *

NZ

and provides a ZK proof

nn rrrtttZP ′′′ ,,, ,,,, , (21)((2)(1) KK πππγ) ,1,2,=== |)(
3

)(

1=

niforrgTcc N
i

it

i
it

i

n

i

N K′′′ ∏ ππγ (11)

which can be implemented using the proof of knowledge of root [14] and the proof of the

equality of logarithms in [7].

6. The last step of the batch verification of correctness of the shuffling is a ZK proof of

knowledge of the root proposed in [14]:

.)/(1/

1=

Nit
i

n

i

cc ∏′ (12)

Proof (??) and Proof (12) guarantee the knowledge of:

.)/(1/

1=

)(

1=

Nit
i

n

i

it
i

n

i

cc ∏∏ ′π (13)

According to Theorem 5, the proof of knowledge of (13) implies the knowledge of

N
ii cc 1/
)()/(π′ for ni ,1,2,= K while ()π is not revealed.

Note that unlike the ElGamal-based shuffling protocol, the Paillier-based shuffling protocol is

correct. Namely, if the shuffling party does not deviate from the protocol, the plaintexts en-
crypted in the output ciphertexts is a permutation of the plaintexts encrypted in the input cipher-
texts. The soundness of the Paillier-based shuffling protocol is illustrated in Theorem 4.

Attack and Correction: How to Design a Secure and Efficient Mix Network

188

Theorem 4 The probability that a dishonest shuffling node does not follow Step 2 strictly in
its shuffling, but passes the verification of Equation (7) is negligible.

Theorem 4 can be proved like Theorem 2. Due to space limit, the proof is not repeated. Theo-

rem 4 guarantees that if the shuffling verification is passed the plaintexts encrypted in the output
ciphertexts is a permutation of the plaintexts encrypted in the input ciphertexts with an over-
whelmingly large probability. Namely, the new Paillier-based shuffling is sound. So a sound
mix network can be built up using the new Paillier-based shuffling without any extra operation
like a final membership test and providing the correction needed in the ElGamal-based shuffling
protocol. Therefore, multiple layers of Paillier-based shuffling and a final decryption form a
correct, sound, private, and publicly verifiable mix network. Like the new ElGamal-based shuf-
fling, the new Paillier-based shuffling protocol is more efficient than Groth's shuffling as a
shorter it is used to obtain a better trade-off between soundness and efficiency.

6. COMPARISON
In Table 1, the properties of the existing shuffling schemes are compared. Privacy and public

verifiability are not included in the table as all the schemes in the table are private and publicly
verifiable. It is assumed that the optimised computation of modulo exponentiation and multipli-
cation in [13] is employed to improve efficiency in the new shuffling protocols, which are op-
timisations of [13] in soundness and efficiency. As the efficiency optimisation mechanism in
[13] does not affect soundness, it can be employed without causing any concern. As shorter ex-
ponents are used in the new shuffling protocols, they are more efficient than [13]. In the com-
parison, it is assumed that 20=L and 128=L′ . Assume that an exponentiation with an x -

Table 1. Comparison of properties

 Correctness Soundness Permutation Drawbacks Computation
(full length exponentiation)

[1, 2] Yes Yes Unlimited Low
efficiency

2)2log16(2 +−≥ nnn

[8] Yes Yes Unlimited n10

[16] Yes Yes Unlimited n12

[13]1 Yes No Unlimited Vulnerable to
attacks 3/38 ++ κnn

[20]1 Yes Yes Limited Assumption of
ignorance 2)(42 −+ kkn

[18] Yes Yes Unlimited Informal
random oracle 3.56 +n

[22]1 Yes Yes Unlimited n7≥

[12] Yes Yes Unlimited n4

[11] Yes Yes Unlimited n7

New shuffling1
ElGamal-based

Support
correct mix

Support
sound mix Unlimited

average
mnnn //1.54 ++ κ

New shuffling
Paillier-based Yes Yes unlimited κ/3 nn +

Kun Peng

189

bit exponent costs x1.5 multiplications and a product of y exponentiations with x -bit ex-
ponents costs yxy 0.5+ multiplications as according to [4]. According to this assumption,
short exponentiations are counted in terms of full length exponentiation. The number of full-
length exponentiations in all the computations (including re-encryption and proof of validity) is
counted in Table 1, which illustrates that the new shuffling protocols satisfy all the requirements
and are very efficient.

7. CONCLUSION
Groth's shuffling [13] is not sound and is vulnerable to attacks. Incorrect shuffling can pass

the verification in Groth's shuffling with a probability of no less than 0.5. The attack exists in
Groth's shuffling because the batch verification technique is improperly used. Two new shuf-
fling protocols without any limitation to permutation are proposed, based on ElGamal encryp-
tion and Paillier encryption respectively. Both shuffling protocols are based on batch verifica-
tion techniques with formally provable security and are formally analysed in regard to sound-
ness. They can be employed to build correct, sound, private, efficient, and publicly verifiable
mix networks. As formal batch verification techniques allow for a better trade-off between
soundness and efficiency, these two new shuffling protocols are very efficient. They prevent an
attack against Groth's shuffling, which is detected in this paper. The new Paillier-based shuffling
is even more advanced than the new ElGamal-based shuffling as it is completely sound and
based on a novel batch proof-and-verification technique.

REFERENCES

[1] M Abe. “Mix-networks on permutation net-works,” In ASIACRYPT '98, pp.258-273.
[2] M Abe and F Hoshino. “Remarks on mix-network based on permutation networks,” In PKC '01,

pp.317-324.
[3] R Aditya, K Peng, C Boyd, and E Dawson. “Batch verification for equality of discrete logarithms and

threshold decryptions,” In ACNS '04, pp.494-508.
[4] M Bellare, J A Garay, and T Rabin. “Fast batch verification for modular exponentiation and digital

signatures,” In EUROCRYPT '98, pp.236-250.
[5] C Boyd and C Pavlovski. “Attacking and repairing batch verification schemes,” In ASIACRYPT '00,

pp.58-71.
[6] D Chaum. “Untraceable electronic mail, return address and digital pseudonym,” Communications of

the ACM, 24(2), 1981, pp.84-88.
[7] D Chaum and T Pedersen. “Wallet databases with observers,” In CRYPTO '92, pp.89-105.
[8] J Furukawa and K Sako. “An efficient scheme for proving a shuffle,” In CRYPTO '01, pp.368-387.
[9] E Gabber, P Gibbons, Y Matias, and A Mayer. “How to make personalized web browsing simple,

secure, and anonymous,” In FC '97, pp.17-31.
[10] P Golle, S Zhong, D Boneh, M Jakobsson, and A Juels. “Optimistic mixing for exit-polls,” In

ASIACRYPT '02, pp.451-465.
[11] J Groth and Y Ishai. “Sub-linear zero-knowledge argument for correctness of a shuffle,” In

EUROCRYPT '08, pp.379-396.
[12] J Groth and S Lu. “Verifiable shuffle of large size ciphertexts,” In PKC '07, pp.377-392.
[13] J Groth. “A verifiable secret shuffle of homomorphic encryptions,” In Public Key Cryptography 2003,

pp.145-160.
[14] L Guillou and J Quisquater. “A``paradoxical'' identity-based signature scheme resulting from zero-

Attack and Correction: How to Design a Secure and Efficient Mix Network

190

knowledge,” In Shafi Goldwasser, editor, CRYPTO '88, pp.216-231.
[15] F Hoshino, M Abe, and T Kobayashi. “Lenient/Strict batch verification in several groups,” In ISC '01,

pp.81-94.
[16] C Neff. “A verifiable secret shuffle and its application to e-voting,” In ACM CCS '01, pp.116-125.
[17] P Paillier. “Public key cryptosystem based on composite degree residuosity classes,”In EUROCRYPT

'99, pp.223-238.
[18] K Peng, C Boyd, and E Dawson. “Simple and efficient shuffling with provable correctness and ZK

privacy,” In CRYPTO '05, pp.188-204.
[19] K Peng, C Boyd, E Dawson, and K Viswanathan. “Efficient implementation of relative bid privacy in

sealed-bid auction,” In WISA '03, pp.244-256.
[20] K Peng, C Boyd, E Dawson, and K Viswanathan. “A correct, private and efficient mix network,” In

PKC '04, pp.439-454.
[21] C Schnorr. “Efficient signature generation by smart cards,” Journal of Cryptology, 4, 1991, pp.161-

174.
[22] D Wikstrom. “A sender verifiable mix-net and a new proof of a shuffle,” In ASIACRYPT '05, pp.273-

292.

Kun Peng
Dr. Kun Peng received his Bachelor's degree in Software Engineering and his
Master degree's in Computer Security from Huazhong University of Science and
Technology in China. He obtained his PhD in information security from the Infor-
mation Security Institute at the Queensland University of Technology in Australia
in 2004. His main research interest is in applied public key cryptology. His main
research interests include applied cryptology, network security, and secure e-
commerce, and e-government. He is now a scientist at the Institute for Infocomm

Research in Singapore.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /!BM-dolhdip1
 /!BM-gaulr
 /!BM-joyakr
 /AGA-Arabesque
 /AGA-ArabesqueDesktop
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AharoniBold
 /ahn2006-B
 /ahn2006-L
 /ahn2006-M
 /AkhbarMT
 /AkhbarMT-Bold
 /Albertus-ExtraBold
 /Albertus-Medium
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Algerian
 /AmericanGaramondBT-Roman
 /AmiR-HM
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /ArborWin
 /ArialBackslanted
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /Astro2KT
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Medium
 /AvantGardeITCbyBT-MediumOblique
 /AvQest
 /BaskOldFace
 /Batang
 /BatangChe
 /BatangOldHangulJamo
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BirdB
 /BirdL
 /BirdM
 /BlackadderITC-Regular
 /BlackChancery
 /BM-dolchulip1
 /BM-gaulr
 /BM-joyakr
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /Brush445BT-Regular
 /BrushScript
 /BrushScriptBT-Regular
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ChungB
 /ChungCB
 /ChungL
 /ChungM
 /Clarendon
 /Clarendon-Bold
 /Clarendon-Condensed-Bold
 /Clarendon-Light
 /CliperSKana
 /CMjoB
 /CMjoL
 /CMjoM
 /Cmsy10
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolekana
 /CooperBlack
 /CooperBlack-Italic
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Copperplate-ThirtyTwoBC
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Crayon
 /CrounB
 /CrounM
 /CseriB
 /CstreB
 /CstreL
 /CstreM
 /CstreUL
 /CurlzMT
 /DanzinRegular
 /David-Bold
 /David-Reg
 /DavidTransparent
 /DFKMincho-Bd-WIN-KSC-H
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dinbla
 /Dinbol
 /DinerRegular
 /DingDongBold
 /Dinlig
 /Dinmed
 /Dinreg
 /Dotum
 /DotumChe
 /DTnaskh0
 /DTnaskh1
 /DTnaskh2
 /DTnaskh3
 /DTthuluth0
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /Eurostile
 /Eurostile-Bold
 /Eurostile-BoldExtendedTwo
 /Eurostile-ExtendedTwo
 /ExpoL-HM
 /ExpoM-HM
 /FelixTitlingMT
 /FencesPlain
 /FixedMiriamTransparent
 /Flora-Bold
 /Flora-BoldEx
 /Flora-BoldHo
 /Flora-BoldWd
 /Floralies
 /Flora-Normal
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /FZSY--SURROGATE-0
 /Gaeul
 /GaramB-HM
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /GaramondNo4CyrTCY-Medi
 /GasiIIB
 /GasiIIL
 /GasiIIM
 /GauFontShirousagi
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldCondensed
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-ExtraBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GothicL-HM
 /GothicRoundB-HM
 /Goudy
 /Goudy-Bold
 /Goudy-BoldItalic
 /Goudy-ExtraBold
 /Goudy-Italic
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GraphicSansR-HM
 /GTB
 /GTM
 /Gulim
 /GulimChe
 /GulimOldHangulJamo
 /Gungsuh
 /GungsuhChe
 /H2bulL
 /H2gprM
 /H2gsrB
 /H2gtrB
 /H2gtrE
 /H2gtrM
 /H2hdrM
 /H2hsrM
 /H2mjmM
 /H2mjrB
 /H2mjrE
 /H2mjsM
 /H2mjuM
 /H2mkpB
 /H2mkrB
 /H2pirL
 /H2porL
 /H2porM
 /H2sa1B
 /H2sa1M
 /H2sa2L
 /H2snrB
 /H2ta1L
 /H2ta2M
 /H2wulE
 /H2wulL
 /H2yerM
 /H2ysrM
 /HaansoftBatang
 /HaansoftDotum
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HeadG
 /HeadlineR-HM
 /HeadlineSansR-HM
 /HeadR
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HGMinchoB
 /HGPMinchoB
 /HGSMinchoB
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HMKBP
 /HMKBS
 /HoeflerText-Black
 /HoeflerText-BlackItalic
 /HoeflerText-Italic
 /HoeflerText-Ornaments
 /HoeflerText-Regular
 /HSalB
 /HSalL
 /HSalM
 /HYbdaL
 /HYbdaM
 /HYbsrB
 /HYBuDle-Medium
 /HYcysM
 /HYdnkB
 /HYdnkM
 /HYGoThic-Light
 /HYgprM
 /HYGraPhic-Bold
 /HYgsrB
 /HYgtrE
 /HYhaeseo
 /HYHeadLine-Bold
 /HyhwpEQ
 /HYkanB
 /HYkanM
 /HYKHeadLine-Bold
 /HYKHeadLine-Medium
 /HYLongSamul-Bold
 /HYLongSamul-Medium
 /HYmjrE
 /HYMokPan-Bold
 /HYmprL
 /HYMyeongJo-Light
 /HYMyeongJo-Medium
 /HYMyeongJo-Ultra
 /HYnamB
 /HYnamL
 /HYnamM
 /HYPMokPan-Bold
 /HYPMokPan-Light
 /HYPop-Medium
 /HYporM
 /HYPost-Bold
 /HYRGoThic-Bold
 /HYRGoThic-Medium
 /HYsanB
 /HYShortSamul-Light
 /HYSinGraPhic-Medium
 /HYSinMyeongJo-Bold
 /HYsnrL
 /HYsupB
 /HYsupM
 /HYSymbolD
 /HYSymbolE
 /HYSymbolF
 /HYSymbolG
 /HYSymbolH
 /HYTaJa-Bold
 /HYTaJaFull-Bold
 /HYTaJaFull-Light
 /HYTaJa-Medium
 /HYtbrB
 /HYwulB
 /HYwulM
 /HYYeasoL-Bold
 /HYYeatGul-Bold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisB
 /IrisL
 /IrisM
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /KirillicaWincyr
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KristenITC-Regular
 /KunstlerScript
 /KyunKo
 /KyunMyung
 /Latha
 /LatinWide
 /LCDReg
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Love
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /MagicR-HM
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Marigold
 /MaturaMTScriptCapitals
 /MDAlong
 /MDArt
 /MDEasop
 /Mdesb
 /MDGaesung
 /MDSol
 /Mfoxb
 /Mfoxl
 /Mfoxm
 /MicrosoftSansSerif
 /MingLiU
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /MJB
 /MJL
 /MJM
 /MMchonL
 /MMchonM
 /Modern-Regular
 /MoeumTR-HM
 /Monaco
 /MonaLisa-Recut
 /MonotypeCorsiva
 /MonotypeKoufi-Bold
 /MonotypeSorts
 /Mpaperb
 /Mpaperl
 /Mpaperm
 /Msam10
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Symbol
 /MudirMT
 /Munhem
 /MVBoli
 /MWORLD
 /MyungjoL-HM
 /MyungjoXB-HM
 /NamuB-HM
 /NamuR-HM
 /Narkisim
 /Nekoyanagi
 /NemoB
 /NemoL
 /NemoM
 /NemoXB
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewGulim
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /OCRAExtended
 /OCRB10PitchBT-Regular
 /OldEnglishTextMT
 /Onyx
 /OriginalGaramondBT-Roman
 /Oxford
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /PinoB
 /PinoL
 /PinoM
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Pristina-Regular
 /PyunjiR-HM
 /QDotum
 /QGulim
 /QGungsuh
 /Raavi
 /RageItalic
 /Ravie
 /Retort
 /RetortOutline
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rod
 /RodTransparent
 /SaenaegiR-HM
 /SaenaegiXB-HM
 /SAKURAhira
 /San02B
 /San02L
 /San02M
 /San60B
 /San60L
 /San60M
 /San60R
 /San60SB
 /SanBiB
 /SanBiL
 /SanBiM
 /SanBoB
 /SanBoL
 /SanBoM
 /SanBsB
 /SanBsL
 /SanBsU
 /SanCrB
 /SanCrK
 /SanCrL
 /SandArB
 /SandArL
 /SandArM
 /SandArXB
 /SandAtM
 /SandAtXB
 /SandJg
 /SandKg
 /SandKm
 /SandMtB
 /SandMtL
 /SandMtM
 /SandSaB
 /SandSaL
 /SandSaM
 /SandSm
 /SandTg
 /SandTm
 /SanHgB
 /SanHgL
 /SanHgM
 /SanIgM
 /SanKbB
 /SanKbL
 /SanKbM
 /SanKsB
 /SanKsL
 /SanKsM
 /SanMogfilB
 /SanMogfilL
 /SanMogfilM
 /SanMrB
 /SanMrJ
 /SanMrM
 /SanPkB
 /SanPkL
 /SanPkM
 /SanPuB
 /SanPuW
 /SanSrB
 /SanSrL
 /SanSrM
 /SanSwB
 /SanSwL
 /SanSwM
 /SapphIIB
 /SapphIIL
 /SapphIIM
 /ScriptMTBold
 /SegoeMediaCenter-Regular
 /SegoeMediaCenter-Semibold
 /SeUtum
 /SgreekMedium
 /Shadow9
 /SHeadG
 /SHeadR
 /ShowcardGothic-Reg
 /Shruti
 /Shusha
 /Shusha02
 /Shusha05
 /SILDoulosIPA
 /SILDoulosIPA93Bold
 /SILDoulosIPA93BoldItalic
 /SILDoulosIPA93Italic
 /SILDoulosIPA93Regular
 /SILManuscriptIPA
 /SILManuscriptIPA93Bold
 /SILManuscriptIPA93BoldItalic
 /SILManuscriptIPA93Italic
 /SILManuscriptIPA93Regular
 /SILSophiaIPA
 /SILSophiaIPA93Bold
 /SILSophiaIPA93BoldItalic
 /SILSophiaIPA93Italic
 /SILSophiaIPA93Regular
 /SimHei
 /SimplifiedArabicBackslantedBoldItalic
 /SimSun
 /SimSun-PUA
 /SinGraphic
 /SinMun
 /SnapITC-Regular
 /SohaR-HM
 /Sol
 /SolB
 /SolL
 /SolM
 /SomaB
 /SomaL
 /SomaM
 /SPgoJ1-KSCpc-EUC-H
 /SPgoJ-KSCpc-EUC-H
 /SPgoJS-KSCpc-EUC-H
 /SPgoT-KSCpc-EUC-H
 /SPmuS-KSCpc-EUC-H
 /StempelGaramond-Bold
 /StempelGaramond-BoldItalic
 /StempelGaramond-Italic
 /StempelGaramond-Roman
 /Stencil
 /SwiriB-KSCpc-EUC-H
 /SwiriL-KSCpc-EUC-H
 /SwiriM-KSCpc-EUC-H
 /Sylfaen
 /Symbol
 /SymbolMT
 /TaeKo
 /TaeM
 /TaeUtum
 /Taffy
 /Tahoma
 /Tahoma-Bold
 /TahomaSmallCap-Bold
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldTh
 /TimesIPAnew
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Tiplo
 /TMjoB
 /TMjoL
 /TMjoM
 /ToodamB
 /ToodamL
 /ToodamM
 /TraditionalArabicBackslantedBoldItalic
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TSTNamr
 /TSTPenC
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /TypewriteB
 /TypewriteL
 /TypewriteM
 /Univers
 /Univers-BlackExt
 /Univers-Black-Normal
 /Univers-BoldExt
 /UniversCondensedLight
 /UniversCondensedOblique
 /Univers-Light-Italic
 /Univers-Light-Light
 /Univers-Light-LightTh
 /Univers-Light-Normal
 /Univers-Medium
 /Univers-Oblique
 /Uri
 /Utum
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WingsB
 /WingsL
 /WingsM
 /WoorinR-HM
 /WP-CyrillicA
 /WP-GreekCentury
 /WP-MultinationalARoman
 /WriSin
 /YDIBirdB
 /YDIBirdL
 /YDIBirdM
 /YDIBlueB
 /YDIBlueEB
 /YDIBlueL
 /YDIBlueM
 /YDIChungM
 /YDICMjoL
 /YDICMjoM
 /YDICstreB
 /YDICstreL
 /YDICstreM
 /YDICstreUL
 /YDIFadeB
 /YDIFadeL
 /YDIFadeM
 /YDIGasiIIB
 /YDIGasiIIL
 /YDIGasiIIM
 /YDIGirlB
 /YDIGirlL
 /YDIGirlM
 /YDIGukB
 /YDIGukL
 /YDIGukM
 /YDIHSalM
 /YDIHsangIIB
 /YDIHsangIIL
 /YDIHsangIIM
 /YDIMokB
 /YDIMokL
 /YDIPinoB
 /YDIPinoL
 /YDIPinoM
 /YDIPu
 /YDISmileB
 /YDISmileL
 /YDISmileM
 /YDISprIIB
 /YDISprIIL
 /YDISprIIM
 /YDISumB
 /YDISumL
 /YDISumM
 /YDIWebBatan
 /YDIWebDotum
 /YDIWriSin
 /YDIYGO310
 /YDIYGO330
 /YDIYGO340
 /YDIYGO350
 /YDIYGO360
 /YDIYMjO220
 /YDIYMjO230
 /YDIYMjO310
 /YDIYMjO330
 /YDIYMjO340
 /YDIYMjO350
 /YDIYMjO360
 /YDIYSin
 /YetR-HM
 /YGO11
 /YGO115
 /YGO12
 /YGO125
 /YGO13
 /YGO135
 /YGO14
 /YGO145
 /YGO15
 /YGO155
 /YGO16
 /YGO165
 /YGO22-KSCpc-EUC-H
 /YGO23-KSCpc-EUC-H
 /YGO24-KSCpc-EUC-H
 /YGO25-KSCpc-EUC-H
 /YGO31
 /YGO32
 /YGO33
 /YGO34
 /YGO35
 /YGO36
 /YGO520
 /YGO530
 /YGO540
 /YGO550
 /YheadB
 /YheadL
 /YheadM
 /YheadUL
 /YjBACDOOBold
 /YJBELLAMedium
 /YJBLOCKMedium
 /YJBONMOKGAKMedium
 /YjBUTGOTLight
 /YjCHMSOOTBold
 /YjDOOLGIMedium
 /YjDWMMOOGJOMedium
 /YjGABIBold
 /YjGOTGAEMedium
 /YjINITIALPOSITIVEMedium
 /YJINJANGMedium
 /YjMAEHWASemiBold
 /YjNANCHOMedium
 /YjSHANALLMedium
 /YjSOSELSemiBold
 /YjTEUNTEUNBold
 /YjWADAGMedium
 /YMjO11
 /YMjO115
 /YMjO12
 /YMjO125
 /YMjO13
 /YMjO135
 /YMjO14
 /YMjO145
 /YMjO15
 /YMjO155
 /YMjO16
 /YMjO165
 /YMjO22
 /YMjO23
 /YMjO24
 /YMjO31
 /YMjO32
 /YMjO33
 /YMjO34
 /YMjO35
 /YMjO36
 /YMjO42
 /YMjO44
 /YMjO45
 /YMjO520
 /YMjO530
 /YMjO540
 /YMjO550
 /YonseiB
 /YonseiL
 /YoolB-KSCpc-EUC-H
 /YoolL-KSCpc-EUC-H
 /YoolM-KSCpc-EUC-H
 /YSin
 /YtalB-KSCpc-EUC-H
 /YtalL-KSCpc-EUC-H
 /YtalM-KSCpc-EUC-H
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

